Search results for: ZSO nanocomposite thin film
1843 Development of Sb/MWCNT Free Standing Anode for Li-Ion Batteries
Authors: Indu Elizabeth
Abstract:
Antimony/Multi Walled Carbon nano tube nanocomposite (Sb/MWCNT) is synthesized using ethylene glycol mediated reduction process. Binder free, self-supporting and flexible Sb/MWCNT nanocomposite paper has been prepared by employing the vacuum filtration technique. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS), and thermal gravimetric analysis (TGA) to evaluate the structure of anode and tested for its performance in a Lithium rechargeable cell. Electrochemical measurements demonstrate that the Sb/MWCNT composite paper anode delivers a specific discharge capacity of ~400 mAh g-1 up to a current density of 100 mA g-1.Keywords: antimony, lithium ion battery, multiwalled carbon nanotube, specific capacity
Procedia PDF Downloads 4021842 Relaxation Behavior of Biorenewable Waterborne Castor Oil-Based Polyurethane-Lignin Thin Films
Authors: Samy Madbouly
Abstract:
The relaxation behavior of biorenewable castor oil-based polyurethane-lignin thin films synthesized in homogenous waterborne dispersions was investigated as a function of concentration at different temperatures and frequencies using broadband dielectric relaxation spectroscopy (BDRS). The molecular dynamics of the glass relaxation process and the local relaxation process of the PU-LS thin films were studied over a wide range of temperatures (-70 to 30 ℃) and frequencies (5 × 10−2 to 0.5 × 107 Hz) for different lignin concentration. Four relaxation processes have been observed namely; ?-, β-, γ-relaxations and ionic conductivity for pure castor oil-based PU and castor oil-lignin-based PU thin films at different temperatures and frequencies ranges. The Vogel-Fulcher-Tammann equation was found to be well described the temperature dependence of the characteristic relaxation times of the ?-relaxation process. However, on the other hand, the molecular dynamics of both β- and γ-relaxation processes were given by the Arrhenius equation. The incorporation of lignin into the castor oil-based PU significantly increased the glass transition temperature and primitivity of the thin films. In addition, the broadness, intensity, and molecular dynamics of the only observed ?-relaxation process were found to be strongly dependent on lignin concentration.Keywords: castor oil, lignin, polyurethane, dielectric, dispersions
Procedia PDF Downloads 2041841 The Intercultural Communicative Competence (ICC) Perspective in the Film Classroom
Authors: Yan Zhang
Abstract:
With the development of commercial movies, more and more instructors are drawn to adapt film pedagogy to teach history and culture. By challenging traditional standards of classroom culture, instruction through film represents an intersection of modernity and adaptability which is no longer optional but essential to maintaining educational accessibility. First, this presentation describes special features of the film that can be used in the classroom and help students acquire intercultural communicative competence (ICC) and achieve the learning goal. Second, the author brings forward the 5 A STAIRCASE model (Acknowledge-Adjust-Acculturate-Act-Assess) to explore how students acquire international communicative competence. Third, this article presents the intersections between new digital environments and classroom practice, such as how films can contribute to combining classical and contemporary Chinese cultures seamlessly and how film pedagogy can be an effective way to get students to engage in deeper critical thinking by exposing them to visuals, music, language, and styling which do not exist in traditional learning formats. Last, the student’s final video project will be exemplified at the end, demonstrating how to engage students in the analysis and experience of history and culture.Keywords: intercultural education, curriculum, media, history
Procedia PDF Downloads 741840 Mesoporous Nanocomposites for Sustained Release Applications
Authors: Daniela Istrati, Alina Morosan, Maria Stanca, Bogdan Purcareanu, Adrian Fudulu, Laura Olariu, Alice Buteica, Ion Mindrila, Rodica Cristescu, Dan Eduard Mihaiescu
Abstract:
Our present work is related to the synthesis, characterization and applications of new nanocomposite materials based on silica mesoporous nanocompozites systems. The nanocomposite support was obtained by using a specific step–by–step multilayer structure buildup synthetic route, characterized by XRD (X-Ray Difraction), TEM (Transmission Electron Microscopy), FT-IR (Fourier Transform-Infra Red Spectrometry), BET (Brunauer–Emmett–Teller method) and loaded with Salvia officinalis plant extract obtained by a hydro-alcoholic extraction route. The sustained release of the target compounds was studied by a modified LC method, proving low release profiles, as expected for the high specific surface area support. The obtained results were further correlated with the in vitro / in vivo behavior of the nanocomposite material and recommending the silica mesoporous nanocomposites as good candidates for biomedical applications. Acknowledgements: This study has been funded by the Research Project PN-III-P2-2.1-PTE-2016-0160, 49-PTE / 2016 (PROZECHIMED) and Project Number PN-III-P4-ID-PCE-2016-0884 / 2017.Keywords: biomedical, mesoporous, nanocomposites, natural products, sustained release
Procedia PDF Downloads 2171839 A Study of Surface of Titanium Targets for Neutron Generators
Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev
Abstract:
The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy
Procedia PDF Downloads 4421838 Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter
Authors: Priyanka R. Oberoi, Chandra B. Maurya, Prakash A. Mahanwar
Abstract:
Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively.Keywords: bromophenol blue, dosimeter, gamma radiation, polymer
Procedia PDF Downloads 2901837 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films
Authors: Konysbek Aksaule
Abstract:
The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.Keywords: university, education, students, foreign language, feature film
Procedia PDF Downloads 1481836 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles
Authors: Behrooz Movahedi
Abstract:
Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.Keywords: Fe-based amorphous, B₄C nanoparticles, nanocomposite coating, HVOF
Procedia PDF Downloads 1351835 Mathematical Modeling of Thin Layer Drying Behavior of Bhimkol (Musa balbisiana) Pulp
Authors: Ritesh Watharkar, Sourabh Chakraborty, Brijesh Srivastava
Abstract:
Reduction of water from the fruits and vegetables using different drying techniques is widely employed to prolong the shelf life of these food commodities. Heat transfer occurs inside the sample by conduction and mass transfer takes place by diffusion in accordance with temperature and moisture concentration gradient respectively during drying. This study was undertaken to study and model the thin layer drying behavior of Bhimkol pulp. The drying was conducted in a tray drier at 500c temperature with 5, 10 and 15 % concentrations of added maltodextrin. The drying experiments were performed at 5mm thickness of the thin layer and the constant air velocity of 0.5 m/s.Drying data were fitted to different thin layer drying models found in the literature. Comparison of fitted models was based on highest R2(0.9917), lowest RMSE (0.03201), and lowest SSE (0.01537) revealed Middle equation as the best-fitted model for thin layer drying with 10% concentration of maltodextrin. The effective diffusivity was estimated based on the solution of Fick’s law of diffusion which is found in the range of 3.0396 x10-09 to 5.0661 x 10-09. There was a reduction in drying time with the addition of maltodextrin as compare to the raw pulp.Keywords: Bhimkol, diffusivity, maltodextrine, Midilli model
Procedia PDF Downloads 2101834 Clay Hydrogel Nanocomposite for Controlled Small Molecule Release
Authors: Xiaolin Li, Terence Turney, John Forsythe, Bryce Feltis, Paul Wright, Vinh Truong, Will Gates
Abstract:
Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications.Keywords: hydrogel, nanocomposite, small molecule, wound healing
Procedia PDF Downloads 2691833 History of Film in the (West/South) Africa-the Emergence of the Film Production Economy
Authors: Sibusiso Mnyanda
Abstract:
Storytelling through motion pictures is a valuable economy. South Africa was one of the first countries in the world to see and hear sound motion pictures With Lingards Waxworks in Durban first showing them in August 1895. This article celebrates and takes a microscopic look into the developments of this industry and its economy, highlighting these fundamentals: Skill levels and talent sets that were displayed in this emergence, the quality of the products that were produced by filmmakers and actors, the level of Administration and quality assurance of production houses and the general infrastructure and resources available to the industry at the time.Keywords: film, Africa, production economy, history
Procedia PDF Downloads 591832 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film
Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta
Abstract:
A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.Keywords: biosensor, reagentless, urea, ZnO-CuO composite
Procedia PDF Downloads 2901831 Insulation Properties of Rod-Plane Electrode Covered with ATH/SIR Nano-Composite in Dry-Air
Authors: Jae-Yong Sim, Jung-Hun Kwon, Ji-Sung Park, Kee-Joe Lim
Abstract:
One of the latest trends for insulation systems to improve the insulation performance is the use of eco-friendly hybrid insulation using compressed dry-air. Despite the excellent insulation performance of sulphurhexafluoride (SF6) gas, its use has been restricted due to the problems with significant global warming potential (GWP). Accordingly, lightning impulse performance of the hybrid insulation system covered with an aluminum trihydrate/silicone rubber (ATH/SIR) nanocomposite was examined in air at atmospheric pressure and in compressed air at pressures between 0.2 and 0.6 MPa. In the experiments, the most common breakdown path took place along the surface of the covered rod. The insulation reliability after several discharges should be guaranteed in hybrid insulation. On the other hand, the surface of the covered rod was carbonized after several discharges. Therefore, nanoscale ATH can be used as a reinforcement of covered dielectrics to inhibit carbonization on the surface of a covered rod. The results were analyzed in terms of the surface resistivity of the cover dielectrics.Keywords: nanocomposite, hybrid insulation, ATH, dry-air
Procedia PDF Downloads 4491830 Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus
Authors: Lilis Kistriyani, Dine Olisvia, Lutfa Rahmawati
Abstract:
Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm.Keywords: face mask, edible film, plasticizer, flavonoid
Procedia PDF Downloads 1751829 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors
Authors: Tom Nakotte, Hongmei Luo
Abstract:
Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots
Procedia PDF Downloads 1271828 Preparation and Characterization of Dendrimer-Encapsulated Ytterbium Nanoparticles to Produce a New Nano-Radio Pharmaceutical
Authors: Aghaei Amirkhizi Navideh, Sadjadi Soodeh Sadat, Moghaddam Banaem Leila, Athari Allaf Mitra, Johari Daha Fariba
Abstract:
Dendrimers are good candidates for preparing metal nanoparticles because they can structurally and chemically well-defined templates and robust stabilizers. Poly amidoamine (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized in pharmaceutical industry. In addition, encapsulated nanoparticle surfaces are accessible to substrates so that catalytic reactions can be carried out. For preparation of dendimer-metal nanocomposite, a dendrimer solution containing an average of 55 Yb+3 ions per dendrimer was prepared. Prior to reduction, the pH of this solution was adjusted to 7.5 using NaOH. NaBH4 was used to reduce the dendrimer-encapsulated Yb+3 to the zerovalent metal. The pH of the resulting solution was then adjusted to 3, using HClO4, to decompose excess BH4-. The UV-Vis absorption spectra of the mixture were recorded to ensure the formation of Yb-G5-NH2 complex. High-resolution electron microscopy (HRTEM) and size distribution results provide additional information about dendimer-metal nanocomposite shape, size, and size distribution of the particles. The resulting mixture was irradiated in Tehran Research Reactor 2h and neutron fluxes were 3×1011 n/cm2.Sec and the specific activity was 7MBq. Radiochemical and chemical and radionuclide quality control testes were carried. Gamma Spectroscopy and High-performance Liquid Chromatography HPLC, Thin-Layer Chromatography TLC were recorded. The injection of resulting solution to solid tumor in mice shows that it could be resized the tumor. The studies about solid tumors and nano composites show that ytterbium encapsulated-dendrimer radiopharmaceutical could be introduced as a new therapeutic for the treatment of solid tumors.Keywords: nano-radio pharmaceutical, ytterbium, PAMAM, dendrimers
Procedia PDF Downloads 5031827 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.Keywords: ZnO thin films, sol-gel, photocatalysis, aging time
Procedia PDF Downloads 3821826 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer
Authors: Jeong Ju Kim, Hee Yoon Chung, Dong Ho Rhee, Hyung Hee Cho
Abstract:
There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.Keywords: gas turbine, film cooling effectiveness, endwall, fillet
Procedia PDF Downloads 3631825 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave
Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim
Abstract:
In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire
Procedia PDF Downloads 4901824 Preparation and Characterizations of Hydroxyapatite-Sodium Alginate Nanocomposites for Biomedical Applications
Authors: Friday Godwin Okibe, Christian Chinweuba Onoyima, Edith Bolanle Agbaji, Victor Olatunji Ajibola
Abstract:
Polymer-inorganic nanocomposites are presently impacting diverse areas, specifically in biomedical sciences. In this research, hydroxyapatite-sodium alginate has been prepared, and characterized, with emphasis on the influence of sodium alginate on its characteristics. In situ wet chemical precipitation method was used in the preparation. The prepared nanocomposite was characterized with Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), with image analysis, and X-Ray Diffraction (XRD). The FTIR study shows peaks characteristics of hydroxyapatite and confirmed formation of the nanocomposite via chemical interaction between sodium alginate and hydroxyapatite. Image analysis shows the nanocomposites to be of irregular morphologies which did not show significant change with increasing sodium alginate addition, while particle size decreased with increase in sodium alginate addition (359.46 nm to 109.98 nm). From the XRD data, both the crystallite size and degree of crystallinity also decreased with increasing sodium alginate composition (32.36 nm to 9.47 nm and 72.87% to 1.82% respectively), while the specific surface area and microstrain increased with increasing sodium alginate composition (0.0041 to 0.0139 and 58.99 m²/g to 201.58 m²/g respectively). The results show that the formulation with 50%wt of sodium alginate (HASA-50%wt), possess exceptional characteristics for biomedical applications such as drug delivery.Keywords: nanocomposite, sodium alginate, hydroxyapatite, biomedical, FTIR, XRD, SEM
Procedia PDF Downloads 3301823 Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes
Authors: Mallikarjunachari Gangapuram
Abstract:
Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm.Keywords: ball indentation, hydrogel membranes, nanocomposites, Young's modulus
Procedia PDF Downloads 1281822 Modeling Thin Shell Structures by a New Flat Shell Finite Element
Authors: Djamal Hamadi, Ashraf Ayoub, Ounis Abdelhafid, Chebili Rachid
Abstract:
In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures.Keywords: finite element, flat shell element, strain based approach, static condensation
Procedia PDF Downloads 4291821 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes
Authors: Salim Belouettar, Kodjo Attipou
Abstract:
The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.Keywords: wrinkling, thermal stresses, Fourier series, thin membranes
Procedia PDF Downloads 3911820 Food Package Design To Preserve The Food Temperature
Authors: Sugiono, Wuwus Ardiatna, Himma Firdaus, Nanang Kusnandar, Bayu Utomo, Jimmy Abdel Kadar
Abstract:
This study was aimed to explore the best design of single-used hot food packaging through various package designs. It examined how designed packages keep some local hot food reasonably longer than standard packages. The food packages were realized to consist of the outer and the inner layers of food-grade materials. The packages were evaluated to keep the hot food decreased to the minimum temperature of safe food. This study revealed a significant finding that the transparent plastic box with thin film aluminum foil is the best package.Keywords: hot food, local food, one used, packaging, aluminum foil
Procedia PDF Downloads 1491819 Piezoelectric and Dielectric Properties of Poly(Vinylideneflouride-Hexafluoropropylene)/ZnO Nanocomposites
Authors: P. Hemalatha, Deepalekshmi Ponnamma, Mariam Al Ali Al-Maadeed
Abstract:
The Poly(vinylideneflouride-hexafluoropropylene) (PVDF-HFP)/ zinc oxide (ZnO) nanocomposites films were successfully prepared by mixing the fine ZnO particles into PVDF-HFP solution followed by film casting and sandwich techniques. Zinc oxide nanoparticles were synthesized by hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained nanocomposites. The dielectric properties of the PVDF-HFP/ZnO nanocomposites were analyzed in detail. In comparison with pure PVDF-HFP, the dielectric constant of the nanocomposite (1wt% ZnO) was significantly improved. The piezoelectric co-efficients of the nanocomposites films were measured. Experimental results revealed the influence of filler on the properties of PVDF-HFP and enhancement in the output performance and dielectric properties reflects the ability for energy storage capabilities.Keywords: dielectric constant, hydrothermal, nanoflowers, organic compounds
Procedia PDF Downloads 2841818 The Development of Documentary Filmmaking in Early Independent India
Authors: Camille Deprez
Abstract:
This paper proposes to present research findings of an ongoing Hong Kong government-funded project on ‘The Documentary Film in India (1948-1975)’ (GRF 1240314), for which an extensive research fieldwork has been carried out in various archives in India. This project investigates the role and significance of the Indian documentary film sector from the inauguration of the state-sponsored Films Division one year after independence in 1948 until the declaration of a ‘State of Emergency’ in 1975. The documentary film production of this first period of national independence was characterised by increasing formal experimentation and analytical social and political enquiry, and by a complex, mixed structure of state-sponsored monopoly and free-market operation. However, that production remains significantly under-researched. What were the main production, distribution and exhibition strategies over this period? What were the recurrent themes and stylistic features of the films produced? In the new context of national independence (in which the State considered film as means of mass persuasion), consolidation of the commercial film, and the emergence of television and art cinema, what role did official, professional and creative factors play in the development of the documentary film sector? What were the impact of such films and the challenges faced by the documentary film in India? Based upon the crossed-analysis of primary written research documents, interviews and relevant films, this study interweaves empirical study of the sector's financing, production, distribution and exhibition strategies, as well as the films' content and form, with the larger historical context of India over the period from 1948 to 1975. Whilst most of the films made within the sector explored social issues, they were rarely able to do so from an overtly critical perspective. However, this paper proposes to analyse the contribution of important filmmakers and producers, including Ezra Mir, Paul Zils, Jean Bhownagary, S. Sukhdev, S. N. S. Sastri, and P. Pati, to the development of the Indian documentary film sector and style within and outside the remits of Films Division. It will more specifically assess the extent to which they criticised the State, showed the inequalities in Indian society and explored film form.Keywords: documentary film, film archives, film history, India
Procedia PDF Downloads 2971817 Doped TiO2 Thin Films Microstructural and Electrical Properties
Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis
Abstract:
In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide
Procedia PDF Downloads 2941816 Functionalization and Dispersion of Multiwall Carbon Nanotubes in Waterborne Polyurethane
Authors: Shahla Hajializadeh, Maryam Hamedanlou
Abstract:
Multiwall carbon nanotubes were chemically modified with amide groups for the purpose of enhancing their chemical affinity with waterborne polyurethane. In this study, a thermoplastic nanocomposite containing functionalized multiwall carbon nanotube/waterborne polyurethane (WBPU/MWNT) via in situ polymerization has been prepared. The impacts of MWNT addition on the morphology and electrical properties of nanocomposites were investigated. Micrographs of Scanning Electron Microscopy (SEM) prove that functionalized CNT can be effectively dispersed in WBPU matrix. The electrical conductivity of nanocomposites increased with the CNT contents in as such the nanocomposites containing 1 wt% of MWNT exhibited a conductivity nearly five orders of magnitude higher than the WBPU film.Keywords: chemical functionalization, electrical properties, in situ polymerization, morphology, multiwall carbon nanotubes, waterborne polyurethane
Procedia PDF Downloads 2661815 Moving Images and Re-Articulations of Self-Identity: Young People's Experiences of Viewing Representations Disability in Films
Authors: Alison Wilde, Stephen Millett
Abstract:
The cultural value of disabled people has largely been overlooked within forms of media and cultural analysis until the 1980s, when disabled people and disability studies highlighted the cultural misrecognition of disabled people and called for improved forms of cultural recognition and representation. Despite an increase in cultural analysis of representations of disabled people, much has been assumed about how images are read, and little work has been done on the value attributed to disabled people by media audiences and the viewing interests and encounters of film audiences. In particular, there has been little work on film reception, or on the way that young people interpret images of disability. We set out to understand some of the ways that young people read disability imagery, by showing small groups of young people different types of film featuring impairments, chosen from three different eras in film. These were Freaks, Rear Window (remake), and Finding Nemo. The discussions after these films allowed them to explore their own experiences of disability alongside the evolution of cultural representations; in so doing they discussed significant themes of cultural value and reflected on their own identities, e.g. in/dependency, autonomy, and competency and the ways these intersected with self-identity, and attitudes to disabled people.Keywords: film, audience, identity, disability
Procedia PDF Downloads 4191814 The Conjugated Polymers in improving the Organic Solar Cells Efficiency
Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri
Abstract:
The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.Keywords: photovoltaic, cells, nanoparticles, organic
Procedia PDF Downloads 85