Search results for: drug stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5122

Search results for: drug stability

4702 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications

Authors: M. Madigoe, R. Modiba

Abstract:

High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.

Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys

Procedia PDF Downloads 170
4701 Quality of the Ruin Probabilities Approximation Using the Regenerative Processes Approach regarding to Large Claims

Authors: Safia Hocine, Djamil Aïssani

Abstract:

Risk models, recently studied in the literature, are becoming increasingly complex. It is rare to find explicit analytical relations to calculate the ruin probability. Indeed, the stability issue occurs naturally in ruin theory, when parameters in risk cannot be estimated than with uncertainty. However, in most cases, there are no explicit formulas for the ruin probability. Hence, the interest to obtain explicit stability bounds for these probabilities in different risk models. In this paper, we interest to the stability bounds of the univariate classical risk model established using the regenerative processes approach. By adopting an algorithmic approach, we implement this approximation and determine numerically the bounds of ruin probability in the case of large claims (heavy-tailed distribution).

Keywords: heavy-tailed distribution, large claims, regenerative process, risk model, ruin probability, stability

Procedia PDF Downloads 347
4700 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 54
4699 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability

Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo

Abstract:

Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.

Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory

Procedia PDF Downloads 446
4698 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals

Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady

Abstract:

Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.

Keywords: core stability, isokinetic, trunk proprioception, biomechanics

Procedia PDF Downloads 463
4697 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot

Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi

Abstract:

To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.

Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients

Procedia PDF Downloads 70
4696 Empirical Study of Correlation between the Cost Performance Index Stability and the Project Cost Forecast Accuracy in Construction Projects

Authors: Amin AminiKhafri, James M. Dawson-Edwards, Ryan M. Simpson, Simaan M. AbouRizk

Abstract:

Earned value management (EVM) has been introduced as an integrated method to combine schedule, budget, and work breakdown structure (WBS). EVM provides various indices to demonstrate project performance including the cost performance index (CPI). CPI is also used to forecast final project cost at completion based on the cost performance during the project execution. Knowing the final project cost during execution can initiate corrective actions, which can enhance project outputs. CPI, however, is not constant during the project, and calculating the final project cost using a variable index is an inaccurate and challenging task for practitioners. Since CPI is based on the cumulative progress values and because of the learning curve effect, CPI variation dampens and stabilizes as project progress. Although various definitions for the CPI stability have been proposed in literature, many scholars have agreed upon the definition that considers a project as stable if the CPI at 20% completion varies less than 0.1 from the final CPI. While 20% completion point is recognized as the stability point for military development projects, construction projects stability have not been studied. In the current study, an empirical study was first conducted using construction project data to determine the stability point for construction projects. Early findings have demonstrated that a majority of construction projects stabilize towards completion (i.e., after 70% completion point). To investigate the effect of CPI stability on cost forecast accuracy, the correlation between CPI stability and project cost at completion forecast accuracy was also investigated. It was determined that as projects progress closer towards completion, variation of the CPI decreases and final project cost forecast accuracy increases. Most projects were found to have 90% accuracy in the final cost forecast at 70% completion point, which is inlined with findings from the CPI stability findings. It can be concluded that early stabilization of the project CPI results in more accurate cost at completion forecasts.

Keywords: cost performance index, earned value management, empirical study, final project cost

Procedia PDF Downloads 148
4695 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking

Authors: Soheib Fergani

Abstract:

This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.

Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation

Procedia PDF Downloads 46
4694 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid

Authors: Phuong Nguyen

Abstract:

Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.

Keywords: transient stability, uncertainties, renewable energy sources, analytical approach

Procedia PDF Downloads 59
4693 Learners’ Violent Behaviour and Drug Abuse as Major Causes of Tobephobia in Schools

Authors: Prakash Singh

Abstract:

Many schools throughout the world are facing constant pressure to cope with the violence and drug abuse of learners who show little or no respect for acceptable and desirable social norms. These delinquent learners tend to harbour feelings of being beyond reproach because they strongly believe that it is well within their rights to engage in violent and destructive behaviour. Knives, guns, and other weapons appear to be more readily used by them on the school premises than before. It is known that learners smoke, drink alcohol, and use drugs during school hours, hence, their ability to concentrate, work, and learn, is affected. They become violent and display disruptive behaviour in their classrooms as well as on the school premises, and this atrocious behaviour makes it possible for drug dealers and gangsters to gain access onto the school premises. The primary purpose of this exploratory quantitative study was therefore to establish how tobephobia (TBP), caused by school violence and drug abuse, affects teaching and learning in schools. The findings of this study affirmed that poor discipline resulted in producing poor quality education. Most of the teachers in this study agreed that educating learners who consumed alcohol and other drugs on the school premises resulted in them suffering from TBP. These learners are frequently abusive and disrespectful, and resort to violence to seek attention. As a result, teachers feel extremely demotivated and suffer from high levels of anxiety and stress. The word TBP will surely be regarded as a blessing by many teachers throughout the world because finally, there is a word that will make people sit up and listen to their problems that cause real fear and anxiety in schools.

Keywords: aims and objectives of quality education, debilitating effects of tobephobia, fear of failure associated with education, learners' violent behaviour and drug abuse

Procedia PDF Downloads 269
4692 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 313
4691 Formulation and Evaluation of Niosomes Containing an Antihypertensive Drug

Authors: Sunil Kamboj, Suman Bala, Vipin Saini

Abstract:

Niosomes were formulated with an aim of enhancing the oral bioavailability of losartan potassium and formulated in different molar ratios of surfactant, cholesterol and dicetyl phosphate. The formulated niosomes were found in range of 54.98 µm to 107.85 µm in size. Formulations with 1:1 ratio of surfactant and cholesterol have shown maximum entrapment efficiencies. Niosomes with sorbitan monostearate showed maximum drug release and zero order release kinetics, at the end of 24 hours. The in vivo study has shown the significant enhancement in oral bioavailability of losartan potassium in rats, after a dose of 10 mg/kg. The average relative bioavailability in relation with pure drug solution was found 2.56, indicates more than two fold increase in oral bioavailability. A significant increment in MRT reflects the release retarding ability of the vesicles. In conclusion, niosomes could be a promising delivery of losartan potassium with improved oral bioavailability and prolonged release profiles.

Keywords: non-ionic surfactant vesicles, losartan potassium, oral bioavailability, controlled release

Procedia PDF Downloads 338
4690 Screening of Phytochemicals Compounds from Chasmanthera dependens and Carissa edulis as Potential Inhibitors of Carbonic Anhydrases CA II (3HS4) Receptor using a Target-Based Drug Design

Authors: Owonikoko Abayomi Dele

Abstract:

Epilepsy is an unresolved disease that needs urgent attention. It is a brain disorder that affects over sixty-five (65) million people around the globe. Despite the availability of commercial anti-epileptic drugs, the war against this unmet condition is yet to be resolved. Most epilepsy patients are resistant to available anti-epileptic medications thus the need for affordable novel therapy against epilepsy is a necessity. Numerous phytochemicals have been reported for their potency, efficacy and safety as therapeutic agents against many diseases. This study investigated 99 isolated phytochemicals from Chasmanthera dependens and Carissa edulis against carbonic anhydrase (ii) drug target. The absorption, distribution, metabolism, excretion and toxicity (ADMET) of the isolated compounds were examined using admet SAR-2 web server while Swiss ADME was used to analyze the oral bioavailability, drug-likeness and lead-likeness properties of the selected leads. PASS web server was used to predict the biological activities of selected leads while other important physicochemical properties and interactions of the selected leads with the active site of the target after successful molecular docking simulation with the pyrx virtual screening tool were also examined. The results of these study identified seven lead compounds; C49- alpha-carissanol (-7.6 kcal/mol), C13- Catechin (-7.4 kcal/mol), C45- Salicin (-7.4 kcal/mol), C6- Bisnorargemonine (-7.3 kcal/mol), C36- Pallidine (-7.1 kcal/mol), S4- Lacosamide (-7.1 kcal/mol), and S7- Acetazolamide (-6.4 kcal/mol) for CA II (3HS4 receptor). These leads compounds are probable inhibitors of this drug target due to the observed good binding affinities and favourable interactions with the active site of the drug target, excellent ADMET profiles, PASS Properties, drug-likeness, lead-likeness and oral bioavailability properties. The identified leads have better binding energies as compared to the binding energies of the two standards. Thus, seven identified lead compounds can be developed further towards the development of new anti-epileptic medications.

Keywords: drug-likeness, phytochemicals, carbonic anhydrases, metalloeazymes, active site, ADMET

Procedia PDF Downloads 32
4689 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 160
4688 A Photoredox (C)sp³-(C)sp² Coupling Method Comparison Study

Authors: Shasline Gedeon, Tiffany W. Ardley, Ying Wang, Nathan J. Gesmundo, Katarina A. Sarris, Ana L. Aguirre

Abstract:

Drug discovery and delivery involve drug targeting, an approach that helps find a drug against a chosen target through high throughput screening and other methods by way of identifying the physical properties of the potential lead compound. Physical properties of potential drug candidates have been an imperative focus since the unveiling of Lipinski's Rule of 5 for oral drugs. Throughout a compound's journey from discovery, clinical phase trials, then becoming a classified drug on the market, the desirable properties are optimized while minimizing/eliminating toxicity and undesirable properties. In the pharmaceutical industry, the ability to generate molecules in parallel with maximum efficiency is a substantial factor achieved through sp²-sp² carbon coupling reactions, e.g., Suzuki Coupling reactions. These reaction types allow for the increase of aromatic fragments onto a compound. More recent literature has found benefits to decreasing aromaticity, calling for more sp³-sp² carbon coupling reactions instead. The objective of this project is to provide a comparison between various sp³-sp² carbon coupling methods and reaction conditions, collecting data on production of the desired product. There were four different coupling methods being tested amongst three cores and 4-5 installation groups per method; each method ran under three distinct reaction conditions. The tested methods include the Photoredox Decarboxylative Coupling, the Photoredox Potassium Alkyl Trifluoroborate (BF3K) Coupling, the Photoredox Cross-Electrophile (PCE) Coupling, and the Weix Cross-Electrophile (WCE) Coupling. The results concluded that the Decarboxylative method was very difficult in yielding product despite the several literature conditions chosen. The BF3K and PCE methods produced competitive results. Amongst the two Cross-Electrophile coupling methods, the Photoredox method surpassed the Weix method on numerous accounts. The results will be used to build future libraries.

Keywords: drug discovery, high throughput chemistry, photoredox chemistry, sp³-sp² carbon coupling methods

Procedia PDF Downloads 128
4687 Development and Characterization of Controlled Release Photo Cross-Linked Implants for Ocular Delivery of Triamcinolone Acetonide

Authors: Ravi Sheshala, Annie Lee, Ai Lin Ong, Ling Ling Cheu, Thiagarajan Madheswaran, Thankur R. R. Singh

Abstract:

The objectives of the present research work were to develop and characterize biodegradable controlled release photo cross-linked implants of Triamcinolone Acetonide (TA) for the treatment of chronic ocular diseases. The photo cross-linked implants were prepared using film casting technique by mixing TA (2.5%) polyethylene glycol diacrylate (PEGDA 700), pore formers (mannitol, maltose, and gelatin) and the photoinitiator (Irgacure 2959). The resulting mixture was injected into moulds using 21 G and subjected to photocrosslinking at 365 nm. Scanning electron microscopy results demonstrated that more pores were formed in the films with the increase in the concentration of pore formers from 2%-10%. The maximum force required to break the films containing 2-10% of pore formers were determined in both dry and wet conditions using texture analyzer and found that films in a dry condition required a higher force to break compared to wet condition and blank films. In vitro drug release from photo cross-linked films were determined by incubating samples in 50 ml PBS pH 7.4 at 37 C and the samples were analyzed for drug release by HPLC. The films demonstrated a biphasic release profile i.e. an initial burst release (<20%) on the first day followed by a constant and continuous drug release in a controlled manner for 42 days. The drug release from all formulations followed the first-order release pattern and the combination of diffusion and erosion release mechanism. In conclusion, the developed formulations were able to provide controlled drug delivery to treat the chronic ocular diseases.

Keywords: controlled release, ophthalmic, PEGDA, photocrosslinking, pore formers

Procedia PDF Downloads 393
4686 Effect of Rice Husk Ash on Properties of Cold Bituminous Emulsion Mix

Authors: Sampada Katekar, Namdeo Hedaoo

Abstract:

Cold Bituminous Emulsion Mixtures (CBEMs) are generally produced by mixing unheated aggregate, binder and filler at ambient temperature. Cold bituminous emulsion mixtures have several environmental and cost-effective benefits. But CBEMs offer poor early life properties too and they require long curing time to achieve maximum strength. The main focus of this study is to overcome inferiority of CBEMs by incorporating Rice Husk Ash (RHA) and Ordinary Portland Cement (OPC). In this study, RHA and OPC are substituted for conventional mineral filler in an increased percentage from 0 to 3% with an increment of 1%. Marshall stability, retained stability and tensile strength tests were conducted to evaluate the enhancement in performance of CBEMs. The experimental results have shown that Marshall stability and tensile strength of CBEMs increased significantly by replacing the conventional mineral filler with RHA and OPC. The addition of RHA and OPC in CBEMs result in a reduction in moisture induced damages. However, stability and tensile strength values of RHA modified CBEMs are higher than that of OPC modified CBEMs.

Keywords: cold bituminous emulsion mixtures, Marshall stability test, ordinary Portland cement, rice husk ash

Procedia PDF Downloads 160
4685 Improving the Foult Ride through Capability and Stability of Wind Farms with DFIG Wind Turbine by Using Statcom

Authors: Abdulfetah Shobole, Arif Karakas, Ugur Savas Selamogullari, Mustafa Baysal

Abstract:

The concern of reducing emissions of Co2 from the fossil fuel generating units and using renewable energy sources increased in our world. Due this fact the integration ratio of wind farms to grid reached 20-30% in some part of our world. With increased integration of large MW scaled wind farms to the electric grid, the stability of the electrical system is a great concern. Thus, operators of power systems usually deman the wind turbine generators to obey the same rules as other traditional kinds of generation, such as thermal and hydro, i.e. not affect the grid stability. FACTS devices such as SVC or STATCOM are mostly installed close to the connection point of the wind farm to the grid in order to increase the stability especially during faulty conditions. In this paper wind farm with DFIG turbine type and STATCOM are dynamically modeled and simulated under three phase short circuit fault condition. The dynamic modeling is done by DigSILENT PowerFactory for the wind farm, STATCOM and the network. The simulation results show improvement of system stability near to the connection point of the STATCOM.

Keywords: DFIG wind turbine, statcom, dynamic modeling, digsilent

Procedia PDF Downloads 703
4684 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model

Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee

Abstract:

Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.

Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior

Procedia PDF Downloads 118
4683 Stability of Solutions of Semidiscrete Stochastic Systems

Authors: Ramazan Kadiev, Arkadi Ponossov

Abstract:

Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.

Keywords: abrupt changes, exponential stability, regularization, stochastic noises

Procedia PDF Downloads 177
4682 Investigation of Slope Stability in Gravel Soils in Unsaturated State

Authors: Seyyed Abolhasan Naeini, Ehsan Azini

Abstract:

In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software.  we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground.  Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.

Keywords: slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil

Procedia PDF Downloads 161
4681 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna

Authors: Chuanzhi Chen, Wenjing Yu

Abstract:

Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.

Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation

Procedia PDF Downloads 134
4680 Patient-Reported Adverse Drug Reactions, Medication Adherence and Clinical Outcomes among major depression disorder Patients in Ethiopia: A Prospective Hospital Based Study.

Authors: Tadesse Melaku Abegaz

Abstract:

Background: there was paucity of data on the self-reported adverse drug reactions (ADRs), level of adherence and clinical outcomes with antidepressants among major depressive disorder (MDD) patients in Ethiopia. Hence, the present study sought to determine the level of adherence for and clinical outcome with antidepressants and the magnitude of ADRs. Methods: A prospective cross-sectional study was employed on MDD patients from September 2016 to January 2017 at Gondar university hospital psychiatry clinic. All patients who were available during the study period were included under the study population. The Naranjo adverse drug reaction probability scale was employed to assess the adverse drug reaction. The rate of medication adherence was determined using morisky medication adherence measurement scale eight. Clinical Outcome of patients was measured by using patient health questionnaire. Multivariable logistic carried out to determine factors for adherence and patient outcome. Results: two hundred seventy patients were participated in the study. More than half of the respondents were males 122(56.2%). The mean age of the participants was 30.94 ± 8.853. More than one-half of the subjects had low adherence to their medications 124(57.1%). About 186(85.7%) of patients encountered ADR. The most common ADR was weight gain 29(13.2). Around 198(92.2%) ADRs were probable and 19(8.8%) were possible. Patients with long standing MDD had high risk of non-adherence COR: 2.458[4.413-4.227], AOR: 2.424[1.185-4.961]. More than one-half 125(57.6) of respondents showed improved outcome. Optimal level of medication adherence was found to be associated with reduced risk of progression of the diseases COR: 0.37[0.110-5.379] and AOR: 0.432[0.201-0.909]. Conclusion: Patient reported adverse drug reactions were more prevalent in major depressive disorder patients. Adherence to medications was very poor in the setup. However, the clinical outcome was relatively higher. Long standing depression was associated with non-adherence. In addition, clinical outcome of patients were affected by non-adherence. Therefore, adherence enhancing interventions should be provided to improve medication adherence and patient outcome.

Keywords: adverse drug reactions, clinical outcomes, Ethiopia, prospective study, medication adherence

Procedia PDF Downloads 236
4679 Preparation and Size Control of Sub-100 Nm Pure Nanodrugs

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

Pure nanodrugs (PNDs) – nanoparticles consisting entirely of drug molecules, have been considered as promising candidates for the next-generation nanodrugs. However, the traditional preparation method via reprecipitation faces critical challenges including low production rates, relatively large particle sizes and batch-to-batch variations. Here, for the first time, we successfully developed a novel, versatile and controllable strategy for preparing PNDs via an anodized aluminium oxide (AAO) template-assisted method. With this approach, we prepared PNDs of an anti-cancer drug (VM-26) with precisely controlled sizes reaching the sub-20 nm range. This template-assisted approach has much higher feasibility for mass production comparing to the conventional reprecipitation method and is beneficial for future clinical translation. The present method is further demonstrated to be easily applicable for a wide range of hydrophobic biomolecules without the need of custom molecular modifications and can be extended for preparing all-in-one nanostructures with different functional agents.

Keywords: drug delivery, pure nanodrugs, size control, template

Procedia PDF Downloads 300
4678 Simultaneous Determination of Proposed Anti-HIV Combination Comprising of Elvitegravir and Quercetin in Rat Plasma Using the HPLC–ESI-MS/MS Method: Drug Interaction Study

Authors: Lubna Azmi, Ila Shukla, Shyam Sundar Gupta, Padam Kant, C. V. Rao

Abstract:

Elvitegravir is the mainstay of anti-HIV combination therapy in most endemic countries presently. However, it cannot be used alone owing to its long onset time of action. 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one (Quercetin: QU) is a polyphenolic compound obtained from Argeria speciosa Linn (Family: Convolvulaceae), an anti-HIV candidate. In the present study, a sensitive, simple and rapid high-performance liquid chromatography coupled with positive ion electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the simultaneous determination elvitegravir and Quercetin, in rat plasma. The method was linear over a range of 0.2–500 ng/ml. All validation parameters met the acceptance criteria according to regulatory guidelines. LC–MS/MS method for determination of Elvitegravir and Quercetin was developed and validated. Results show the potential of drug–drug interaction upon co-administration this marketed drugs and plant derived secondary metabolite.

Keywords: anti-HIV resistance, extraction, HPLC-ESI-MS-MS, validation

Procedia PDF Downloads 331
4677 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 63
4676 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 167
4675 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 88
4674 Increasing Solubility and Bioavailability of Fluvastatin through Transdermal Nanoemulsion Gel Delivery System for the Treatment of Osteoporosis

Authors: Ramandeep Kaur, Makula Ajitha

Abstract:

Fluvastatin has been reported for increasing bone mineral density in osteoporosis since last decade. Systemically administered drug undergoes extensive hepatic first-pass metabolism, thus very small amount of drug reaches the bone tissue which is highly insignificant. The present study aims to deliver fluvastatin in the form of nanoemulsion (NE) gel directly to the bone tissue through transdermal route thereby bypassing hepatic first pass metabolism. The NE formulation consisted of isopropyl myristate as oil, tween 80 as surfactant, transcutol as co-surfactant and water as the aqueous phase. Pseudoternary phase diagrams were constructed using aqueous titration method and NE’s obtained were subjected to thermodynamic-kinetic stability studies. The stable NE formulations were evaluated for their droplet size, zeta potential, and transmission electron microscopy (TEM). The nano-sized formulations were incorporated into 0.5% carbopol 934 gel matrix. Ex-vivo permeation behaviour of selected formulations through rat skin was investigated and compared with the conventional formulations (suspension and emulsion). Further, in-vivo pharmacokinetic study was carried using male Wistar rats. The optimized NE formulations mean droplet size was 11.66±3.2 nm with polydispersity index of 0.117. Permeation flux of NE gel formulations was found significantly higher than the conventional formulations i.e. suspension and emulsion. In vivo pharmacokinetic study showed significant increase in bioavailability (1.25 fold) of fluvastatin than oral formulation. Thus, it can be concluded that NE gel was successfully developed for transdermal delivery of fluvastatin for the treatment of osteoporosis.

Keywords: fluvastatin, nanoemulsion gel, osteoporosis, transdermal

Procedia PDF Downloads 178
4673 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration

Authors: Jitendra Singh, Vivek Kumar

Abstract:

In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.

Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability

Procedia PDF Downloads 249