Search results for: dairy industries inventory optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5952

Search results for: dairy industries inventory optimization

1572 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions

Authors: Rajai Al-Rousan

Abstract:

The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.

Keywords: flexural, behavior, CFRP, composites, environment, conditions

Procedia PDF Downloads 310
1571 Modeling and Characterization of the SiC Single Crystal Growth Process

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations silicon carbide single crystal growth process in Physical Vapor Transport reactor are addressed. Silicon Carbide is a perspective material for many applications in modern electronics. One of the main challenges for wider applications of SiC is high price of high quality mono crystals. Improvement of silicon carbide manufacturing process has a significant influence on the product price. Better understanding of crystal growth allows for optimization of the process, and it can be achieved by numerical simulations. In this work Virtual Reactor software was used to simulate the process. Predicted geometrical properties of the final product and information about phenomena occurring inside process reactor were obtained. The latter is especially valuable because reactor chamber is inaccessible during the process due to high temperature inside the reactor (over 2000˚C). Obtained data was used for improvement of the process and reactor geometry. Resultant crystal quality was also predicted basing on crystallization front shape evolution and threading dislocation paths. Obtained results were confronted with experimental data and the results are in good agreement.

Keywords: Finite Volume Method, semiconductors, Physical Vapor Transport, silicon carbide

Procedia PDF Downloads 531
1570 The Role of Social Media for the Movement of Modest Fashion in Indonesia

Authors: Siti Dewi Aisyah

Abstract:

Islamic Modest Fashion has become one of the emerging industries. It is said that social media has making a role in its development. From designers, hijabi bloggers and then instagrammers, they are often seen posting their everyday outfits. They want to combine their faith with cutting-edge fashion trend. Muslim consumers has become a potential targeted market due to the increasing of people wearing hijab. Muslim consumers are projected to spend $327 bilion on clothing by 2020. Indonesia, as the biggest Muslim majority country, has targeted to be The World’s Center for Muslim Fashion in the world as its national branding by 2020. This study will examine how social media especially Blog and Instagram can lead the movement of Islamic Modest Fashion in Indonesia, how it also brings consumer culture to hijabi and as the result it triggers Indonesia to brand itself and how all the elements in Indonesia including the designers, bloggers or instagrammers and also Indonesian Agency for Creative Economy together work to make its dream come true. This research will be conducted through interviews with several elements mentioned, and internet, blog, Instagram and Youtube analysis through visual analysis that also examine the semiotic meaning behind the picture that are posted by the people on the social media especially about the Islamic Modest Fashion trend. This research also contains a literature review of a diverse group of works on topics related to the study. This research will be examined through several theoretical frameworks including the study of social media, fashion culture and consumer culture. Fashion and consumer culture are also two main topics because fashion furthermore leads to consumer culture. The possible benefit of this research is to be a reference literature of Islamic Modest Fashion and social media’s role especially in an Indonesian context.

Keywords: blog, instagram, consumer culture, modest fashion, social media, visual analysis

Procedia PDF Downloads 366
1569 Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation

Authors: Rukshika S Hewawasam, Sisira K. Weliwegamage, Sanath Rajapakse, Subramanium Sotheeswaran

Abstract:

Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacterium

Keywords: bacterium, bio-fuel, ethanol tolerance, fermentation

Procedia PDF Downloads 340
1568 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 280
1567 The Feasibility of Glycerol Steam Reforming in an Industrial Sized Fixed Bed Reactor Using Computational Fluid Dynamic (CFD) Simulations

Authors: Mahendra Singh, Narasimhareddy Ravuru

Abstract:

For the past decade, the production of biodiesel has significantly increased along with its by-product, glycerol. Biodiesel-derived glycerol massive entry into the glycerol market has caused its value to plummet. Newer ways to utilize the glycerol by-product must be implemented or the biodiesel industry will face serious economic problems. The biodiesel industry should consider steam reforming glycerol to produce hydrogen gas. Steam reforming is the most efficient way of producing hydrogen and there is a lot of demand for it in the petroleum and chemical industries. This study investigates the feasibility of glycerol steam reforming in an industrial sized fixed bed reactor. In this paper, using computational fluid dynamic (CFD) simulations, the extent of the transport resistances that would occur in an industrial sized reactor can be visualized. An important parameter in reactor design is the size of the catalyst particle. The size of the catalyst cannot be too large where transport resistances are too high, but also not too small where an extraordinary amount of pressure drop occurs. The goal of this paper is to find the best catalyst size under various flow rates that will result in the highest conversion. Computational fluid dynamics simulated the transport resistances and a pseudo-homogenous reactor model was used to evaluate the pressure drop and conversion. CFD simulations showed that glycerol steam reforming has strong internal diffusion resistances resulting in extremely low effectiveness factors. In the pseudo-homogenous reactor model, the highest conversion obtained with a Reynolds number of 100 (29.5 kg/h) was 9.14% using a 1/6 inch catalyst diameter. Due to the low effectiveness factors and high carbon deposition rates, a fluidized bed is recommended as the appropriate reactor to carry out glycerol steam reforming.

Keywords: computational fluid dynamic, fixed bed reactor, glycerol, steam reforming, biodiesel

Procedia PDF Downloads 308
1566 Compilation and Statistical Analysis of an Arabic-English Legal Corpus in Sketch Engine

Authors: C. Brierley, H. El-Farahaty, A. Farhan

Abstract:

The Leeds Parallel Corpus of Arabic-English Constitutions is a parallel corpus for the Arabic legal domain. Analysis of legal language via Corpus Linguistics techniques is an important development. In legal proceedings, a corpus-based approach to disambiguating meaning is set to replace the dictionary as an interpretative tool, and legal scholarship in the States is now attuned to the potential for Text Analytics over vast quantities of text-based legal material, following the business and medical industries. This trend is reflected in Europe: the interdisciplinary research group in Computer Assisted Legal Linguistics mines big data collections of legal and non-legal texts to analyse: legal interpretations; legal discourse; the comprehensibility of legal texts; conflict resolution; and linguistic human rights. This paper focuses on ‘dignity’ as an important aspect of the overarching concept of human rights in current constitutions across the Arab world. We have compiled a parallel, Arabic-English raw text corpus (169,861 Arabic words and 205,893 English words) from reputable websites such as the World Intellectual Property Organisation and CONSTITUTE, and uploaded and queried our corpus in Sketch Engine. Our most challenging task was sentence-level alignment of Arabic-English data. This entailed manual intervention to ensure correspondence on a one-to-many basis since Arabic sentences differ from English in length and punctuation. We have searched for morphological variants of ‘dignity’ (رامة ك, karāma) in the Arabic data and inspected their English translation equivalents. The term occurs most frequently in the Sudanese constitution (10 instances), and not at all in the constitution of Palestine. Its most frequent collocate, determined via the logDice statistic in Sketch Engine, is ‘human’ as in ‘human dignity’.

Keywords: Arabic constitution, corpus-based legal linguistics, human rights, parallel Arabic-English legal corpora

Procedia PDF Downloads 183
1565 Short-Term Operation Planning for Energy Management of Exhibition Hall

Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.

Keywords: exhibition hall, energy management, predictive model, simulation-based optimization

Procedia PDF Downloads 339
1564 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea

Authors: Pavel Shcherban, Vlad Golovanov

Abstract:

Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.

Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields

Procedia PDF Downloads 166
1563 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation

Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu

Abstract:

Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.

Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction

Procedia PDF Downloads 100
1562 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 169
1561 Review on Future Economic Potential Stems from Global Electronic Waste Generation and Sustainable Recycling Practices.

Authors: Shamim Ahsan

Abstract:

Abstract Global digital advances associated with consumer’s strong inclination for the state of art digital technologies is causing overwhelming social and environmental challenges for global community. During recent years not only economic advances of electronic industries has taken place at steadfast rate, also the generation of e-waste outshined the growth of any other types of wastes. The estimated global e-waste volume is expected to reach 65.4 million tons annually by 2017. Formal recycling practices in developed countries are stemming economic liability, opening paths for illegal trafficking to developing countries. Informal crude management of large volume of e-waste is transforming into an emergent environmental and health challenge in. Contrariwise, in several studies formal and informal recycling of e-waste has also exhibited potentials for economic returns both in developed and developing countries. Some research on China illustrated that from large volume of e-wastes generation there are recycling potential in evolving from ∼16 (10−22) billion US$ in 2010, to an anticipated ∼73.4 (44.5−103.4) billion US$ by 2030. While in another study, researcher found from an economic analysis of 14 common categories of waste electric and electronic equipment (WEEE) the overall worth is calculated as €2.15 billion to European markets, with a potential rise to €3.67 billion as volumes increase. These economic returns and environmental protection approaches are feasible only when sustainable policy options are embraced with stricter regulatory mechanism. This study will critically review current researches to stipulate how global e-waste generation and sustainable e-waste recycling practices demonstrate future economic development potential in terms of both quantity and processing capacity, also triggering complex some environmental challenges.

Keywords: E-Waste, , Generation, , Economic Potential, Recycling

Procedia PDF Downloads 305
1560 Influence of Esports Marketing Strategies on Consumer Behavior: A Case Study of Valorant

Authors: Alex Arghya Adhikari

Abstract:

Gaming and esports industry is one of the biggest and fastest growing industries in the world. Globally people have started investing more in this industry since now people believe just like traditional sports, esports can also sustain their future. Last year in the month of December, the Indian government also recognised esports as an official sport but there has not been any positive initiative by the government in encouraging people to enter esports. This is a problem which cannot be overlooked since we are already in the digital age and gaming and esports is the future industry. There is a need for multiple effective marketing strategies by the game publishers to stabilize the esports in the country. Purpose: To observe the marketing-communication strategies that are implemented by Riot Games’ Valorant and how those strategies influence the consumer behavior and the esports of the game. Methodology: Activities over the internet related to the game like livestreams, discord chats, Instagram posts and YouTube videos over a period of two months have been collected through the Digital Ethnography. To support and validate the observations of the data collected, in-depth online interviews have been conducted which includes streamers, journalists, LAN experienced players and casual players. Findings: The game publisher through its Dynamic Competitive Gaming Experience and Community-Engaged Ecosystem succeeded in making the game a Recreational activity and a Community which goes beyond the In-game experiences which helped in understanding the impact of audience engagement on esports and the loopholes and setbacks of Indian esports. Conclusion: The study provides a comprehensive analysis of how Valorant's successful marketing and community engagement strategies have contributed to its global popularity and competitive esports environment. It highlights the various strategies employed by Riot Games to keep players engaged and connected, and also the challenges in the Indian esports landscape which differentiates it from the global competition.

Keywords: esports, valorant, marketing, consumer behaviour

Procedia PDF Downloads 69
1559 Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon

Authors: Musa Najimu, Isam Aljundi

Abstract:

In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation.

Keywords: carbide derived carbon, mixed matrix membrane, CO₂ separation, polysulfone

Procedia PDF Downloads 207
1558 Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem

Authors: Mohammad Pourmohammadi Fallah, Maziar Salahi

Abstract:

In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics.

Keywords: capacitated lot-sizing, warehouse layout, mixed-integer linear programming, heuristics algorithm

Procedia PDF Downloads 196
1557 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent

Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali

Abstract:

Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.

Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide

Procedia PDF Downloads 168
1556 Left to Right-Right Most Parsing Algorithm with Lookahead

Authors: Jamil Ahmed

Abstract:

Left to Right-Right Most (LR) parsing algorithm is a widely used algorithm of syntax analysis. It is contingent on a parsing table, whereas the parsing tables are extracted from the grammar. The parsing table specifies the actions to be taken during parsing. It requires that the parsing table should have no action conflicts for the same input symbol. This requirement imposes a condition on the class of grammars over which the LR algorithms work. However, there are grammars for which the parsing tables hold action conflicts. In such cases, the algorithm needs a capability of scanning (looking-ahead) next input symbols ahead of the current input symbol. In this paper, a ‘Left to Right’-‘Right Most’ parsing algorithm with lookahead capability is introduced. The 'look-ahead' capability in the LR parsing algorithm is the major contribution of this paper. The practicality of the proposed algorithm is substantiated by the parser implementation of the Context Free Grammar (CFG) of an already proposed programming language 'State Controlled Object Oriented Programming' (SCOOP). SCOOP’s Context Free Grammar has 125 productions and 192 item sets. This algorithm parses SCOOP while the grammar requires to ‘look ahead’ the input symbols due to action conflicts in its parsing table. Proposed LR parsing algorithm with lookahead capability can be viewed as an optimization of ‘Simple Left to Right’-‘Right Most’ (SLR) parsing algorithm.

Keywords: left to right-right most parsing, syntax analysis, bottom-up parsing algorithm

Procedia PDF Downloads 126
1555 Gadjah Mada University Yogyakarta Indonesia as a Potential Destination for Education Tourism

Authors: Henry Prihanto Nugroho

Abstract:

This paper suggests education tourism as an option into developing more sustainable mass tourism. Identifying the potential of education tourism and developing a sustainable packages will have an impact on social economic development in the area. Indonesia especially Yogyakarta can increase their tourism earnings by tapping into this growing market phenomenon. Educational tourism, a growing part in the world tourism market, has attracted great attention because of its direct impact on the community and as an alternative strategy for poverty alleviation. Tourism is considered as one of the main industries and sectors highly contributing to economic development in Indonesia especially in Yogyakarta, this region can be an ideal case for studying the issue of educational tourism in Universitas Gadjah Mada. This paper tries to introduce the educational tourism as an important alternative source of the economy accelerator in the context of Yogyakarta Indonesia. This paper also aims to discuss the education tourism potential at the University of Gadjah Mada, Yogyakarta Indonesia then to create and established an Education Tourism package at Gadjah Mada University. Education Tourism is a means to empower academics, local community, local businesses, and to improve the economic welfare. Methods: Focus group discussions, direct observation, survey and best practice method. Conclusion: There is a positive relationship between attitude, environmental impact, economic impact, and socio-cultural impacts and practice in the field when the potential is seized. The findings incorporate insights into the socio-cultural and economic potential of education tourism and practices related to community development at the University of Gadjah Mada, Yogyakarta Indonesia by creating an Education Tourism Packages that will suit the needs of the tourist. Educational tourism can create sustainable development for local communities, academic society, universities, and stakeholders.

Keywords: education tourism, Gadjah Mada, sustainable, tourism

Procedia PDF Downloads 396
1554 Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine

Authors: Bahamin Bazooyar, Xinyan Wang, Hua Zhao

Abstract:

As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars.

Keywords: engine, hydrogen, diesel, two-stroke, opposed-piston, decarbonisation

Procedia PDF Downloads 7
1553 Maori Primary Industries Responses to Climate Change and Freshwater Policy Reforms in Aotearoa New Zealand

Authors: Tanira Kingi, Oscar Montes Oca, Reina Tamepo

Abstract:

The introduction of the Climate Change Response (Zero Carbon) Amendment Act (2019) and the National Policy Statement for Freshwater Management (2020) both contain underpinning statements that refer to the principles of the Treaty of Waitangi and cultural concepts of stewardship and environmental protection. Maori interests in New Zealand’s agricultural, forestry, fishing and horticultural sectors are significant. The organizations that manage these investments do so on behalf of extended family groups that hold inherited interests based on genealogical connections (whakapapa) to particular tribal units (iwi and hapu) and areas of land (whenua) and freshwater bodies (wai). This paper draws on the findings of current research programmes funded by the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) and the Our Land & Water National Science Challenge (OLW NSC) to understand the impact of cultural knowledge and imperatives on agricultural GHG and freshwater mitigation and land-use change decisions. In particular, the research outlines mitigation and land-use change scenario decision support frameworks that model changes in emissions profiles (reductions in biogenic methane, nitrous oxide and nutrient emissions to freshwater) of agricultural and forestry production systems along with impacts on key economic indicators and socio-cultural factors. The paper also assesses the effectiveness of newly introduced partnership arrangements between Maori groups/organizations and key government agencies on policy co-design and implementation, and in particular, decisions to adopt mitigation practices and to diversify land use.

Keywords: co-design and implementation of environmental policy, indigenous environmental knowledge, Māori land tenure and agribusiness, mitigation and land use change decision support frameworks

Procedia PDF Downloads 215
1552 Integrated Wastewater Reuse Project of the Faculty of Sciences AinChock, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui

Abstract:

In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock "FSAC" has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and use it for irrigation, watering, and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at the laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the Faculty. In this article, we will outline the steps of dimensioning, construction, and monitoring of the mini-station in our Faculty.

Keywords: wastewater, purification, optimization, vertical filter, MBBR process, sizing, decentralized pilot, reuse, irrigation, sustainable development

Procedia PDF Downloads 114
1551 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: Mustafa Tufekci, Caner Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.

Keywords: finite element analysis, sliding door mechanism, element type, structural analysis

Procedia PDF Downloads 329
1550 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.

Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability

Procedia PDF Downloads 330
1549 The Role of Metaphor in Communication

Authors: Fleura Shkëmbi, Valbona Treska

Abstract:

In elementary school, we discover that a metaphor is a decorative linguistic device just for poets. But now that we know, it's also a crucial tactic that individuals employ to understand the universe, from fundamental ideas like time and causation to the most pressing societal challenges today. Metaphor is the use of language to refer to something other than what it was originally intended for or what it "literally" means in order to suggest a similarity or establish a connection between the two. People do not identify metaphors as relevant in their decisions, according to a study on metaphor and its effect on decision-making; instead, they refer to more "substantive" (typically numerical) facts as the basis for their problem-solving decision. Every day, metaphors saturate our lives via language, cognition, and action. They argue that our conceptions shape our views and interactions with others and that concepts define our reality. Metaphor is thus a highly helpful tool for both describing our experiences to others and forming notions for ourselves. In therapeutic contexts, their shared goal appears to be twofold. The cognitivist approach to metaphor regards it as one of the fundamental foundations of human communication. The benefits and disadvantages of utilizing the metaphor differ depending on the target domain that the metaphor portrays. The challenge of creating messages and surroundings that affect customers' notions of abstract ideas in a variety of industries, including health, hospitality, romance, and money, has been studied for decades in marketing and consumer psychology. The aim of this study is to examine, through a systematic literature review, the role of the metaphor in communication and in advertising. This study offers a selected analysis of this literature, concentrating on research on customer attitudes and product appraisal. The analysis of the data identifies potential research questions. With theoretical and applied implications for marketing, design, and persuasion, this study sheds light on how, when, and for whom metaphoric communications are powerful.

Keywords: metaphor, communication, advertising, cognition, action

Procedia PDF Downloads 99
1548 Optimal Pressure Control and Burst Detection for Sustainable Water Management

Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana

Abstract:

Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.

Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring

Procedia PDF Downloads 87
1547 The Effects of Green Logistics Management Practices on Sustainability Performance in Nigeria

Authors: Ozoemelam Ikechukwu Lazarus, Nizamuddin B. Zainuddi, Abdul Kafi

Abstract:

Numerous studies have been carried out on Green Logistics Management Practices (GLMPs) across the globe. The study on the practices and performance of green chain practices in Africa in particular has not gained enough scholarly attention. Again, the majority of supply chain sustainability research being conducted focus on environmental sustainability. Logistics has been a major cause of supply chain resource waste and environmental damage. Many sectors of the economy that engage in logistical operations significantly rely on vehicles, which emit pollutants into the environment. Due to urbanization and industrialization, the logistical operations of manufacturing companies represent a serious hazard to the society and human life, making the sector one of the fastest expanding in the world today. Logistics companies are faced with numerous difficulties when attempting to implement logistics practices along their supply chains. In Nigeria, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences. However, implementing this is impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. This study integrates most of the green logistics management practices (GLMPs) into the Nigerian firms to improve generalizability, and credibility. It examines the effect of Green Logistics Management Practices on environmental performance, social performance, market performance, and financial performance in the logistics industries. It seeks to identify the critical success factors in order to develop a model that incorporates different factors from the perspectives of the technology, organization, human and environment to inform the adoption and use of technologies for logistics supply chain social sustainability in Nigeria. It uses exploratory research approach to collect and analyse the data.

Keywords: logistics, management, sustainability, environment, operations

Procedia PDF Downloads 81
1546 Reduction of Aerodynamic Drag Using Vortex Generators

Authors: Siddharth Ojha, Varun Dua

Abstract:

Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.

Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization

Procedia PDF Downloads 223
1545 Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites

Authors: Ali Mohammed Yimer, Ayalew H. Assen, Youssef Belmabkhout

Abstract:

This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits.

Keywords: calcium-based metal-organic frameworks, low-silica zeolites, porous materials, sustainable synthesis, valorization

Procedia PDF Downloads 38
1544 Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties

Authors: Mouad Ouafi, Lahoucine Atourki, Larbi Laanab, Erika Vega, Miguel Mollar, Bernabe Marib, Boujemaa Jaber

Abstract:

Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C.

Keywords: hot air flow, crystallinity, surface coverage, perovskite morphology

Procedia PDF Downloads 163
1543 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 115