Search results for: plant material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9873

Search results for: plant material

5493 Properties of Poly(Amide-Imide) with Low Residual Stress for Electronic Material

Authors: Kwangin Kim, Taewon Yoo, Haksoo Han

Abstract:

Polyimide is a superior polymer in the electronics industry, and we conducted a study to synthesize poly(amide-imide) at low temperatures. Poly(amide-imide) was synthesized at low-temperature curing to offer a thermal stable membrane with low residual stress and good processability. As a result, the low crack polymer with good processability could be used to various applications such as semiconductors, integrated circuits, coating materials, membranes, and display. The synthesis of poly(amide-imide) at low temperatures was confirmed by Fourier transform infrared spectroscopy (FT-IR). Thermal stabilities of the polymer was confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

Keywords: poly(amide-imide), residual stress, thermal stability

Procedia PDF Downloads 425
5492 The Antimicrobial Activity of the Essential Oil of Salvia officinalis Harvested in Boumerdes

Authors: N. Mezıou-Cheboutı, A. Merabet, N. Behidj, F. Z. Bissaad

Abstract:

The Algeria by its location, offers a rich and diverse vegetation. A large number of aromatic and medicinal plants grow spontaneously. The interest in these plants has continued to grow in recent years. Their particular properties due to the essential oil fraction can be utilized to treat microbial infections. To this end, and in the context of the valuation of the Algerian flora, we became interested in the species of the family Lamiaceae which is one of the most used as a global source of spices and extracts strong families antimicrobial potency. The plant on which we have based our choice is a species of sage "Salvia officinalis" from the Isser localized region within the province of Boumerdes. This work focuses on the study of the antimicrobial activity of essential oil extracted from the leaves of salvia officinalis. The extraction is carried out by HE hydrodistillation and reveals a yield of 1.06℅. The study of the antimicrobial activity of the essential oil by the method of at aromatogramme shown that Gram positive bacteria are most susceptible (Staphylococcus aureus and Bacillus subtilis) with a strong inhibition of growth. The yeast Candida albicans fungus Aspergillus niger and have shown moderately sensitive.

Keywords: Salvia officinalis, steam distillation, essential oil, aromatogram, anti-microbial activity

Procedia PDF Downloads 323
5491 Synthesis Using Sintering and Characterisation of FeCrCoNiZn Alloy Using SEM and Nanoindentation

Authors: Steadyman Chikumba, Vasudeva Vereedhi Rao

Abstract:

This paper reports on the synthesis of FeCrCoNiZn and its characterisation using SEM and nanoindentation. The high entropy alloy FeCrCoNiZn was fabricated using spark plasma sintering at a temperature of 1100ᵒC from powders mixed for 9 hours. The powders mixture was equimolar, and the resultant microstructure had a single crystalline structure when studied under SEM. Several nano Vickers hardness measurements were taken on a polished surface etched by Nital solution. The hardness ranged from 711 Vickers to a maximum of 1773.2. The alloy FeCrCoNiZn showed a nano hardness of 1070 Vickers and a modulus of elasticity of 460.4 MPa. The process managed to fabricate a very hard material that can find applications where wear resistance is desired.

Keywords: high entropy alloy, FeCrVNiZn, nanohardness, SEM

Procedia PDF Downloads 103
5490 Effect of Silicon in Mitigating Cadmium Toxicity in Maize

Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.

Keywords: antioxidant, cadmium, maize, silicon

Procedia PDF Downloads 523
5489 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One

Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva

Abstract:

Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.

Keywords: DFT, MEP, NLO, vibrational spectra

Procedia PDF Downloads 224
5488 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process

Authors: Johannes Gantner, Michael Held, Matthias Fischer

Abstract:

The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.

Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation

Procedia PDF Downloads 289
5487 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 161
5486 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 144
5485 Ethnobotanical Study of Spontaneous Medicinal Plants Used in the Treatment of Viral Respiratory Diseases in the Prerif, Morocco

Authors: El Amane Salma, Rahou Abdelilah

Abstract:

Viral respiratory infections (common cold, flu, sinusitis, bronchiolitis, etc.) are among the most common infections in the world with severe symptoms. In Morocco, as everywhere in the world, especially in developing countries, the therapeutic indications of medicinal plants are very present to treat several diseases, including the respiratory system. The objective of our study is to identify and document medicinal plants used in traditional medicine to treat viral respiratory infections and alleviate their symptoms in order to generate interest for future studies in verifying the efficacy of these traditional medicines and their conservation. The information acquired from 81 questionnaires and the floristic identification allowed us to identify 19 spontaneous species belonging to 11 families, used as traditional therapies for viral respiratory diseases in the Prerif. The herbs are the most used life form. The results also showed that leaves were the most commonly used plant parts and most of the herbal medicines were prepared in the form of infusions and administered orally. Documented data was evaluated using use value (UV), family importance value (FIV) and relative frequency citation (RCF).

Keywords: medicinal plants, ethnobotanical, ethnopharmacological, viral respiratory diseases, Morocco

Procedia PDF Downloads 197
5484 Enquiry Based Approaches to Teaching Grammar and Differentiation in the Senior Japanese Classroom

Authors: Julie Devine

Abstract:

This presentation will look at the approaches to teaching grammar taken over two years with students studying Japanese in the last two years of high school. The main focus is an enquiry based approach to grammar introduction and a three tier system using videos and online support material to allow for differentiation and personalised learning in the classroom. The aim is to create space for motivated students to do some higher order activities using the target pattern to solve problems and create scenarios. Less motivated students have time to complete basic exercises and struggling students have some time with the teacher in smaller groups.

Keywords: differentiation, digital technologies, personalised learning plans, student engagement

Procedia PDF Downloads 171
5483 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain

Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami

Abstract:

An innovative approach for controlling unstable and invertible systems has demonstrated superior performance compared to conventional controllers. It has been successfully applied to a levitation system and drone control. Simulations have yielded satisfactory performances when applied to a satellite antenna controller. This design method, based on sensitivity analysis, has also been extended to handle multivariable unstable and invertible systems that exhibit dominant diagonal characteristics at high frequencies, enabling decentralized control. Furthermore, this control method has been expanded to the realm of adaptive control. In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed user-friendly interactive design methods using the GeoGebra platform.

Keywords: control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design

Procedia PDF Downloads 118
5482 Biological Activity of Hibiscus sabdariffa Extract

Authors: Chanasit Chaocharoenphat

Abstract:

Hibiscus sabdariffa is a herbal plant that is commonly used for home remedies in Thailand. This study aims to determine the antioxidant activity of polyphenols, as oxidative stress plays a vital role in the development of cancer, and H. sabdariffa was used in this study. The total flavonoids content was determined using the aluminium chloride colourimetric method and expressed as quercetin equivalents (QE)/g and the antioxidant capacity of the flavonoids using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The IC50 values of H. sabdariffa extract were 167.14 μg/mL ± 0.843 and 77.59 μg/mL ± 0.798, respectively. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. To summarise, H. sabdariffa extract contains a high concentration of total flavonoids and exhibits potent antioxidant activity. However, additional antioxidant activity assays such as superoxide dismutase (SOD), reactive oxygen species (ROS), and reactive nitrogen species (RNS) scavenging assays and in vitro antioxidant experiments should be carried out to investigate the molecular mechanism of the compound.

Keywords: ABTS assay, antioxidant activity, Gracilaria fisheri, DPPH assays, total flavonoid content

Procedia PDF Downloads 255
5481 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism

Authors: Reyhane Hamed Kamran

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 111
5480 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics

Authors: Narin Salehiyan

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 86
5479 Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters

Authors: N. Nowzari-Dalini, S. Sabbaghi

Abstract:

Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO2 were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert® software. 98% of phenol degradation was achieved after 6h of irradiation.

Keywords: doping, metals, sol-gel, titanium dioxide, wastewater

Procedia PDF Downloads 331
5478 Experimental Analysis of the Origins of the Anisotropy Behavior in the 2017 AA Aluminum Alloy

Authors: May Abdelghani

Abstract:

The present work is devoted to the study of the microstructural anisotropy in mechanical cyclic behavior of the 2017AA aluminum alloy which is widely used in the aerospace industry. The main purpose of the study is to investigate the microstructural origins of this anisotropy already confirmed in our previous work in 2017AA aluminum alloy. To do this, we have used the microstructural analysis resources such as Scanning Electron Microscope (SEM) to see the differences between breaks from different directions of cyclic loading. Another resource of investigation was used in this study is that the EBSD method, which allows us to obtain a mapping of the crystallographic texture of our material. According to the obtained results in the microscopic analysis, we are able to identify the origins of the anisotropic behavior at the macroscopic scale.

Keywords: fatigue damage, cyclic behavior, anisotropy, microstructural analysis

Procedia PDF Downloads 417
5477 The Folk Influences in the Melody of Romanian and Serbian Church Music

Authors: Eudjen Cinc

Abstract:

Common Byzantine origins of church music of Serbs and Romanians are certainly not the only reason for great similarities between the ways of singing of the two nations, especially in the region of Banat. If it was so, the differences between the interpretation of church music in this part of Orthodox religion and the one specific for other parts where Serbs or Romanians live could not be explained. What is it that connects church signing of two nations in this peaceful part of Europe to such an extent that it could be considered a comprehensive corpus, different from other 'Serbian' or 'Romanian' regions? This is the main issue dealt with in the text according to examples and comparative processing of material. The main aim of the paper is representation of the new and interesting, while its value lies in its potential to encourage the reader or a future researcher to investigate and search further.

Keywords: folk influences, melody, melodic models, ethnomusicology

Procedia PDF Downloads 261
5476 Preparation and Characterizations of Natural Material Based Ceramic Membranes

Authors: In-Hyuck Song, Jang-Hoon Ha

Abstract:

Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry.

Keywords: ceramic membrane, diatomite, water treatment, sintering

Procedia PDF Downloads 520
5475 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 42
5474 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety

Authors: Mohamad Saab, Sidi Souvi

Abstract:

In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.

Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods

Procedia PDF Downloads 194
5473 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 334
5472 A Method against Obsolescence of Three-Dimensional Archaeological Collection. Two Cases of Study from Qubbet El-Hawa Necropolis, Aswan, Egypt

Authors: L. Serrano-Lara, J.M Alba-Gómez

Abstract:

Qubbet el–Hawa Project has been documented archaeological artifacts as 3d models by laser scanning technique since 2015. Currently, research has obtained the right methodology to develop a high accuracy photographic texture for each geometrical 3D model. Furthermore, the right methodology to attach the complete digital surrogate into a 3DPDF document has been obtained; it is used as a catalogue worksheet that brings archaeological data and, at the same time, allows us to obtain precise measurements, volume calculations and cross-section mapping of each scanned artifact. This validated archaeological documentation is the first step for dissemination, application as Qubbet el-Hawa Virtual Museum, and, moreover, multi-sensory experience through 3D print archaeological artifacts. Material culture from four funerary complexes constructed in West Aswan has become physical replicas opening the archaeological research process itself and offering creative possibilities on museology or educational projects. This paper shares a method of acquiring texture for scanning´s output product in order to achieve a 3DPDF archaeological cataloguing, and, on the other hand, to allow the colorfully 3D printing of singular archaeological artifacts. The proposed method has undergone two concrete cases, a polychrome wooden ushabti, and, a cartonnage mask belonging to a lady, bought recovered on intact tomb QH34aa. Both 3D model results have been implemented on three main applications, archaeological 3D catalogue, public dissemination activities, and the 3D artifact model in a bachelor education program. Due to those three already mentioned applications, productive interaction among spectator and three-dimensional artifact have been increased; moreover, functionality as archaeological documentation has been consolidated. Finding the right methodology to assign a specific color to each vector on the geometric 3D model, we had been achieved two essential archaeological applications. Firstly, 3DPDF as a display document for an archaeological catalogue, secondly, the possibility to obtain a colored 3d printed object to be displayed in public exhibitions. Obsolescences 3D models have become updated archaeological documentation of QH43aa tomb cultural material. Therefore, Qubbet el-Hawa Project has been actualized the educational potential of its results thanks to a multi-sensory experience that arose from 3d scanned´s archaeological artifacts.

Keywords: 3D printed, 3D scanner, Middle Kingdom, Qubbet el-Hawa necropolis, virtual archaeology

Procedia PDF Downloads 146
5471 Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric

Authors: Archna Mall, Neelam Agrawal, Hari O. Saxena, Bhavana Sharma

Abstract:

Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries.

Keywords: Butea monosperma, cotton, mordants, natural dyes

Procedia PDF Downloads 345
5470 The Policia Internacional e de Defesa do Estado 1933–1969 and Valtiollinen Poliisi 1939–1948 on Screen: Comparing and Contrasting the Images of the Political Police in Portuguese and Finnish Films between the 1930s and the 1960s

Authors: Riikka Elina Kallio

Abstract:

“The walls have ears” phrase is defining the era of dictatorship in Portugal (1926–1974) and political unrest decades in Finland (1917–1948). The phrase is referring to the policing of the political, secret police, PIDE (Policia Internacional e de Defesa do Estado 1933–1969) in Portugal and VALPO (Valtiollinen Poliisi 1939–1948) in Finland. Free speech at any public space and even in private events could be fatal. The members of the PIDE/VALPO or informers/collaborators could be listening. Strict censorship under the Salazar´s regime was controlling media for example newspapers, music, and the film industry. Similarly, the politically affected censorship influenced the media in Finland in those unrest decades. This article examines the similarities and the differences in the images of the political police in Finland and Portugal, by analyzing Finnish and Portuguese films from the nineteen-thirties to nineteensixties. The text addresses two main research questions: what are the common and different features in the representations of the Finnish and Portuguese political police in films between the 1930s and 1960s, and how did the national censorship affect these representations? This study approach is interdisciplinary, and it combines film studies and criminology. Close reading is a practical qualitative method for analyzing films and in this study, close reading emphasizes the features of the police officer. Criminology provides the methodological tools for analysis of the police universal features and European common policies. The characterization of the police in this study is based on Robert Reiner´s 1980s and Timo Korander´s 2010s definitions of the police officer. The research material consisted of the Portuguese films from online film archives and Finnish films from Movie Making Finland -project´s metadata which offered suitable material by data mining the keywords such as poliisi, poliisipäällikkö and konstaapeli (police, police chief, police constable). The findings of this study suggest that even though there are common features of the images of the political police in Finland and Portugal, there are still national and cultural differences in the representations of the political police and policing.

Keywords: censorship, film studies, images, PIDE, political police, VALPO

Procedia PDF Downloads 75
5469 Phenolic Compounds, Antiradical Activity, and Antioxidant Efficacy of Satureja hortensisl - Extracts in Vegetable Oil Protection

Authors: Abolfazl Kamkar

Abstract:

Vegetable oils and fats are recognized as important components of our diet. They provide essential fatty acids, which are precursors of important hormones and control many physiological factors such as blood pressure, cholesterol level, and the reproductive system.Vegetable oils with higher contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFAs) are more susceptible to oxidation.Protective effects of Sature jahortensis(SE) extracts in stabilizing soybean oil at different concentrations (200 and 400 ppm) were tested. Results showed that plant extracts could significantly (P< 0.05) lower the peroxide value and thiobarbituric acid value of oil during storage at 60 oC. The IC50 values for methanol and ethanol extracts were 31.5 ± 0.7 and 37.00 ± 0 µg/ml, respectively. In the β- carotene/linoleic acid system, methanol and ethanol extracts exhibited 87.5 ± 1.41% and 74.0 ±2.25 % inhibition against linoleic acid oxidation. The total phenolic and flavonoid contents of methanol and ethanol extracts were (101.58 ± 0. 26m g/ g) and (96.00 ± 0.027 mg/ g), (44.91 ± 0.14 m g/ g) and (14.30 ± 0.12 mg/ g) expressed in Gallic acid and Quercetin equivalents, respectively.These findings suggest that Satureja extracts may have potential application as natural antioxidants in the edible oil and food industry.

Keywords: satureja hortensis, antioxidant activity, oxidative stability, vegetable oil, extract

Procedia PDF Downloads 379
5468 Implication to Environmental Education of Indigenous Knowledge and the Ecosystem of Upland Farmers in Aklan, Philippines

Authors: Emily Arangote

Abstract:

This paper defined the association between the indigenous knowledge, cultural practices and the ecosystem its implication to the environmental education to the farmers. Farmers recognize the need for sustainability of the ecosystem they inhabit. The cultural practices of farmers on use of indigenous pest control, use of insect-repellant plants, soil management practices that suppress diseases and harmful pests and conserve soil moisture are deemed to be ecologically-friendly. Indigenous plant materials that were more drought- and pest-resistant were grown. Crop rotation was implemented with various crop seeds to increase their disease resistance. Multi-cropping, planting of perennial crops, categorization of soil and planting of appropriate crops, planting of appropriate and leguminous crops, alloting land as watershed, and preserving traditional palay seed varieties were found to be beneficial in preserving the environment. The study also found that indigenous knowledge about crops are still relevant and useful to the current generation. This ensured the sustainability of our environment and incumbent on policy makers and educators to support and preserve for generations yet to come.

Keywords: cultural practices, ecosystem, environmental education, indigenous knowledge

Procedia PDF Downloads 321
5467 Microstructural and Mechanical Characterization of a 16MND5 Steel Manufactured by Innovative WAAM SAW Process

Authors: F. Villaret, I. Jacot, Y. Shen, Z. Kong, T. XU, Y. Wang, D. Lu

Abstract:

Wire Arc Additive Manufacturing (WAAM) allows the rapid production of large, homogeneous parts with complex geometry. However, in the nuclear field, parts can reach dimensions of ten to a hundred tons. In this case, the usual WAAM TIG or CMT processes do not have sufficient deposition rates to consider the manufacture of parts of such dimensions within a reasonable time. The submerged arc welding process (SAW, Submerged Arc Welding) allows much higher deposition rates. Although there are very few references to this process for additive manufacturing in the literature, it has been used for a long time for the welding and coating of nuclear power plant vessels, so this process is well-known and mastered as a welding process. This study proposes to evaluate the SAW process as an additive manufacturing technique by taking as an example a low-alloy steel of type 16MND5. In the first step, a parametric study allowed the evaluation of the effect of the different parameters and the deposition rate on the geometry of the beads and their microstructure. Larger parts were also fabricated and characterized by metallography and mechanical tests (tensile, impact, toughness). The effect of different heat treatments on the microstructure is also studied.

Keywords: WAAM, low alloy steel, submerged arc, caracterization

Procedia PDF Downloads 87
5466 An Alteration of the Boltzmann Superposition Principle to Account for Environmental Degradation in Fiber Reinforced Plastics

Authors: Etienne K. Ngoy

Abstract:

This analysis suggests that the comprehensive degradation caused by any environmental factor on fiber reinforced plastics under mechanical stress can be measured as a change in viscoelastic properties of the material. The change in viscoelastic characteristics is experimentally determined as a time-dependent function expressing the amplification of the stress relaxation. The variation of this experimental function provides a measure of the environmental degradation rate. Where real service environment conditions can be reliably simulated in the laboratory, it is possible to generate master curves that include environmental degradation effect and hence predict the durability of the fiber reinforced plastics under environmental degradation.

Keywords: environmental effects, fiber reinforced plastics durability, prediction, stress effect

Procedia PDF Downloads 195
5465 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors

Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin

Abstract:

In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.

Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration

Procedia PDF Downloads 339
5464 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level

Procedia PDF Downloads 468