Search results for: alternative insulating fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5856

Search results for: alternative insulating fluid

5436 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers

Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan

Abstract:

The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.

Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers

Procedia PDF Downloads 331
5435 Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction

Authors: Norsyamimi Hassim, Masturah Markom

Abstract:

Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri.

Keywords: scale-up, supercritical fluid extraction, enriched extract, toxicity, ethanol content

Procedia PDF Downloads 126
5434 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid

Authors: M. Amoura, M. Benmoussa, N. Zeraibi

Abstract:

The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.

Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation

Procedia PDF Downloads 315
5433 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator

Authors: S. Movafagh, Y. Bakhshan

Abstract:

In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.

Keywords: forced convection, nanofluid, radiator, CFD simulation

Procedia PDF Downloads 340
5432 Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings

Authors: A. Čelan, M. Ćosić, D. Rušić, N. Kuzmanić

Abstract:

Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm3 bench scale batch cooling crystallizer with an aspect ratio (H/T) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution.

Keywords: dual impeller crystallizer, fluid flow pattern, metastable zone width, mixing time, radial impeller

Procedia PDF Downloads 189
5431 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 364
5430 Investigating Viscous Surface Wave Propagation Modes in a Finite Depth Fluid

Authors: Arash Ghahraman, Gyula Bene

Abstract:

The object of this study is to investigate the effect of viscosity on the propagation of free-surface waves in an incompressible viscous fluid layer of arbitrary depth. While we provide a more detailed study of properties of linear surface waves, the description of fully nonlinear waves in terms of KdV-like (Korteweg-de Vries) equations is discussed. In the linear case, we find that in shallow enough fluids, no surface waves can propagate. Even in any thicker fluid layers, propagation of very short and very long waves is forbidden. When wave propagation is possible, only a single propagating mode exists for any given horizontal wave number. The numerical results show that there can be two types of non-propagating modes. One type is always present, and there exist still infinitely many of such modes at the same parameters. In contrast, there can be zero, one or two modes belonging to the other type. Another significant feature is that KdV-like equations. They describe propagating nonlinear viscous surface waves. Since viscosity gives rise to a new wavenumber that cannot be small at the same time as the original one, these equations may not exist. Nonetheless, we propose a reasonable nonlinear description in terms of 1+1 variate functions that make possible successive approximations.

Keywords: free surface wave, water waves, KdV equation, viscosity

Procedia PDF Downloads 145
5429 Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone

Authors: Larisa Liamina, Vasily Lavrushin, Salvatore Inguaggiato

Abstract:

This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed.

Keywords: isotopes helium, deep fluids, tectonic structures, Caucasus

Procedia PDF Downloads 37
5428 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 358
5427 On the Inequality between Queue Length and Virtual Waiting Time in Open Queueing Networks under Conditions of Heavy Traffic

Authors: Saulius Minkevicius, Edvinas Greicius

Abstract:

The paper is devoted to the analysis of queueing systems in the context of the network and communications theory. We investigate the inequality in an open queueing network and its applications to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated logarithm) for a queue of customers in an open queueing network.

Keywords: fluid approximation, heavy traffic, models of information systems, open queueing network, queue length of customers, queueing theory

Procedia PDF Downloads 282
5426 Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics

Authors: Mauricio Gracia, Luis Leal, Bharat Verma

Abstract:

Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients.

Keywords: CFD, current draft coefficient, STAR-CCM+, OCIMF, Bollard pull

Procedia PDF Downloads 165
5425 On the Alternative Sanctions to Capital Punishment in China

Authors: Huang Gui

Abstract:

There can be little doubt that our world is inexorably moving towards being execution-free. However, China is still on the way until now, in other words, China is still a retentionist state in the term of capital punishment but it is developing domestic criminal law toward that goal (eventual abolition of the capital punishment). The alternative sanction to capital punishment, which would be imposed on a criminal who should have been sentenced to death by law, is a substitute for execution and it should be provided with the basis of the present criminal punishment structure and with the premise of abolishing capital punishment or limiting its use. The aim of this paper, therefore, is to explore a substitute for capital punishment in China. For the criminal sanction system in China, the death penalty with suspension, naturally, is an execution, so it wouldn’t be the substitute; life sentences without parole is out of the tune with punishment policy that promoting correction and rehabilitation; life-imprisonment, which is one of the most severe punishment measure in the sanction system, should be a suitable substitute for executing but it needs to be improved, including the term of imprisonment, the commutation and parole conditions.

Keywords: alternative sanctions, capital punishment, life imprisonment, life imprisonment without parole, China

Procedia PDF Downloads 285
5424 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha

Abstract:

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12.

Keywords: cascade system, refrigerants, thermodynamic model, production engineering

Procedia PDF Downloads 354
5423 Investigation of Enhanced Geothermal System with CO2 as Working Fluid

Authors: Ruina Xu, Peixue Jiang, Feng Luo

Abstract:

The novel concept of enhanced geothermal system with CO2 instead of water as working fluid (CO2-EGS) has attracted wide attention due to additional benefit of CO2 geological storage during the power generation process. In this research, numerical investigation on a doublet CO2-EGS system is performed, focusing on the influence of the injection/production well perforation location in the targeted geothermal reservoir. Three different reservoir inlet and outlet boundary conditions are used in simulations since the well constrains are different in reality. The results show that CO2-EGS system performance of power generation and power cost vary greatly among cases of different wells perforation locations, and the optimum options under different boundary conditions are also different.

Keywords: Enhanced Geothermal System, supercritical CO2, heat transfer, CO2-EGS

Procedia PDF Downloads 286
5422 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity

Procedia PDF Downloads 422
5421 Copolymers of Pyrrole and α,ω-Dithienyl Terminated Poly(ethylene glycol)

Authors: Nesrin Köken, Esin A. Güvel, Nilgün Kızılcan

Abstract:

This work presents synthesis of α,ω-dithienyl terminated poly(ethylene glycol) (PEGTh) capable for further chain extension by either chemical or electrochemical polymerization. PEGTh was characterized by FTIR and 1H-NMR. Further, copolymerization of PEGTh and pyrrole (Py) was performed by chemical oxidative polymerization using ceric (IV) salt as an oxidant (PPy-PEGTh). PEG without end group modification was used directly to prepare copolymers with Py by Ce (IV) salt (PPy-PEG). Block copolymers with mole ratio of pyrrole to PEGTh (PEG) 50:1 and 10:1 were synthesized. The electrical conductivities of copolymers PPy-PEGTh and PPy-PEG were determined by four-point probe technique. Influence of the synthetic route and content of the insulating segment on conductivity and yield of the copolymers were investigated.

Keywords: chemical oxidative polymerization, conducting polymer, poly(ethylene glycol), polypyrrole

Procedia PDF Downloads 354
5420 Effect of Oil Viscosity and Brine Salinity/Viscosity on Water/Oil Relative Permeability and Residual Saturations

Authors: Sami Aboujafar

Abstract:

Oil recovery in petroleum reservoirs is greatly affected by fluid-rock and fluid-fluid interactions. These interactions directly control rock wettability, capillary pressure and relative permeability curves. Laboratory core-floods and centrifuge experiments were conducted on sandstone and carbonate cores to study the effect of low and high brine salinity and viscosity and oil viscosity on residual saturations and relative permeability. Drainage and imbibition relative permeability in two phase system were measured, refined lab oils with different viscosities, heavy and light, and several brine salinities were used. Sensitivity analysis with different values for the salinity and viscosity of the fluids,, oil and water, were done to investigate the effect of these properties on water/oil relative permeability, residual oil saturation and oil recovery. Experiments were conducted on core material from viscous/heavy and light oil fields. History matching core flood simulator was used to study how the relative permeability curves and end point saturations were affected by different fluid properties using several correlations. Results were compared with field data and literature data. The results indicate that there is a correlation between the oil viscosity and/or brine salinity and residual oil saturation and water relative permeability end point. Increasing oil viscosity reduces the Krw@Sor and increases Sor. The remaining oil saturation from laboratory measurements might be too high due to experimental procedures, capillary end effect and early termination of the experiment, especially when using heavy/viscous oil. Similarly the Krw@Sor may be too low. The effect of wettability on the observed results is also discussed. A consistent relationship has been drawn between the fluid parameters, water/oil relative permeability and residual saturations, and a descriptor may be derived to define different flow behaviors. The results of this work will have application to producing fields and the methodologies developed could have wider application to sandstone and carbonate reservoirs worldwide.

Keywords: history matching core flood simulator, oil recovery, relative permeability, residual saturations

Procedia PDF Downloads 328
5419 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 271
5418 Thermal Radiation and Chemical Reaction Effects on MHD Casson Fluid Past a Permeable Stretching Sheet in a Porous Medium

Authors: Y. Sunita Rani, Y. Hari Krishna, M. V. Ramana Murthy, K. Sudhaker Reddy

Abstract:

This article studied effects of radiation and chemical reaction on MHD casson fluoid flow past a Permeable Stretching Sheet in a Porous Medium. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like Runge- Kutta – Fehlberg shooting technique method. The effects of various governing parameters, on the velocity, temperature and concentration are displayed through graphs and discussed numerically.

Keywords: MHD, Casson fluid, porous medium, permeable stretching sheet

Procedia PDF Downloads 118
5417 Dorsal Root Ganglion Neuromodulation as an Alternative to Opioids in the Evolving Healthcare Crisis

Authors: Adam J. Carinci

Abstract:

Background: The opioid epidemic is the most pressing healthcare crisis of our time. There is increasing recognition that opioids have limited long-term efficacy and are associated with hyperalgesia, addiction, and increased morbidity and mortality. Therefore, alternative strategies to combat chronic pain are paramount. We initiated a multicenter retrospective case series to review the efficacy of DRG stimulation in facilitating opioid tapering, opioid discontinuation and as a viable alternative to chronic opioid therapy. Purpose: The dorsal root ganglion (DRG) plays a key role in the development and maintenance of pain. Recent innovations in neuromodulation, specifically, dorsal root ganglion stimulation, offers an effective alternative to opioids in the treatment of chronic pain. This retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy. Procedure: This small multicenter retrospective case series provides preliminary evidence that DRG stimulation facilitates opioid weaning, opioid tapering and is a viable option to opioid therapy in the treatment of chronic pain. A retrospective analysis was completed. Visual analog scale pain scores and pain medication usage were collected at the baseline visit and after four weeks, 3 months and 6 months of treatment. Ten consecutive patients across two study centers were included. The pain was rated 7.38 at baseline and decreased to 1.50 at the 4-week follow-up, a reduction of 79.5%. All patients significantly decreased their opioid pain medication use with an average > 30% reduction in morphine equivalents and four were able to discontinue their medications entirely. Conclusion: This Retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy.

Keywords: dorsal root ganglion, neuromodulation, opioid sparing, stimulation

Procedia PDF Downloads 112
5416 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study

Authors: Sami Ayad, Mengshan Lee

Abstract:

The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.

Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis

Procedia PDF Downloads 86
5415 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 167
5414 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films

Authors: Tariku Nefo Duke

Abstract:

Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.

Keywords: polyimide, corrosion resistance, electroactive, Tg

Procedia PDF Downloads 191
5413 Numerical Modeling of Large Scale Dam Break Flows

Authors: Amanbek Jainakov, Abdikerim Kurbanaliev

Abstract:

The work presents the results of mathematical modeling of large-scale flows in areas with a complex topographic relief. The Reynolds-averaged Navier—Stokes equations constitute the basis of the three-dimensional unsteady modeling. The well-known Volume of Fluid method implemented in the solver interFoam of the open package OpenFOAM 2.3 is used to track the free-boundary location. The mathematical model adequacy is checked by comparing with experimental data. The efficiency of the applied technology is illustrated by the example of modeling the breakthrough of the dams of the Andijan (Uzbekistan) and Papan (near the Osh town, Kyrgyzstan) reservoir.

Keywords: three-dimensional modeling, free boundary, the volume-of-fluid method, dam break, flood, OpenFOAM

Procedia PDF Downloads 397
5412 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 337
5411 Flowback Fluids Treatment Technology with Water Recycling and Valuable Metals Recovery

Authors: Monika Konieczyńska, Joanna Fajfer, Olga Lipińska

Abstract:

In Poland works related to the exploration and prospection of unconventional hydrocarbons (natural gas accumulated in the Silurian shale formations) started in 2007, based on the experience of the other countries that have created new possibilities for the use of existing hydrocarbons resources. The highly water-consuming process of hydraulic fracturing is required for the exploitation of shale gas which implies a need to ensure large volume of water available. As a result considerable amount of mining waste is generated, particularly liquid waste, i.e. flowback fluid with variable chemical composition. The chemical composition of the flowback fluid depends on the composition of the fracturing fluid and the chemistry of the fractured geological formations. Typically, flowback fluid is highly salinated, can be enriched in heavy metals, including rare earth elements, naturally occurring radioactive materials and organic compounds. The generated fluids considered as the extractive waste should be properly managed in the recovery or disposal facility. Problematic issue is both high hydration of waste as well as their variable chemical composition. Also the limited capacity of currently operating facilities is a growing problem. Based on the estimates, currently operating facilities will not be sufficient for the need of waste disposal when extraction of unconventional hydrocarbons starts. Further more, the content of metals in flowback fluids including rare earth elements is a considerable incentive to develop technology of metals recovery. Also recycling is a key factor in terms of selection of treatment process, which should provide that the thresholds required for reuse are met. The paper will present the study of the flowback fluids chemical composition, based on samples from hydraulic fracturing processes performed in Poland. The scheme of flowback fluid cleaning and recovering technology will be reviewed along with a discussion of the results and an assessment of environmental impact, including all generated by-products. The presented technology is innovative due to the metal recovery, as well as purified water supply for hydraulic fracturing process, which is significant contribution to reducing water consumption.

Keywords: environmental impact, flowback fluid, management of special waste streams, metals recovery, shale gas

Procedia PDF Downloads 258
5410 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics

Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich

Abstract:

Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.

Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes

Procedia PDF Downloads 68
5409 Assessment of Solid Insulating Material Using Partial Discharge Characteristics

Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad

Abstract:

In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.

Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA

Procedia PDF Downloads 508
5408 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption

Authors: Binyam Teferi

Abstract:

Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.

Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation

Procedia PDF Downloads 123
5407 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 349