Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 85774
Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites

Authors: Ali Mohammed Yimer, Ayalew H. Assen, Youssef Belmabkhout

Abstract:

This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits.

Keywords: calcium-based metal-organic frameworks, low-silica zeolites, porous materials, sustainable synthesis, valorization

Procedia PDF Downloads 11