Search results for: robust regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4626

Search results for: robust regression

216 Detection of Some Drugs of Abuse from Fingerprints Using Liquid Chromatography-Mass Spectrometry

Authors: Ragaa T. Darwish, Maha A. Demellawy, Haidy M. Megahed, Doreen N. Younan, Wael S. Kholeif

Abstract:

The testing of drug abuse is authentic in order to affirm the misuse of drugs. Several analytical approaches have been developed for the detection of drugs of abuse in pharmaceutical and common biological samples, but few methodologies have been created to identify them from fingerprints. Liquid Chromatography-Mass Spectrometry (LC-MS) plays a major role in this field. The current study aimed at assessing the possibility of detection of some drugs of abuse (tramadol, clonazepam, and phenobarbital) from fingerprints using LC-MS in drug abusers. The aim was extended in order to assess the possibility of detection of the above-mentioned drugs in fingerprints of drug handlers till three days of handling the drugs. The study was conducted on randomly selected adult individuals who were either drug abusers seeking treatment at centers of drug dependence in Alexandria, Egypt or normal volunteers who were asked to handle the different studied drugs (drug handlers). An informed consent was obtained from all individuals. Participants were classified into 3 groups; control group that consisted of 50 normal individuals (neither abusing nor handling drugs), drug abuser group that consisted of 30 individuals who abused tramadol, clonazepam or phenobarbital (10 individuals for each drug) and drug handler group that consisted of 50 individuals who were touching either the powder of drugs of abuse: tramadol, clonazepam or phenobarbital (10 individuals for each drug) or the powder of the control substances which were of similar appearance (white powder) and that might be used in the adulteration of drugs of abuse: acetyl salicylic acid and acetaminophen (10 individuals for each drug). Samples were taken from the handler individuals for three consecutive days for the same individual. The diagnosis of drug abusers was based on the current Diagnostic and Statistical Manual of Mental disorders (DSM-V) and urine screening tests using immunoassay technique. Preliminary drug screening tests of urine samples were also done for drug handlers and the control groups to indicate the presence or absence of the studied drugs of abuse. Fingerprints of all participants were then taken on a filter paper previously soaked with methanol to be analyzed by LC-MS using SCIEX Triple Quad or QTRAP 5500 System. The concentration of drugs in each sample was calculated using the regression equations between concentration in ng/ml and peak area of each reference standard. All fingerprint samples from drug abusers showed positive results with LC-MS for the tested drugs, while all samples from the control individuals showed negative results. A significant difference was noted between the concentration of the drugs and the duration of abuse. Tramadol, clonazepam, and phenobarbital were also successfully detected from fingerprints of drug handlers till 3 days of handling the drugs. The mean concentration of the chosen drugs of abuse among the handlers group decreased when the days of samples intake increased.

Keywords: drugs of abuse, fingerprints, liquid chromatography–mass spectrometry, tramadol

Procedia PDF Downloads 123
215 Psychological Predictors in Performance: An Exploratory Study of a Virtual Ultra-Marathon

Authors: Michael McTighe

Abstract:

Background: The COVID-19 pandemic caused the cancellation of many large-scale in-person sporting events, which led to an increase in the availability of virtual ultra-marathons. This study intended to assess how participation in virtual long distances races relates to levels of physical activity for an extended period of time. Moreover, traditional ultra-marathons are known for being not only physically demanding, but also mentally and emotionally challenging. A second component of this study was to assess how psychological contructs related to emotion regulation and mental toughness predict overall performance in the sport. Method: 83 virtual runners participating in a four-month 1000-kilometer race with the option to exceed 1000 kilometers completed a questionnaire exploring demographics, their performance, and experience in the virtual race. Participants also completed the Difficulties in Emotions Regulation Scale (DERS) and the Sports Mental Toughness Questionnaire (SMTQ). Logistics regressions assessed these constructs’ utility in predicting completion of the 1000-kilometer distance in the time allotted. Multiple regression was employed to predict the total distance traversed during the fourmonth race beyond 1000-kilometers. Result: Neither mental toughness nor emotional regulation was a significant predictor of completing the virtual race’s basic 1000-kilometer finish. However, both variables included together were marginally significant predictors of total miles traversed over the entire event beyond 1000 K (p = .051). Additionally, participation in the event promoted an increase in healthy activity with participants running and walking significantly more in the four months during the event than the four months leading up to it. Discussion: This research intended to explore how psychological constructs relate to performance in a virtual type of endurance event, and how involvement in these types of events related to levels of activity. Higher levels of mental toughness and lower levels in difficulties in emotion regulation were associated with greater performance, and participation in the event promoted an increase in athletic involvement. Future psychological skill training aimed at improving emotion regulation and mental toughness may be used to enhance athletic performance in these sports, and future investigations into these events could explore how general participation may influence these constructs over time. Finally, these results suggest that participation in this logistically accessible, and affordable type of sport can promote greater involvement in healthy activities related to running and walking.

Keywords: virtual races, emotion regulation, mental toughness, ultra-marathon, predictors in performance

Procedia PDF Downloads 95
214 A Comparison of Three Different Modalities in Improving Oral Hygiene in Adult Orthodontic Patients: An Open-Label Randomized Controlled Trial

Authors: Umair Shoukat Ali, Rashna Hoshang Sukhia, Mubassar Fida

Abstract:

Introduction: The objective of the study was to compare outcomes in terms of Bleeding index (BI), Gingival Index (GI), and Orthodontic Plaque Index (OPI) with video graphics and plaque disclosing tablets (PDT) versus verbal instructions in adult orthodontic patients undergoing fixed appliance treatment (FAT). Materials and Methods: Adult orthodontic patients have recruited from outpatient orthodontic clinics who fulfilled the inclusion criteria and were randomly allocated to three groups i.e., video, PDT, and verbal groups. We included patients undergoing FAT for six months of both genders with all teeth bonded mesial to first molars having no co-morbid conditions such as rheumatic fever and diabetes mellitus. Subjects who had gingivitis as assessed by Bleeding Index (BI), Gingival Index (GI), and Orthodontic Plaque Index (OPI) were recruited. We excluded subjects having > 2 mm of clinical attachment loss, pregnant and lactating females, any history of periodontal therapy within the last six months, and any consumption of antibiotics or anti-inflammatory drugs within the last one month. Pre- and post-interventional measurements were taken at two intervals only for BI, GI, and OPI. The primary outcome of this trial was to evaluate the mean change in the BI, GI, and OPI in the three study groups. A computer-generated randomization list was used to allocate subjects to one of the three study groups using a random permuted block sampling of 6 and 9 to randomize the samples. No blinding of the investigator or the participants was performed. Results: A total of 99 subjects were assessed for eligibility, out of which 96 participants were randomized as three of the participants declined to be part of this trial. This resulted in an equal number of participants (32) that were analyzed in all three groups. The mean change in the oral hygiene indices score was assessed, and we found no statistically significant difference among the three interventional groups. Pre- and post-interventional results showed statistically significant improvement in the oral hygiene indices for the video and PDT groups. No statistically significant difference for age, gender, and education level on oral hygiene indices were found. Simple linear regression showed that the video group produced significantly higher mean OPI change as compared to other groups. No harm was observed during the trial. Conclusions: Visual aids performed better as compared to the verbal group. Gender, age, and education level had no statistically significant impact on the oral hygiene indices. Longer follow-ups will be required to see the long-term effects of these interventions. Trial Registration: NCT04386421 Funding: Aga Khan University and Hospital (URC 183022)

Keywords: oral hygiene, orthodontic treatment, adults, randomized clinical trial

Procedia PDF Downloads 118
213 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 142
212 Determinants of Maternal Near-Miss among Women in Public Hospital Maternity Wards in Northern Ethiopia: A Facility Based Case-Control Study

Authors: Dejene Ermias Mekango, Mussie Alemayehu, Gebremedhin Berhe Gebregergs, Araya Abrha Medhanye, Gelila Goba

Abstract:

Background: Maternal near miss (MNM) can be used as a proxy indicator of maternal mortality ratio. There is a huge gap in life time risk between Sub-Saharan Africa and developed countries. In Ethiopia, a significant number of women die each year from complications during pregnancy, childbirth and the post-partum period. Besides, a few studies have been performed on MNM, and little is known regarding determinant factors. This study aims to identify determinants of MNM among women in Tigray region, Northern Ethiopia. Methods: a case-control study in hospital found in Tigray region, Ethiopia was conducted from January 30 - March 30, 2016. The sample included 103 cases and 205 controls recruited from women seeking obstetric care at six public hospitals. Clients having a life-threatening obstetric complication including haemorrhage, hypertensive diseases of pregnancy, dystocia, infections, and anemia or clinical signs of severe anemia in women without haemorrhage were taken as cases and those with normal obstetric outcomes were considered as controls. Cases were selected based on proportional to size allocation while systematic sampling was employed for controls. Data were analyzed using SPSS version 20.0. Binary and multiple variable logistic regression (odds ratio) analyses were calculated with 95% CI. Results: The largest proportion of cases and controls was among the ages of20–29 years, accounting for37.9 %( 39) of cases and 31.7 %( 65) of controls. Roughly 90% of cases and controls were married. About two-thirds of controls and 45.6 %( 47) of cases had gestational age between 37-41 weeks. History of chronic medical conditions was reported in 55.3 %(57) of cases and 33.2%(68) of controls. Women with no formal education [AOR=3.2;95%CI:1.24, 8.12],being less than 16 years old at first pregnancy [AOR=2.5; 95%CI:1.12,5.63],induced labor[AOR=3; 95%CI:1.44, 6.17], history of Cesarean section (C-section) [AOR=4.6; 95%CI: 1.98, 7.61] or chronic medical disorder[AOR=3.5;95%CI:1.78, 6.93], and women who traveled more than 60 minutes before reaching their final place of care[AOR=2.8;95% CI: 1.19,6.35] all had higher odds of experiencing MNM. Conclusions: The Government of Ethiopia should continue its effort to address the lack of road and health facility access as well as education, which will help reduce MNM. Work should also be continued to educate women and providers about common predictors of MNM like the history of C-section, chronic illness, and teenage pregnancy. These efforts should be carried out at the facility, community, and individual levels. The targeted follow-up to women with a history of chronic disease and C-section could also be a practical way to reduce MNM.

Keywords: maternal near miss, severe obstetric hemorrhage, hypertensive disorder, c-section, Tigray, Ethiopia

Procedia PDF Downloads 223
211 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries

Authors: Anita Richter

Abstract:

Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.

Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries

Procedia PDF Downloads 326
210 Rural Entrepreneurship as a Response to Climate Change and Resource Conservation

Authors: Omar Romero-Hernandez, Federico Castillo, Armando Sanchez, Sergio Romero, Andrea Romero, Michael Mitchell

Abstract:

Environmental policies for resource conservation in rural areas include subsidies on services and social programs to cover living expenses. Government's expectation is that rural communities who benefit from social programs, such as payment for ecosystem services, are provided with an incentive to conserve natural resources and preserve natural sinks for greenhouse gases. At the same time, global climate change has affected the lives of people worldwide. The capability to adapt to global warming depends on the available resources and the standard of living, putting rural communities at a disadvantage. This paper explores whether rural entrepreneurship can represent a solution to resource conservation and global warming adaptation in rural communities. The research focuses on a sample of two coffee communities in Oaxaca, Mexico. Researchers used geospatial information contained in aerial photographs of the geographical areas of interest. Households were identified in the photos via the roofs of households and georeferenced via coordinates. From the household population, a random selection of roofs was performed and received a visit. A total of 112 surveys were completed, including questions of socio-demographics, perception to climate change and adaptation activities. The population includes two groups of study: entrepreneurs and non-entrepreneurs. Data was sorted, filtered, and validated. Analysis includes descriptive statistics for exploratory purposes and a multi-regression analysis. Outcomes from the surveys indicate that coffee farmers, who demonstrate entrepreneurship skills and hire employees, are more eager to adapt to climate change despite the extreme adverse socioeconomic conditions of the region. We show that farmers with entrepreneurial tendencies are more creative in using innovative farm practices such as the planting of shade trees, the use of live fencing, instead of wires, and watershed protection techniques, among others. This result counters the notion that small farmers are at the mercy of climate change and have no possibility of being able to adapt to a changing climate. The study also points to roadblocks that farmers face when coping with climate change. Among those roadblocks are a lack of extension services, access to credit, and reliable internet, all of which reduces access to vital information needed in today’s constantly changing world. Results indicate that, under some circumstances, funding and supporting entrepreneurship programs may provide more benefit than traditional social programs.

Keywords: entrepreneurship, global warming, rural communities, climate change adaptation

Procedia PDF Downloads 241
209 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 43
208 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 71
207 Knowledge Management and Administrative Effectiveness of Non-teaching Staff in Federal Universities in the South-West, Nigeria

Authors: Nathaniel Oladimeji Dixon, Adekemi Dorcas Fadun

Abstract:

Educational managers have observed a downward trend in the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. This is evident in the low-quality service delivery of administrators and unaccomplished institutional goals and missions of higher education. Scholars have thus indicated the need for the deployment and adoption of a practice that encourages information collection and sharing among stakeholders with a view to improving service delivery and outcomes. This study examined the extent to which knowledge management correlated with the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. The study adopted the survey design. Three federal universities (the University of Ibadan, Federal University of Agriculture, Abeokuta, and Obafemi Awolowo University) were purposively selected because administrative ineffectiveness was more pronounced among non-teaching staff in government-owned universities, and these federal universities were long established. The proportional and stratified random sampling was adopted to select 1156 non-teaching staff across the three universities along the three existing layers of the non-teaching staff: secretarial (senior=311; junior=224), non-secretarial (senior=147; junior=241) and technicians (senior=130; junior=103). Knowledge Management Practices Questionnaire with four sub-scales: knowledge creation (α=0.72), knowledge utilization (α=0.76), knowledge sharing (α=0.79) and knowledge transfer (α=0.83); and Administrative Effectiveness Questionnaire with four sub-scales: communication (α=0.84), decision implementation (α=0.75), service delivery (α=0.81) and interpersonal relationship (α=0.78) were used for data collection. Data were analyzed using descriptive statistics, Pearson product-moment correlation and multiple regression at 0.05 level of significance, while qualitative data were content analyzed. About 59.8% of the non-teaching staff exhibited a low level of knowledge management. The indices of administrative effectiveness of non-teaching staff were rated as follows: service delivery (82.0%), communication (78.0%), decision implementation (71.0%) and interpersonal relationship (68.0%). Knowledge management had significant relationships with the indices of administrative effectiveness: service delivery (r=0.82), communication (r=0.81), decision implementation (r=0.80) and interpersonal relationship (r=0.47). Knowledge management had a significant joint prediction on administrative effectiveness (F (4;1151)= 0.79, R=0.86), accounting for 73.0% of its variance. Knowledge sharing (β=0.38), knowledge transfer (β=0.26), knowledge utilization (β=0.22), and knowledge creation (β=0.06) had relatively significant contributions to administrative effectiveness. Lack of team spirit and withdrawal syndrome is the major perceived constraints to knowledge management practices among the non-teaching staff. Knowledge management positively influenced the administrative effectiveness of the non-teaching staff in federal universities in South-west Nigeria. There is a need to ensure that the non-teaching staff imbibe team spirit and embrace teamwork with a view to eliminating their withdrawal syndromes. Besides, knowledge management practices should be deployed into the administrative procedures of the university system.

Keywords: knowledge management, administrative effectiveness of non-teaching staff, federal universities in the south-west of nigeria., knowledge creation, knowledge utilization, effective communication, decision implementation

Procedia PDF Downloads 104
206 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 141
205 The Impact of Team Heterogeneity and Team Reflexivity on Entrepreneurial Decision -Making - Empirical Study in China

Authors: Chang Liu, Rui Xing, Liyan Tang, Guohong Wang

Abstract:

Entrepreneurial actions are based on entrepreneurial decisions. The quality of decisions influences entrepreneurial activities and subsequent new venture performance. Uncertainty of surroundings put heightened demands on the team as a whole, and each team member. Diverse team composition provides rich information, which a team can draw when making complex decisions. However, team heterogeneity may cause emotional conflicts, which is adverse to team outcomes. Thus, the effects of team heterogeneity on team outcomes are complex. Although team heterogeneity is an essential factor influencing entrepreneurial decision-making, there is a lack of empirical analysis on under what conditions team heterogeneity plays a positive role in promoting decision-making quality. Entrepreneurial teams always struggle with complex tasks. How a team shapes its teamwork is key in resolving constant issues. As a collective regulatory process, team reflexivity is characterized by continuous joint evaluation and discussion of team goals, strategies, and processes, and adapt them to current or anticipated circumstances. It enables diversified information to be shared and overtly discussed. Instead of hostile interpretation of opposite opinions team members take them as useful insights from different perspectives. Team reflexivity leads to better integration of expertise to avoid the interference of negative emotions and conflict. Therefore, we propose that team reflexivity is a conditional factor that influences the impact of team heterogeneity on high-quality entrepreneurial decisions. In this study, we identify team heterogeneity as a crucial determinant of entrepreneurial decision quality. Integrating the literature on decision-making and team heterogeneity, we investigate the relationship between team heterogeneity and entrepreneurial decision-making quality, treating team reflexivity as a moderator. We tested our hypotheses using the hierarchical regression method and the data gathered from 63 teams and 205 individual members from 45 new firms in China's first-tier cities such as Beijing, Shanghai, and Shenzhen. This research found that both teams' education heterogeneity and teams' functional background heterogeneity were significantly positively related to entrepreneurial decision-making quality, and the positive relation was stronger in teams with a high level of team reflexivity. While teams' specialization of education heterogeneity was negatively related to decision-making quality, and the negative relationship was weaker in teams with a high level of team reflexivity. We offer two contributions to decision-making and entrepreneurial team literatures. Firstly, our study enriches the understanding of the role of entrepreneurial team heterogeneity in entrepreneurial decision-making quality. Different from previous entrepreneurial decision-making literatures, which focus more on decision-making modes of entrepreneurs and the top management team, this study is a significant attempt to highlight that entrepreneurial team heterogeneity makes a unique contribution to generating high-quality entrepreneurial decisions. Secondly, this study introduced team reflexivity as the moderating variable, to explore the boundary conditions under which the entrepreneurial team heterogeneity play their roles.

Keywords: decision-making quality, entrepreneurial teams, education heterogeneity, functional background heterogeneity, specialization of education heterogeneity

Procedia PDF Downloads 119
204 Addressing Educational Injustice through Collective Teacher Professional Development

Authors: Wenfan Yan, Yumei Han

Abstract:

Objectives: Educational inequality persists between China's ethnic minority regions and the mainland. The key to rectifying this disparity lies in enhancing the quality of educators. This paper delves into the Chinese government's innovative policy, "Group Educators Supporting Tibet" (GEST), designed to bridge the shortage of high-quality teachers in Tibet, a representative underprivileged ethnic minority area. GEST aims to foster collective action by networking provincial expert educators with Tibetan counterparts and collaborating between supporting provincial educational entities and Tibetan education entities. Theoretical Framework: The unequal distribution of social capital contributes significantly to the educational gap between ethnic minority areas and other regions in China. Within the framework of social network theory, motivated GEST educators take action to foster resources and relationships. This study captures grassroots perspectives to outline how social networking contributes to the policy objective of enhancing Tibetan teachers' quality and eradicating educational injustice. Methodology: A sequential mixed-methods approach was adopted to scrutinize policy impacts from the vantage point of social networking. Quantitative research involved surveys for GEST and Tibetan teachers, exploring demographics, perceptions of policy significance, motivations, actions, and networking habits. Qualitative research included focus group interviews with GEST educators, local teachers, and students from program schools. The findings were meticulously analyzed to provide comprehensive insights into stakeholders' experiences and the impacts of the GEST policy. Key Findings: The policy empowers individuals to impact Tibetan education significantly. Motivated GEST educators with prior educational support experiences contribute to its success. Supported by a collective -school, city, province, and government- the new social structure fosters higher efficiency. GEST's approach surpasses conventional methods. The individual, backed by educators, realizes the potential of transformative class design. Collective activities -pedagogy research, teaching, mentoring, training, and partnerships- equip Tibetan teachers, enhancing educational quality and equity. This collaborative effort establishes a robust foundation for the policy's success, emphasizing the collective impact on Tibetan education. Contributions: This study contributes to international policy studies focused on educational equity through collective teacher action. Using a mixed-methods approach and guided by social networking theory, it accentuates stakeholders' perspectives, elucidating the genuine impacts of the GEST policy. The study underscores the advancement of social networking, the reinforcement of local teacher quality, and the transformative potential of cultivating a more equitable and adept teaching workforce in Tibet. Limitations of the Study and Suggestions for Future Research Directions: While the study emphasizes the positive impacts of motivated GEST educators, there might be aspects or challenges not fully explored. A more comprehensive understanding of potential drawbacks or obstacles would provide a more balanced view. For future studies, investigating the long-term impact of the GEST policy on educational quality could provide insights into the sustainability of the improvements observed. Also, understanding the perspectives of Tibetan teachers who may not have directly benefited from GEST could reveal potential disparities in policy implementation.

Keywords: teacher development, social networking, teacher quality, mixed research method

Procedia PDF Downloads 65
203 Beyond Sexual Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women

Authors: Ritika Chaturvedi

Abstract:

Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitability as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitability across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitability. Specifically, emotional, intellectual, and sensual overexcitability were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitability emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitability in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.

Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability

Procedia PDF Downloads 56
202 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children

Authors: Marina Fuertes

Abstract:

Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.

Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction

Procedia PDF Downloads 326
201 Healthcare Associated Infections in an Intensive Care Unit in Tunisia: Incidence and Risk Factors

Authors: Nabiha Bouafia, Asma Ben Cheikh, Asma Ammar, Olfa Ezzi, Mohamed Mahjoub, Khaoula Meddeb, Imed Chouchene, Hamadi Boussarsar, Mansour Njah

Abstract:

Background: Hospital acquired infections (HAI) cause significant morbidity, mortality, length of stay and hospital costs, especially in the intensive care unit (ICU), because of the debilitated immune systems of their patients and exposure to invasive devices. The aims of this study were to determine the rate and the risk factors of HAI in an ICU of a university hospital in Tunisia. Materials/Methods: A prospective study was conducted in the 8-bed adult medical ICU of a University Hospital (Sousse Tunisia) during 14 months from September 15th, 2015 to November 15th, 2016. Patients admitted for more than 48h were included. Their surveillance was stopped after the discharge from ICU or death. HAIs were defined according to standard Centers for Disease Control and Prevention criteria. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: During the study, 192 patients had admitted for more than 48 hours. Their mean age was 59.3± 18.20 years and 57.1% were male. Acute respiratory failure was the main reason of admission (72%). The mean SAPS II score calculated at admission was 32.5 ± 14 (range: 6 - 78). The exposure to the mechanical ventilation (MV) and the central venous catheter were observed in 169 (88 %) and 144 (75 %) patients, respectively. Seventy-three patients (38.02%) developed 94 HAIs. The incidence density of HAIs was 41.53 per 1000 patient day. Mortality rate in patients with HAIs was 65.8 %( n= 48). Regarding the type of infection, Ventilator Associated Pneumoniae (VAP) and central venous catheter Associated Infections (CVC AI) were the most frequent with Incidence density: 14.88/1000 days of MV for VAP and 20.02/1000 CVC days for CVC AI. There were 5 Peripheral Venous Catheter Associated Infections, 2 urinary tract infections, and 21 other HAIs. Gram-negative bacteria were the most common germs identified in HAIs: Multidrug resistant Acinetobacter Baumanii (45%) and Klebsiella pneumoniae (10.96%) were the most frequently isolated. Univariate analysis showed that transfer from another hospital department (p= 0.001), intubation (p < 10-4), tracheostomy (p < 10-4), age (p=0.028), grade of acute respiratory failure (p=0.01), duration of sedation (p < 10-4), number of CVC (p < 10-4), length of mechanical ventilation (p < 10-4) and length of stay (p < 10-4), were associated to high risk of HAIS in ICU. Multivariate analysis reveals that independent risk factors for HAIs are: transfer from another hospital department: OR=13.44, IC 95% [3.9, 44.2], p < 10-4, duration of sedation: OR= 1.18, IC 95% [1.049, 1.325], p=0.006, high number of CVC: OR=2.78, IC 95% [1.73, 4.487], p < 10-4, and length of stay in ICU: OR= 1.14, IC 95% [1.066,1.22], p < 10-4. Conclusion: Prevention of nosocomial infections in ICUs is a priority of health care systems all around the world. Yet, their control requires an understanding of epidemiological data collected in these units.

Keywords: healthcare associated infections, incidence, intensive care unit, risk factors

Procedia PDF Downloads 369
200 Knowledge of Sexually Transmitted Infections and Socio-Demographic Factors Affecting High Risk Sex among Unmarried Youths in Nigeria

Authors: Obasanjo Afolabi Bolarinwa

Abstract:

This study assesses the levels of knowledge of sexually transmitted infections among unmarried youths in Nigeria; examines the pattern of high risk sex among unmarried youths in Nigeria; investigate the socio-demographic factors (age, place of residence, religion, level of education, wealth index and employment status) affecting the practice of high-risk sexual behaviour and ascertain the relationships between knowledge of sexually transmitted infections and practice of high risk sex. The goal of the study is to identify the factors associated with the practice of high risk sex among youth. These were with a view to identifying critical actions needed to reduce high risk sexual behaviour among youths. The study employed secondary data. The data for the study were extracted from the 2013 Nigeria Demographic and Health Survey (NDHS). The 2013 NDHS collected information from 38,948 Women ages 15-49 years and 17,359 men ages 15-49. A total of 7,744 female and 6,027 male respondents were utilized in the study. In order to adjust for the effect of oversampling of the population, the weighting factor provided by Measure DHS was applied. The data were analysed using frequency distribution and logistic regression. The results show that both male (92.2%) and female (93.6%) have accurate knowledge of sexually transmitted infections. The study also revealed that prevalence of high risk sexual behavior is high among Nigerian youths; this is evident as 77.7% (female) and 78.4% (male) are engaging in high risk sexual behavior. The bivariate analysis shows that age of respondent (χ2=294.2; p < 0.05), religion (χ2=136.64; p < 0.05), wealth index (χ2=17.38; p < 0.05), level of education (χ2=34.73; p < 0.05) and employment status (χ2=94.54; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among male while age of respondent (χ2=327.07; p < 0.05), place of residence (χ2=6.71; p < 0.05), religion (χ2=81.04; p < 0.05), wealth index (χ2=7.41; p < 0.05), level of education (χ2=18.12; p < 0.05) and employment status (χ2=51.02; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among female. Furthermore, the study shows that there is a relationship between knowledge of sexually transmitted infections and high risk sex among male (χ2=38.32; p < 0.05) and female (χ2=18.37; p < 0.05). At multivariate level, the study revealed that individual characteristics such as age, religion, place of residence, wealth index, levels of education and employment status were statistically significantly related with high risk sexual behaviour among male and female (p < 0.05). Lastly, the study shows that knowledge of sexually transmitted infection was significantly related to high risk sexual behaviour among youths (p < 0.05). The study concludes that there is a high level of knowledge of sexually transmitted infections among unmarried youths in Nigeria. The practice of high risk sex is high among unmarried youths but higher among male youths. The prevalence of high risk sexual activity is higher for males when they are at disadvantage and higher for females when they are at advantage. Socio-demographic factors like age of respondents, religion, wealth index, place of residence, employment status and highest level of education are factors influencing high risk sexual behaviour among youths.

Keywords: high risk sex, wealth index, sexual behaviour, knowledge

Procedia PDF Downloads 254
199 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions

Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes

Abstract:

Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.

Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell

Procedia PDF Downloads 77
198 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 168
197 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 165
196 Urban Park Characteristics Defining Avian Community Structure

Authors: Deepti Kumari, Upamanyu Hore

Abstract:

Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.

Keywords: diversity, feeding guild, urban park, urbanization intensity

Procedia PDF Downloads 123
195 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 128
194 Cultural Dynamics in Online Consumer Behavior: Exploring Cross-Country Variances in Review Influence

Authors: Eunjung Lee

Abstract:

This research investigates the intricate connection between cultural differences and online consumer behaviors by integrating Hofstede's Cultural Dimensions theory with analysis methodologies such as text mining, data mining, and topic analysis. Our aim is to provide a comprehensive understanding of how national cultural differences influence individuals' behaviors when engaging with online reviews. To ensure the relevance of our investigation, we systematically analyze and interpret the cultural nuances influencing online consumer behaviors, especially in the context of online reviews. By anchoring our research in Hofstede's Cultural Dimensions theory, we seek to offer valuable insights for marketers to tailor their strategies based on the cultural preferences of diverse global consumer bases. In our methodology, we employ advanced text mining techniques to extract insights from a diverse range of online reviews gathered globally for a specific product or service like Netflix. This approach allows us to reveal hidden cultural cues in the language used by consumers from various backgrounds. Complementing text mining, data mining techniques are applied to extract meaningful patterns from online review datasets collected from different countries, aiming to unveil underlying structures and gain a deeper understanding of the impact of cultural differences on online consumer behaviors. The study also integrates topic analysis to identify recurring subjects, sentiments, and opinions within online reviews. Marketers can leverage these insights to inform the development of culturally sensitive strategies, enhance target audience segmentation, and refine messaging approaches aligned with cultural preferences. Anchored in Hofstede's Cultural Dimensions theory, our research employs sophisticated methodologies to delve into the intricate relationship between cultural differences and online consumer behaviors. Applied to specific cultural dimensions, such as individualism vs. collectivism, masculinity vs. femininity, uncertainty avoidance, and long-term vs. short-term orientation, the study uncovers nuanced insights. For example, in exploring individualism vs. collectivism, we examine how reviewers from individualistic cultures prioritize personal experiences while those from collectivistic cultures emphasize communal opinions. Similarly, within masculinity vs. femininity, we investigate whether distinct topics align with cultural notions, such as robust features in masculine cultures and user-friendliness in feminine cultures. Examining information-seeking behaviors under uncertainty avoidance reveals how cultures differ in seeking detailed information or providing succinct reviews based on their comfort with ambiguity. Additionally, in assessing long-term vs. short-term orientation, the research explores how cultural focus on enduring benefits or immediate gratification influences reviews. These concrete examples contribute to the theoretical enhancement of Hofstede's Cultural Dimensions theory, providing a detailed understanding of cultural impacts on online consumer behaviors. As online reviews become increasingly crucial in decision-making, this research not only contributes to the academic understanding of cultural influences but also proposes practical recommendations for enhancing online review systems. Marketers can leverage these findings to design targeted and culturally relevant strategies, ultimately enhancing their global marketing effectiveness and optimizing online review systems for maximum impact.

Keywords: comparative analysis, cultural dimensions, marketing intelligence, national culture, online consumer behavior, text mining

Procedia PDF Downloads 48
193 Investigating the Relationship between Job Satisfaction, Role Identity, and Turnover Intention for Nurses in Outpatient Department

Authors: Su Hui Tsai, Weir Sen Lin, Rhay Hung Weng

Abstract:

There are numerous outpatient departments at hospitals with enormous amounts of outpatients. Although the work of outpatient nursing staff does not include the ward, emergency and critical care units that involve patient life-threatening conditions, the work is cumbersome and requires facing and dealing with a large number of outpatients in a short period of time. Therefore, nursing staff often do not feel satisfied with their work and cannot identify with their professional role, leading to intentions to leave their job. Thus, the main purpose of this study is to explore the correlation between the job satisfaction and role identity of nursing staff with turnover intention. This research was conducted using a questionnaire, and the subjects were outpatient nursing staff in three regional hospitals in Southern Taiwan. A total of 175 questionnaires were distributed, and 166 valid questionnaires were returned. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The influence of role identity and job satisfaction on nursing staff’s turnover intention was analyzed by descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. Results showed that 'role identity' had significant differences in different types of marriages. Job satisfaction of 'grasp of environment' had significant differences in different levels of education. Job satisfaction of 'professional growth' and 'shifts and days off' showed significant differences in different types of marriages. 'Role identity' and 'job satisfaction' were negatively correlated with turnover intention respectively. Job satisfaction of 'salary and benefits' and 'grasp of environment' were significant predictors of role identity. The higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. Job satisfaction of 'patient and family interaction' were significant predictors of turnover intention. The lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. This study found that outpatient nursing staff had the lowest satisfaction towards salary structure. It is recommended that bonuses, promotion opportunities and other incentives be established to increase the role identity of outpatient nursing staff. The results showed that the higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. It is recommended that regular evaluations be conducted to reward nursing staff with excellent service and invite nursing staff to share their work experiences and thoughts, to enhance nursing staff’s expectation and identification of their occupational role, as well as instilling the concept of organizational service and organizational expectations of emotional display. The results showed that the lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. It is recommended that interpersonal communication and workplace violence prevention educational training courses be organized to enhance the communication and interaction of nursing staff with patients and their families.

Keywords: outpatient, job satisfaction, turnover, intention

Procedia PDF Downloads 146
192 Assessing the Impact of Physical Inactivity on Dialysis Adequacy and Functional Health in Peritoneal Dialysis Patients

Authors: Mohammad Ali Tabibi, Farzad Nazemi, Nasrin Salimian

Abstract:

Background: Peritoneal dialysis (PD) is a prevalent renal replacement therapy for patients with end-stage renal disease. Despite its benefits, PD patients often experience reduced physical activity and physical function, which can negatively impact dialysis adequacy and overall health outcomes. Despite the known benefits of maintaining physical activity in chronic disease management, the specific interplay between physical inactivity, physical function, and dialysis adequacy in PD patients remains underexplored. Understanding this relationship is essential for developing targeted interventions to enhance patient care and outcomes in this vulnerable population. This study aims to assess the impact of physical inactivity on dialysis adequacy and functional health in PD patients. Methods: This cross-sectional study included 135 peritoneal dialysis patients from multiple dialysis centers. Physical inactivity was measured using the International Physical Activity Questionnaire (IPAQ), while physical function was assessed using the Short Physical Performance Battery (SPPB). Dialysis adequacy was evaluated using the Kt/V ratio. Additional variables such as demographic data, comorbidities, and laboratory parameters were collected to control for potential confounders. Statistical analyses were performed to determine the relationships between physical inactivity, physical function, and dialysis adequacy. Results: The study cohort comprised 70 males and 65 females with a mean age of 55.4 ± 13.2 years. A significant proportion of the patients (65%) were categorized as physically inactive based on IPAQ scores. Inactive patients demonstrated significantly lower SPPB scores (mean 6.2 ± 2.1) compared to their more active counterparts (mean 8.5 ± 1.8, p < 0.001). Dialysis adequacy, as measured by Kt/V, was found to be suboptimal (Kt/V < 1.7) in 48% of the patients. There was a significant positive correlation between physical function scores and Kt/V values (r = 0.45, p < 0.01), indicating that better physical function is associated with higher dialysis adequacy. Also, there was a significant negative correlation between physical inactivity and physical function (r = -0.55, p < 0.01). Additionally, physically inactive patients had lower Kt/V ratios compared to their active counterparts (1.3 ± 0.3 vs. 1.8 ± 0.4, p < 0.05). Multivariate regression analysis revealed that physical inactivity was an independent predictor of reduced dialysis adequacy (β = -0.32, p < 0.01) and poorer physical function (β = -0.41, p < 0.01) after adjusting for age, sex, comorbidities, and dialysis vintage. Conclusion: This study underscores the critical role of physical activity and physical function in maintaining adequate dialysis in peritoneal dialysis patients. These findings highlight the need for targeted interventions to promote physical activity in this population to improve their overall health outcomes. Future research should focus on developing and evaluating exercise programs tailored for PD patients to enhance their physical function and dialysis adequacy. The findings suggest that interventions aimed at increasing physical activity and improving physical function may enhance dialysis adequacy and overall health outcomes in this population. Further research is warranted to explore the mechanisms underlying these associations and to develop targeted strategies for enhancing patient care.

Keywords: inactivity, physical function, peritoneal dialysis, dialysis adequacy

Procedia PDF Downloads 36
191 Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients

Authors: Thao Nguyen, Maximiliano Hyon, Sany Rajagukguk, Anna Melkonyan

Abstract:

Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay.

Keywords: glycemic management, strategies, hospitalized, SARS-CoV-2, outcomes

Procedia PDF Downloads 449
190 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 167
189 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 17
188 Determinants of Walking among Middle-Aged and Older Overweight and Obese Adults: Demographic, Health, and Socio-Environmental Factors

Authors: Samuel N. Forjuoh, Marcia G. Ory, Jaewoong Won, Samuel D. Towne, Suojin Wang, Chanam Lee

Abstract:

The public health burden of obesity is well established as is the influence of physical activity (PA) on the health and wellness of individuals who are obese. This study examined the influence of selected demographic, health, and socioenvironmental factors on the walking behaviors of middle-aged and older overweight and obese adults. Online and paper surveys were administered to community-dwelling overweight and obese adults aged ≥ 50 years residing in four cities in central Texas and seen by a family physician in the primary care clinic from October 2013 to June 2014. Descriptive statistics were used to characterize participants’ anthropometric and demographic data as well as their health conditions and walking, socioenvironmental, and more broadly defined PA behaviors. Then Pearson chi-square tests were used to assess differences between participants who reported walking the recommended ≥ 150 minutes for any purpose in a typical week as a proxy to meeting the U.S. Centers for Disease Control and Prevention’s PA guidelines and those who did not. Finally, logistic regression was used to predict walking the recommended ≥ 150 minutes for any purpose, controlling for covariates. The analysis was conducted in 2016. Of the total sample (n=253, survey response rate of 6.8%), the majority were non-Hispanic white (81.7%), married (74.5%), male (53.5%), and reported an annual household income of ≥ $50,000 (65.7%). Approximately, half were employed (49.6%), or had at least a college degree (51.8%). Slightly more than 1 in 5 (n=57, 22.5%) reported walking the recommended ≥150 minutes for any purpose in a typical week. The strongest predictors of walking the recommended ≥ 150 minutes for any purpose in a typical week in adjusted analysis were related to education and a high favorable perception of the neighborhood environment. Compared to those with a high school diploma or some college, participants with at least a college degree were five times as likely to walk the recommended ≥ 150 minutes for any purpose (OR=5.55, 95% CI=1.79-17.25). Walking the recommended ≥ 150 minutes for any purpose was significantly associated with participants who disagreed that there were many distracted drivers (e.g., on the cell phone while driving) in their neighborhood (OR=4.08, 95% CI=1.47-11.36) and those who agreed that there are sidewalks or protected walkways (e.g., walking trails) in their neighborhood (OR=3.55, 95% CI=1.10-11.49). Those employed were less likely to walk the recommended ≥ 150 minutes for any purpose compared to those unemployed (OR=0.31, 95% CI=0.11-0.85) as were those who reported some difficulty walking for a quarter of a mile (OR=0.19, 95% CI=0.05-0.77). Other socio-environmental factors such as having care-giver responsibilities for elders, someone to walk with, or a dog in the household as well as Walk Score™ were not significantly associated with walking the recommended ≥ 150 minutes for any purpose in a typical week. Neighborhood perception appears to be an important factor associated with the walking behaviors of middle-aged and older overweight and obese individuals. Enhancing the neighborhood environment (e.g., providing walking trails) may promote walking among these individuals.

Keywords: determinants of walking, obesity, older adults, physical activity

Procedia PDF Downloads 260
187 A Quantitative Analysis of Rural to Urban Migration in Morocco

Authors: Donald Wright

Abstract:

The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.

Keywords: climate change, machine learning, migration, Morocco, urban development

Procedia PDF Downloads 156