Search results for: Colombo basin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 724

Search results for: Colombo basin

304 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader

Abstract:

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

Keywords: modelling, optimization, rainfall-runoff relationship, empirical model, OCC

Procedia PDF Downloads 264
303 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru

Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama

Abstract:

There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.

Keywords: water economy, simulation, modeling, integration

Procedia PDF Downloads 155
302 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 171
301 Ganga Rejuvenation through Forestation and Conservation Measures in Riverscape

Authors: Ombir Singh

Abstract:

In spite of the religious and cultural pre-dominance of the river Ganga in the Indian ethos, fragmentation and degradation of the river continued down the ages. Recognizing the national concern on environmental degradation of the river and its basin, Ministry of Water Resources, River Development & Ganga Rejuvenation (MoWR,RD&GR), Government of India has initiated a number of pilot schemes for the rejuvenation of river Ganga under the ‘Namami Gange’ Programme. Considering the diversity, complexity, and intricacies of forest ecosystems and pivotal multiple functions performed by them and their inter-connectedness with highly dynamic river ecosystems, forestry interventions all along the river Ganga from its origin at Gaumukh, Uttarakhand to its mouth at Ganga Sagar, West Bengal has been planned by the ministry. For that Forest Research Institute (FRI) in collaboration with National Mission for Clean Ganga (NMCG) has prepared a Detailed Project Report (DPR) on Forestry Interventions for Ganga. The Institute has adopted an extensive consultative process at the national and state levels involving various stakeholders relevant in the context of river Ganga and employed a science-based methodology including use of remote sensing and GIS technologies for geo-spatial analysis, modeling and prioritization of sites for proposed forestation and conservation interventions. Four sets of field data formats were designed to obtain the field based information for forestry interventions, mainly plantations and conservation measures along the river course. In response, five stakeholder State Forest Departments had submitted more than 8,000 data sheets to the Institute. In order to analyze a voluminous field data received from five participating states, the Institute also developed a software to collate, analyze and generation of reports on proposed sites in Ganga basin. FRI has developed potential plantation and treatment models for the proposed forestry and other conservation measures in major three types of landscape components visualized in the Ganga riverscape. These are: (i) Natural, (ii) Agriculture, and (iii) Urban Landscapes. Suggested plantation models broadly varied for the Uttarakhand Himalayas and the Ganga Plains in five participating states. Besides extensive plantations in three type of landscapes within the riverscape, various conservation measures such as soil and water conservation, riparian wildlife management, wetland management, bioremediation and bio-filtration and supporting activities such as policy and law intervention, concurrent research, monitoring and evaluation, and mass awareness campaigns have been envisioned in the DPR. The DPR also incorporates the details of the implementation mechanism, budget provisioned for different components of the project besides allocation of budget state-wise to five implementing agencies, national partner organizations and the Nodal Ministry.

Keywords: conservation, Ganga, river, water, forestry interventions

Procedia PDF Downloads 149
300 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 230
299 Assessment of the Ecological Tragedy on Lake Chad

Authors: Luke Onyekakeyah, Cynthia Onyekakeyah

Abstract:

The conflict in Northeastern Nigeria could mar local and international efforts to salvage the drying Lake Chad, which at present is merely 20 per cent of its original size. The conflict which began in 2009, assumed a monstrous dimension to the extent that any prospects of a redeeming action on the Lake is bleak. The concern of the authorities in the basin countries is how to bring the conflict to an end in the interest of the ecologically-dependent riparian population. Lake Chad is Africa’s fourth largest lake. From a previous 388,500 km2 some 600, 000 years ago, the Lake has shrunk to a maximum length of 25,000 km2. During the last four decades, the Lake has been susceptible to increasing variability and irregular rainfall. Dry spell, excessive evaporation and sandstorm have adversely affected the Lake, such that a 2001 estimate put the Lake to a meager 19,000 km2. Given the critical importance of the Lake as a source of livelihood for over 20 million people, there is mounting concern that an unprecedented human and ecological catastrophe is unfolding, should the Lake eventually dries up. The study evaluates the Lake Chad and how the conflict has adversely impacted it.

Keywords: lake chad, conflict, salvage, Nigeria

Procedia PDF Downloads 225
298 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS

Authors: Sanjay Kumar Behera, Kanhu Charan Patra

Abstract:

A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.

Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion

Procedia PDF Downloads 449
297 The Relationship between the Epithermal Mineralization, Thermalism, and Basement Faults in the Region of Guelma: NE of Algeria

Authors: B. Merdas

Abstract:

The Guelma region constitutes a vast geothermal field whose local geothermal gradient is very high. Indeed, various thermal and thermo sources emerging in the region, including some at relatively high temperatures. In the mio Pliocene Hammam N'bails, basin emerges a hot spring that leaves develop a thick series of thermal travertine linked to it. Near the thermal emergences has settled a very special mineralization antimony and zinc and lead. The results of analyses of the thermal waters of the source of Hammam N'bails and the associated travertine, show abnormal values in Pb, Sb, Zn, As, and other metals, demonstrating the genetic link between those waters and mineralization. Hammam N'bails mineralizations by their mineral assembling represented and their association with the hot springs, are very similar to epithermal deposits with precious metals (gold and silver) like Senator mine in Turkey or ‘Carlin-type’ in Nevada (USA).

Keywords: hot springs, mineralization; basement faults, Guelma, NE Algeria

Procedia PDF Downloads 430
296 Thermodynamics of the Local Hadley Circulation Over Central Africa

Authors: Landry Tchambou Tchouongsi, Appolinaire Derbetini Vondou

Abstract:

This study describes the local Hadley circulation (HC) during the December-February (DJF) and June-August (JJA) seasons, respectively, in Central Africa (CA) from the divergent component of the mean meridional wind and also from a new method called the variation of the ψ vector. Historical data from the ERA5 reanalysis for the period 1983 to 2013 were used. The results show that the maximum of the upward branch of the local Hadley circulation in the DJF and JJA seasons is located under the Congo Basin (CB). However, seasonal and horizontal variations in the mean temperature gradient and thermodynamic properties are largely associated with the distribution of convection and large-scale upward motion. Thus, temperatures beneath the CB show a slight variation between the DJF and JJA seasons. Moreover, energy transport of the moist static energy (MSE) adequately captures the mean flow component of the HC over the tropics. By the way, the divergence under the CB is enhanced by the presence of the low pressure of western Cameroon and the contribution of the warm and dry air currents coming from the Sahara.

Keywords: Circulation, reanalysis, thermodynamic, local Hadley.

Procedia PDF Downloads 89
295 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram

Abstract:

Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.

Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater

Procedia PDF Downloads 153
294 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 176
293 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
292 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia

Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla

Abstract:

Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.

Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus

Procedia PDF Downloads 114
291 Determinants and Repercussions of International Migration in and Through Libya: Afield Study

Authors: Ihab S. Jweida

Abstract:

Libya is witnessing major shifts in international migration flows resulting frompolitical, economic, social, security and environmental reasons as a result of what it iswitnessing from the elements of a fragile state due to government division, politicalconflicts, security chaos and the spread of terrorist organizations, since the popularuprising in February 2011, which threatens economic, social and security stability andthen The political stability of the Mediterranean basin countries. Therefore, this studycame as a scientific research aimed at analyzing the role of political economy inexplaining international migration with application to the case of Libya during theperiod from 2011-2021. To achieve this objective, the researcher relied on the descriptive approach basedon qualitative and quantitative analysis to analyze studies, reports, and internationalmigration policies in Libya, and conducted an exploratory study based on a personalinterview questionnaire for (670) migrants present in the distribution areas in Libyaand (65) Libyan migrants,

Keywords: international, migration, Libya, case

Procedia PDF Downloads 60
290 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe

Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero

Abstract:

Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.

Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin

Procedia PDF Downloads 74
289 Stream Extraction from 1m-DTM Using ArcGIS

Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo

Abstract:

Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.

Keywords: digital terrain models, hydrology tools, strahler method, stream classification

Procedia PDF Downloads 272
288 Impact of Climate Change on Water Resource Systems in Taiwan

Authors: Chia-Ling Chang, Hao-Bo Chang

Abstract:

Global climate change alters rainfall characteristics, while the variation of these characteristics further influences environmental conditions, such as hydrologic responses, landslide areas, and the amounts of diffuse pollution. The variations of environmental conditions may impact the stability of water resource systems. The objective of this study is to assess the present conditions of major water resource systems in Taiwan. The impact of climate change on each system is also discussed herein. Compared to the water resource systems in northern Taiwan, the ratio of the precipitation during the rainy season to that during the dry season has a larger increase in southern Taiwan. This variation of hydrologic condition impacts the stability of water resource systems and increases the risk of normal water supply. The findings in this work can be important references for water resource management.

Keywords: basin management, climate change, water resource system, water resource management

Procedia PDF Downloads 379
287 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 40
286 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’

Authors: Saad Bakkali

Abstract:

Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.

Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco

Procedia PDF Downloads 418
285 Maintenance Dredging at Port of Townsville

Authors: Mohamed Jaditager, Julie Lovisa, Nagaratnam Sivakugan

Abstract:

The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.

Keywords: consolidation, dredged material, maintenance dredging, marine sediments, sedimentation

Procedia PDF Downloads 444
284 Determination of the Best Fit Probability Distribution for Annual Rainfall in Karkheh River at Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best-fit probability distribution of annual rainfall based on 50 years sample (1966-2015) in the Karkheh river basin at Iran using six probability distributions: Normal, 2-Parameter Log Normal, 3-Parameter Log Normal, Pearson Type 3, Log Pearson Type 3 and Gumbel distribution. The best fit probability distribution was selected using Stormwater Management and Design Aid (SMADA) software and based on the Residual Sum of Squares (R.S.S) between observed and estimated values Based on the R.S.S values of fit tests, the Log Pearson Type 3 and then Pearson Type 3 distributions were found to be the best-fit probability distribution at the Jelogir Majin and Pole Zal rainfall gauging station. The annual values of expected rainfall were calculated using the best fit probability distributions and can be used by hydrologists and design engineers in future research at studied region and other region in the world.

Keywords: Log Pearson Type 3, SMADA, rainfall, Karkheh River

Procedia PDF Downloads 191
283 Investigating the Impacts of Climate Change on Soil Erosion: A Case Study of Kasilian Watershed, Northern Iran

Authors: Mohammad Zare, Mahbubeh Sheikh

Abstract:

Many of the impact of climate change will material through change in soil erosion which were rarely addressed in Iran. This paper presents an investigation of the impacts of climate change soil erosin for the Kasilian basin. LARS-WG5 was used to downscale the IPCM4 and GFCM21 predictions of the A2 scenarios for the projected periods of 1985-2030 and 2080-2099. This analysis was carried out by means of the dataset the International Centre for Theoretical Physics (ICTP) of Trieste. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE). Results indicate that soil erosion increase or decrease, depending on which climate scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods.

Keywords: Kasilian watershed, climatic change, soil erosion, LARS-WG5 Model, RUSLE

Procedia PDF Downloads 505
282 Rainfall Estimation Using Himawari-8 Meteorological Satellite Imagery in Central Taiwan

Authors: Chiang Wei, Hui-Chung Yeh, Yen-Chang Chen

Abstract:

The objective of this study is to estimate the rainfall using the new generation Himawari-8 meteorological satellite with multi-band, high-bit format, and high spatiotemporal resolution, ground rainfall data at the Chen-Yu-Lan watershed of Joushuei River Basin (443.6 square kilometers) in Central Taiwan. Accurate and fine-scale rainfall information is essential for rugged terrain with high local variation for early warning of flood, landslide, and debris flow disasters. 10-minute and 2 km pixel-based rainfall of Typhoon Megi of 2016 and meiyu on June 1-4 of 2017 were tested to demonstrate the new generation Himawari-8 meteorological satellite can capture rainfall variation in the rugged mountainous area both at fine-scale and watershed scale. The results provide the valuable rainfall information for early warning of future disasters.

Keywords: estimation, Himawari-8, rainfall, satellite imagery

Procedia PDF Downloads 194
281 Impact of Climate Change on Water Level and Properties of Gorgan Bay in the Southern Caspian Sea

Authors: Siamak Jamshidi

Abstract:

The Caspian Sea is the Earth's largest inland body of water. One of the most important issues related to the sea is water level changes. For measuring and recording Caspian Sea water level, there are at least three gauges and radar equipment in Anzali, Nowshahr and Amirabad Ports along the southern boundary of the Caspian Sea. It seems that evaporation, hotter surface air temperature, and in general climate change is the main reasons for its water level fluctuations. Gorgan Bay in the eastern part of the southern boundary of the Caspian Sea is one of the areas under the effect of water level fluctuation. Based on the results of field measurements near the Gorgan Bay mouth temperature ranged between 24°C–28°C and salinity was about 13.5 PSU in midsummer while temperature changed between 10-11.5°C and salinity mostly was 15-16.5 PSU in mid-winter. The decrease of Caspian Sea water level and rivers outflow are the two most important factors for the increase in water salinity of the Gorgan Bay. Results of field observations showed that, due to atmospheric factors, climate changes and decreasing of precipitation over the southern basin of the Caspian Sea during last decades, the water level of bay was reduced around 0.5 m.

Keywords: Caspian Sea, Gorgan Bay, water level fluctuation, climate changes

Procedia PDF Downloads 170
280 Teleconnection between El Nino-Southern Oscillation and Seasonal Flow of the Surma River and Possibilities of Long Range Flood Forecasting

Authors: Monika Saha, A. T. M. Hasan Zobeyer, Nasreen Jahan

Abstract:

El Nino-Southern Oscillation (ENSO) is the interaction between atmosphere and ocean in tropical Pacific which causes inconsistent warm/cold weather in tropical central and eastern Pacific Ocean. Due to the impact of climate change, ENSO events are becoming stronger in recent times, and therefore it is very important to study the influence of ENSO in climate studies. Bangladesh, being in the low-lying deltaic floodplain, experiences the worst consequences due to flooding every year. To reduce the catastrophe of severe flooding events, non-structural measures such as flood forecasting can be helpful in taking adequate precautions and steps. Forecasting seasonal flood with a longer lead time of several months is a key component of flood damage control and water management. The objective of this research is to identify the possible strength of teleconnection between ENSO and river flow of Surma and examine the potential possibility of long lead flood forecasting in the wet season. Surma is one of the major rivers of Bangladesh and is a part of the Surma-Meghna river system. In this research, sea surface temperature (SST) has been considered as the ENSO index and the lead time is at least a few months which is greater than the basin response time. The teleconnection has been assessed by the correlation analysis between July-August-September (JAS) flow of Surma and SST of Nino 4 region of the corresponding months. Cumulative frequency distribution of standardized JAS flow of Surma has also been determined as part of assessing the possible teleconnection. Discharge data of Surma river from 1975 to 2015 is used in this analysis, and remarkable increased value of correlation coefficient between flow and ENSO has been observed from 1985. From the cumulative frequency distribution of the standardized JAS flow, it has been marked that in any year the JAS flow has approximately 50% probability of exceeding the long-term average JAS flow. During El Nino year (warm episode of ENSO) this probability of exceedance drops to 23% and while in La Nina year (cold episode of ENSO) it increases to 78%. Discriminant analysis which is known as 'Categoric Prediction' has been performed to identify the possibilities of long lead flood forecasting. It has helped to categorize the flow data (high, average and low) based on the classification of predicted SST (warm, normal and cold). From the discriminant analysis, it has been found that for Surma river, the probability of a high flood in the cold period is 75% and the probability of a low flood in the warm period is 33%. A synoptic parameter, forecasting index (FI) has also been calculated here to judge the forecast skill and to compare different forecasts. This study will help the concerned authorities and the stakeholders to take long-term water resources decisions and formulate policies on river basin management which will reduce possible damage of life, agriculture, and property.

Keywords: El Nino-Southern Oscillation, sea surface temperature, surma river, teleconnection, cumulative frequency distribution, discriminant analysis, forecasting index

Procedia PDF Downloads 153
279 Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)

Authors: Abida Haddouche, Ahmed Chrif Toubal

Abstract:

The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area.

Keywords: Aquifer of Mitidja, DRASTIC method, geographic information system (GIS), vulnerability mapping

Procedia PDF Downloads 384
278 The Development of Chinese Film Market as Factor of Change in Global Hollywood

Authors: Marcin Adamczak

Abstract:

The growth of Chinese film market and its dynamic incomparable to any other historical phenomenon has already made China the second world market and potential future leader in 2-3 years period. The growing power of Chines box-office and its future prospects is then the crucial and potentially disturbing factor for persistence of global Hollywood reality. The paper is based on market statistical data. The main findings of the analysis are defining of essential obstacles for the development of Chinese market and its foreign expansion. However, the new strategies employed by the industry (acquisitions of cinema chains abroad, blockbuster made with the involvement of figures from Hollywood star system, coproduction ties within Pacific basin) could be a successful remedy for current shortcomings. The main factor for development will be wider economical framework and maintenance of growth pace. The future state of Chinese film market will be one of the main factors shaping global film culture and film market in following decades of XXI century.

Keywords: production studies, film market, Chinese film market, distribution

Procedia PDF Downloads 215
277 Geostatistical and Geochemical Study of the Aquifer System Waters Complex Terminal in the Valley of Oued Righ-Arid Area Algeria

Authors: Asma Bettahar, Imed Eddine Nezli, Sameh Habes

Abstract:

Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm) .The present article is a statistical approach by two multi methods various complementary (ACP, CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.

Keywords: complex terminal, mineralization, oued righ, statistical approach

Procedia PDF Downloads 387
276 Evolution of Chemistry in the Waters of Superposed Aquifer System Terminal Complex in the Valley of the Oued Righ - Arid Area Algeria

Authors: Asma Bettahar, Imed Eldine Nezli, Sameh Habes

Abstract:

Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm). The present article is a statistical approach by two multi methods various complementary (ACP CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.

Keywords: oued righ, complex terminal, infill continental, mineralization

Procedia PDF Downloads 450
275 A Study on Holosen-Pleistosen Sedimentology of Morphotectonic Structure and Seismicity of Gökova Bay

Authors: Ebru Aktepe Erkoç, Atilla Uluğ

Abstract:

In this research which has been prepared to show the relationship between Gökova Bay’s morphotectonic structure and seismicity, it is clear that there are many active faults in the region. The existence of a thick sedimentary accumulation since Late Quaternary times is obvious as a result of the geophysical workings in the region and the interpretation of seismic data which has been planning to be taken from the Bay. In the regions which have been tectonically active according to the interpretation of the taken data, the existence of the successive earthquakes in the last few years is remarkable. By analyzing large earthquakes affecting the areas remaining inside the sediments in West Anatolian Collapse System, this paper aims to reveal the fault systems constituting earthquakes with the information obtained from this study and to determine seismicity of the present residential areas right next to them. It is also aimed to anticipate the measures to be taken against possible earthquake hazards, to identify these areas posing a risk in terms of residential and urban planning and to determine at least partly the characteristics of the basin.

Keywords: Gökova Bay, sedimentation, seismic, West Anatolian

Procedia PDF Downloads 262