Search results for: urban behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9720

Search results for: urban behavior

5370 Development and Effects of Transtheoretical Model Exercise Program for Elderly Women with Chronic Back Pain

Authors: Hyun-Ju Oh, Soon-Rim Suh, Mihan Kim

Abstract:

The steady and rapid increase of the older population is a global phenomenon. Chronic diseases and disabilities are increased due to aging. In general, exercise has been known to be most effective in preventing and managing chronic back pain. However, it is hard for the older women to initiate and maintain the exercise. Transtheoretical model (TTM) is one of the theories explain behavioral changes such as exercise. The application of the program considering the stage of behavior change is effective for the elderly woman to start and maintain the exercise. The purpose of this study was to develop TTM based exercise program and to examine its effect for elderly women with chronic back-pain. For the program evaluation, the non-equivalent control pre-posttest design was applied. The independent variable of this study is exercise intervention program. The contents of the program were constructed considering the characteristics of the elderly women with chronic low back pain, focusing on the process of change, the stage of change by the previous studies. The developed exercise program was applied to the elderly women with chronic low back pain in the planning stage and the preparation stage. The subjects were 50 older women over 65 years of age with chronic back-pain who did not practice regular exercise. The experimental group (n=25) received the 8weeks TTM based exercise program. The control group received the book which named low back pain management. Data were collected at three times: before the exercise intervention, right after the intervention, and 4weeks after the intervention. The dependent variables were the processes of change, decisional balance, exercise self-efficacy, back-pain, depression and muscle strength. The results of this study were as follows. Processes of change (<.001), pros of decisional balance (<.001), exercise self-efficacy (<.001), back pain (<.001), depression (<.001), muscle strength (<.001) were higher in the experimental group than in the control group right after the program and 4weeks after the programs. The results of this study show that applying the TTM based exercise program increases the use of the change process, increases the exercise self-efficacy, increases the stage of changing the exercise behavior and strengthens the muscular strength by lowering the degree of pain and depression Respectively. The significance of the study was to confirm the effect of continuous exercise by maintaining regular exercise habits by applying exercise program of the transtheoretical model to the chronic low back pain elderly with exercise intention.

Keywords: chronic back pain, elderly, exercise, women

Procedia PDF Downloads 242
5369 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks

Authors: Farnia Nayar Parshi, Mohammad Shariful Islam

Abstract:

Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.

Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength

Procedia PDF Downloads 103
5368 Effects of an Inclusive Educational Model for Students with High Intellectual Capacity and Special Educational Needs: A Case Study in Talentos UdeC, Chile

Authors: Gracia V. Navarro, María C. González, María G. González, María V. González

Abstract:

In Chile, since 2002, there are extracurricular enrichment programs complementary to regular education for students with high intellectual capacity. This paper describes a model for the educational inclusion of students, with special educational needs associated with high intellectual capacity, developed at the University of Concepción and its effects on its students, academics and undergraduate students that collaborate with the program. The Talentos UdeC Program was created in 2003 and is intended for 240 children and youth from 11 to 18 years old, from 15 communes of the Biobio region. The case Talentos UdeC is analyzed from a mixed qualitative study in which those participating in the educational model are considered. The sample was composed of 30 students, 30 academics, and 30 undergraduate students. In the case of students, pre and post program measurements were made to analyze their socio-emotional adaptation, academic motivation and socially responsible behavior. The mentioned variables are measured through questionnaires designed and validated by the University of Concepcion that included: The Socially Responsible Behavior Questionnaire (CCSR); the Academic Motivation Questionnaire (CMA) and the Socio-Emotional Adaptation Questionnaire (CASE). The information obtained by these questionnaires was analyzed through a quantitative analysis. Academics and undergraduate students were interviewed to learn their perception of the effects of the program on themselves, on students and on society. The information obtained is analyzed using qualitative analysis based on the identification of common themes and descriptors for the construction of conceptual categories of answers. Quantitative results show differences in the first three variables analyzed in the students, after their participation for two years in Talentos UdeC. Qualitative results demonstrate perception of effects in the vision of world, project of life and in other areas of the students’ development; perception of effects in a personal, professional and organizational plane by academics and a perception of effects in their personal-social development and training in generic competencies by undergraduates students.

Keywords: educational model, high intellectual capacity, inclusion, special educational needs

Procedia PDF Downloads 195
5367 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming

Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale

Abstract:

This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.

Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling

Procedia PDF Downloads 473
5366 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route

Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu

Abstract:

This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).

Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics

Procedia PDF Downloads 447
5365 Compromising Quality of Life in Low-Income Settlements: The Case of Ashrayan Prakalpa, Khulna

Authors: Salma Akter, Md. Kamal Uddin

Abstract:

Quality of life is a vast and comprehensive concept refers overall well-being of society. Current research and efforts of policymakers and planners are concerned to increase the urban quality of life through the sustainable development of city and country. While such efforts effectively improve the quality of life of urban dwellers through improved social, economic and housing infrastructures, very little has been paid to improve low-income settlement users more specifically government provided shelter projects. The top-down shelter policies and its objective indicators (physical design elements and physical environmental elements) indicators on low-income groups merely can ensure grassroots needs, aspiration and well-being refer as subjective qualities obliged to compromise with the quality of life. This research, therefore, aims to measure the quality of life of such government-provided low-income settlements. To do so, a conceptual framework has been developed to measure quality of life with arguing that quality of life depends on both objective and subjective indicators and needs to measure across three scales of living environment refers to macro (community), meso (neighborhood or shelter/built environment), and micro (family). The top-down shelter project, Dakshin Chandani Mahal Ashrayan Prakalpa is a resettlement/housing project of Government of Bangladesh for providing shelters and human resources development activities like education, microcredit, and training programme to landless, homeless and rootless people has been taken as case study. The study area is located at Dighalia Upazila, Khulna Bangladesh. In terms of methodology, this research is primarily exploratory and adopts a case study method and deductive approach for evaluating the quality of life. Data have been obtained from relevant literature review, key informant interview, focus group discussion, necessary drawings, photographs and participant observation across dwelling, neighborhood, and community level. Findings have revealed that Shelter users mostly compromise the quality of life at community level due to insufficient physical design elements and facilities while neighborhood and dwelling level have been manifested similar result like former ones. Thus, the outcome of this study can be beneficial for a global-level understating of the compromising the ‘quality of life’ under top-down shelter policy. Locally, for instance, in the context of Bangladesh, it can help policymakers and concerned authorities to formulate the shelter policies and take initiatives to improve the well-being of marginalized.

Keywords: Ashrayan Prakalpa, compromise, displaced people, quality of life

Procedia PDF Downloads 200
5364 The Grain Size Distribution of Sandy Soils in Libya

Authors: Massoud Farag Abouklaish

Abstract:

The main aim of the present study is to investigate and classify the particle size distribution of sandy soils in Libya. More than fifty soil samples collected from many regions in North, West and South of Libya. Laboratory sieve analysis tests performed on disturbed soil samples to determine grain size distribution. As well as to provide an indicator of general engineering behavior and good understanding, test results are presented and analysed. In addition, conclusions, recommendations are made.

Keywords: Libya, grain size, sandy soils, sieve analysis tests

Procedia PDF Downloads 592
5363 Development of Electrochemical Biosensor Based on Dendrimer-Magnetic Nanoparticles for Detection of Alpha-Fetoprotein

Authors: Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Liver cancer is one of the most common malignant tumors with poor prognosis. This is because liver cancer does not exhibit any symptoms in early stage of disease. Increased serum level of AFP is clinically considered as a diagnostic marker for liver malignancy. The present diagnostic modalities include various types of immunoassays, radiological studies, and biopsy. However, these tests undergo slow response times, require significant sample volumes, achieve limited sensitivity and ultimately become expensive and burdensome to patients. Considering all these aspects, electrochemical biosensors based on dendrimer-magnetic nanoparticles (MNPs) was designed. Dendrimers are novel nano-sized, three-dimensional molecules with monodispersed structures. Poly-amidoamine (PAMAM) dendrimers with eight –NH₂ groups using ethylenediamine as a core molecule were synthesized using Michael addition reaction. Dendrimers provide added the advantage of not only stabilizing Fe₃O₄ NPs but also displays capability of performing multiple electron redox events and binding multiple biological ligands to its dendritic end-surface. Fe₃O₄ NPs due to its superparamagnetic behavior can be exploited for magneto-separation process. Fe₃O₄ NPs were stabilized with PAMAM dendrimer by in situ co-precipitation method. The surface coating was examined by FT-IR, XRD, VSM, and TGA analysis. Electrochemical behavior and kinetic studies were evaluated using CV which revealed that the dendrimer-Fe₃O₄ NPs can be looked upon as electrochemically active materials. Electrochemical immunosensor was designed by immobilizing anti-AFP onto dendrimer-MNPs by gluteraldehyde conjugation reaction. The bioconjugates were then incubated with AFP antigen. The immunosensor was characterized electrochemically indicating successful immuno-binding events. The binding events were also further studied using magnetic particle imaging (MPI) which is a novel imaging modality in which Fe₃O₄ NPs are used as tracer molecules with positive contrast. Multicolor MPI was able to clearly localize AFP antigen and antibody and its binding successfully. Results demonstrate immense potential in terms of biosensing and enabling MPI of AFP in clinical diagnosis.

Keywords: alpha-fetoprotein, dendrimers, electrochemical biosensors, magnetic nanoparticles

Procedia PDF Downloads 124
5362 The Impact of Social Customer Relationship Management on Brand Loyalty and Reducing Co-Destruction of Value by Customers

Authors: Sanaz Farhangi, Habib Alipour

Abstract:

The main objective of this paper is to explore how social media as a critical platform would increase the interactions between the tourism sector and stakeholders. Nowadays, human interactions through social media in many areas, especially in tourism, provide various experiences and information that users share and discuss. Organizations and firms can gain customer loyalty through social media platforms, albeit consumers' negative image of the product or services. Such a negative image can be reduced through constant communication between produces and consumers, especially with the availability of the new technology. Therefore, effective management of customer relationships in social media creates an extraordinary opportunity for organizations to enhance value and brand loyalty. In this study, we seek to develop a conceptual model for addressing factors such as social media, SCRM, and customer engagement affecting brand loyalty and diminish co-destruction. To support this model, we scanned the relevant literature using a comprehensive category of ideas in the context of marketing and customer relationship management. This will allow exploring whether there is any relationship between social media, customer engagement, social customer relationship management (SCRM), co-destruction, and brand loyalty. SCRM has been explored as a moderating factor in the relationship between customer engagement and social media to secure brand loyalty and diminish co-destruction of the company’s value. Although numerous studies have been conducted on the impact of social media on customers and marketing behavior, there are limited studies for investigating the relationship between SCRM, brand loyalty, and negative e-WOM, which results in the reduction of the co-destruction of value by customers. This study is an important contribution to the tourism and hospitality industry in orienting customer behavior in social media using SCRM. This study revealed that through social media platforms, management can generate discussion and engagement about the product and services, which facilitates customers feeling in an appositive way towards the firm and its product. Study has also revealed that customers’ complaints through social media have a multi-purpose effect; it can degrade the value of the product, but at the same time, it will motivate the firm to overcome its weaknesses and correct its shortcomings. This study has also implications for the managers and practitioners, especially in the tourism and hospitality sector. Future research direction and limitations of the research were also discussed.

Keywords: brand loyalty, co-destruction, customer engagement, SCRM, tourism and hospitality

Procedia PDF Downloads 98
5361 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: repairable models, imperfect, availability, exponential distribution

Procedia PDF Downloads 269
5360 Dependence of Photocurrent on UV Wavelength in ZnO/Pt Bottom-Contact Schottky Diode

Authors: Byoungho Lee, Changmin Kim, Youngmin Lee, Sejoon Lee, Deuk Young Kim

Abstract:

We fabricated the bottom-contacted ZnO/Pt Schottky diode and investigated the dependence of its photocurrent on the wavelength of illuminated ultraviolet (UV) light source. The bottom-contacted Schottky diode was devised by growing (000l) ZnO on (111) Pt, and the fabricated device showed a strong dependence on the UV wavelength for its photo-response characteristics. When longer-wavelength-UV (e.g., UV-A) was illuminated on the device, the photo-current was increased by a factor of 200, compared to that under illumination of shorter-wavelength-UV (e.g., UV-C). The behavior is attributed to the wavelength-dependent UV penetration depth for ZnO.

Keywords: ZnO, UV, Schottky diode, photocurrent

Procedia PDF Downloads 238
5359 Analysis of Complex Business Negotiations: Contributions from Agency-Theory

Authors: Jan Van Uden

Abstract:

The paper reviews classical agency-theory and its contributions to the analysis of complex business negotiations and gives an approach for the modification of the basic agency-model in order to examine the negotiation specific dimensions of agency-problems. By illustrating fundamental potentials for the modification of agency-theory in context of business negotiations the paper highlights recent empirical research that investigates agent-based negotiations and inter-team constellations. A general theoretical analysis of complex negotiation would be based on a two-level approach. First, the modification of the basic agency-model in order to illustrate the organizational context of business negotiations (i.e., multi-agent issues, common-agencies, multi-period models and the concept of bounded rationality). Second, the application of the modified agency-model on complex business negotiations to identify agency-problems and relating areas of risk in the negotiation process. The paper is placed on the first level of analysis – the modification. The method builds on the one hand on insights from behavior decision research (BRD) and on the other hand on findings from agency-theory as normative directives to the modification of the basic model. Through neoclassical assumptions concerning the fundamental aspects of agency-relationships in business negotiations (i.e., asymmetric information, self-interest, risk preferences and conflict of interests), agency-theory helps to draw solutions on stated worst-case-scenarios taken from the daily negotiation routine. As agency-theory is the only universal approach able to identify trade-offs between certain aspects of economic cooperation, insights obtained provide a deeper understanding of the forces that shape business negotiation complexity. The need for a modification of the basic model is illustrated by highlighting selected issues of business negotiations from agency-theory perspective: Negotiation Teams require a multi-agent approach under the condition that often decision-makers as superior-agents are part of the team. The diversity of competences and decision-making authority is a phenomenon that overrides the assumptions of classical agency-theory and varies greatly in context of certain forms of business negotiations. Further, the basic model is bound to dyadic relationships preceded by the delegation of decision-making authority and builds on a contractual created (vertical) hierarchy. As a result, horizontal dynamics within the negotiation team playing an important role for negotiation success are therefore not considered in the investigation of agency-problems. Also, the trade-off between short-term relationships within the negotiation sphere and the long-term relationships of the corporate sphere calls for a multi-period perspective taking into account the sphere-specific governance-mechanisms already established (i.e., reward and monitoring systems). Within the analysis, the implementation of bounded rationality is closely related to findings from BRD to assess the impact of negotiation behavior on underlying principal-agent-relationships. As empirical findings show, the disclosure and reservation of information to the agent affect his negotiation behavior as well as final negotiation outcomes. Last, in context of business negotiations, asymmetric information is often intended by decision-makers acting as superior-agents or principals which calls for a bilateral risk-approach to agency-relations.

Keywords: business negotiations, agency-theory, negotiation analysis, interteam negotiations

Procedia PDF Downloads 123
5358 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System

Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua

Abstract:

Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.

Keywords: biofiltration, green wall, greywater, sustainability

Procedia PDF Downloads 198
5357 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 60
5356 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials

Authors: H. Yanar, G. Purcek, H. H. Ayar

Abstract:

The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.

Keywords: brake pad composite, friction and wear, rubber, friction materials

Procedia PDF Downloads 123
5355 Quantum Entanglement and Thermalization in Superconducting Two-Qubit Systems

Authors: E. Karami, M. Bohloul, P. Najmadi

Abstract:

The superconducting system is a suitable system for quantum computers. Quantum entanglement is a fundamental phenomenon that is key to the power of quantum computers. Quantum entanglement has been studied in different superconducting systems. In this paper, we are investigating a superconducting two-qubit system as a macroscopic system. These systems include two coupled Quantronium circuits. We calculate quantum entanglement and thermalization for system evolution and compare them. We observe, thermalization and entanglement have different behavior, and equilibrium thermal state has maximum entanglement.

Keywords: macroscopic system, quantum entanglement, thermalization, superconducting system

Procedia PDF Downloads 134
5354 The Impact of E-Markiting on Consumer Satisfaction

Authors: Malki Fatima Zahra Nadia, Kellal Chaimaa, Brahimi Houria

Abstract:

The world has witnessed a great revolution in to field of technology and communication, especially after the opening of markets (globalization) . Which has led to a change from traditional marketing, which depends on direct selling and buying to electronic marketing, consequently different corporation have adopted this concept so as to gain time , efforts and money for the sake of the customer’s satisfaction. It is the main reason of the study, which is to know the impact of electronic marketing on the consumer’s satisfaction in the fields of communication through practical studies of Ooredoo customer’s where the descriptive analytical method has been used with statistics to analyze the results of the survey. It concluded that e-marketing effectively contributes to customer satisfaction.

Keywords: e-marketing, consumer, consumer behavior, satisfaction

Procedia PDF Downloads 53
5353 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 156
5352 Climate Change Effect on the Dynamic Modulus Property of Asphalt Concrete in Southern England Using UKCP09

Authors: David Idiata

Abstract:

This paper is directed at using the UKCP09 climate change projection tool to predict the effect of climate change on the dynamic modulus of asphalt concrete is Southern England knowing that there is a pressing challenge directly facing infrastructure in the urban cities in the world today due to climate change. Climate change causes change in the environment which in turn impacts on the long-term structural performance of structures. From the projection values obtained, it was discovered that as the temperature increases, the dynamic modulus reduces and this effect was more on the South West which have temperature range of 36.8 oC to 48.3 oC and dynamic modulus range of 2,212 MPa to 1256 MPa.

Keywords: dynamic modulus, asphalt concrete, UKCP09, Southern England

Procedia PDF Downloads 345
5351 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 53
5350 Control of Photovoltaic System Interfacing Grid

Authors: Zerzouri Nora

Abstract:

In this paper, author presented the generalities of a photovoltaic system study and simulation. Author inserted the DC-DC converter to raise the voltage level and improve the operation of the PV panel by continuing the operating point at maximum power by using the Perturb and Observe technique (P&O). The connection to the network is made by inserting a three-phase voltage inverter allowing synchronization with the network the inverter is controlled by a PWM control. The simulation results allow the author to visualize the operation of the different components of the system, as well as the behavior of the system during the variation of meteorological values.

Keywords: photovoltaic generator PV, boost converter, P&O MPPT, PWM inverter, three phase grid

Procedia PDF Downloads 98
5349 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 102
5348 Explosion Mechanics of Aluminum Plates Subjected to the Combined Effect of Blast Wave and Fragment Impact Loading: A Multicase Computational Modeling Study

Authors: Atoui Oussama, Maazoun Azer, Belkassem Bachir, Pyl Lincy, Lecompte David

Abstract:

For many decades, researchers have been focused on understanding the dynamic behavior of different structures and materials subjected to fragment impact or blast loads separately. The explosion mechanics, as well as the impact physics studies dealing with the numerical modeling of the response of protective structures under the synergistic effect of a blast wave and the impact of fragments, are quite limited in the literature. This article numerically evaluates the nonlinear dynamic behavior and damage mechanisms of Aluminum plates EN AW-1050A- H24 under different combined loading scenarios varied by the sequence of the applied loads using the commercial software LS-DYNA. For one hand, with respect to the terminal ballistic field investigations, a Lagrangian (LAG) formulation is used to evaluate the different failure modes of the target material in case of a fragment impact. On the other hand, with respect to the blast field analysis, an Arbitrary Lagrangian-Eulerian (ALE) formulation is considered to study the fluid-structure interaction (FSI) of the shock wave and the plate in case of a blast loading. Four different loading scenarios are considered: (1) only blast loading, (2) only fragment impact, (3) blast loading followed by a fragment impact and (4) a fragment impact followed by blast loading. From the numerical results, it was observed that when the impact load is applied to the plate prior to the blast load, it suffers more severe damage due to the hole enlargement phenomenon and the effects of crack propagation on the circumference of the damaged zone. Moreover, it was found that the hole from the fragment impact loading was enlarged to about three times in diameter as compared to the diameter of the projectile. The validation of the proposed computational model is based in part on previous experimental data obtained by the authors and in the other part on experimental data obtained from the literature. A good correspondence between the numerical and experimental results is found.

Keywords: computational analysis, combined loading, explosion mechanics, hole enlargement phenomenon, impact physics, synergistic effect, terminal ballistic

Procedia PDF Downloads 160
5347 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 103
5346 PSS and SVC Controller Design by BFA to Enhance the Power System Stability

Authors: Saeid Jalilzadeh

Abstract:

Designing of PSS and SVC controller based on Bacterial Foraging Algorithm (BFA) to improve the stability of power system is proposed in this paper. Same controllers for PSS and SVC has been considered and Single machine infinite bus (SMIB) system with SVC located at the terminal of generator is used to evaluate the proposed controllers. BFA is used to optimize the coefficients of the controllers. Finally simulation for a special disturbance as an input power of generator with the proposed controllers in order to investigate the dynamic behavior of generator is done. The simulation results demonstrate that the system composed with optimized controllers has an outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, SVC, SMIB, optimize controller

Procedia PDF Downloads 436
5345 Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System

Authors: P. S. D. Perera, S. U. Adikary

Abstract:

The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C.

Keywords: kinetics, gelation, sol-gel system, chitosan/ nHA/ Na ₂CO₃ composite

Procedia PDF Downloads 150
5344 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines

Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior

Abstract:

Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.

Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro

Procedia PDF Downloads 250
5343 Oral Hygiene Behaviors among Pregnant Women with Diabetes Who Attend Primary Health Care Centers at Baghdad City

Authors: Zena F. Mushtaq, Iqbal M. Abbas

Abstract:

Background: Diabetes mellitus during pregnancy is one of the major medical and social problems with increasing prevalence in last decades and may lead to more vulnerable to dental problems and increased risk for periodontal diseases. Objectives: To assess oral hygiene behaviors among pregnant women with diabetes who attended primary health care centers and find out the relationship between oral hygiene behaviors and studied variables. Methodology: A cross sectional design was conducted from 7 July to 30 September 2014 on non probability (convenient sample) of 150 pregnant women with diabetes was selected from twelve Primary Health Care Centers at Baghdad city. Questionnaire format is tool for data collection which had designed and consisted of three main parts including: socio demographic, reproductive characteristics and items of oral hygiene behaviors among pregnant women with diabetes. Reliability of the questionnaire was determined through internal consistency of correlation coefficient (R= 0.940) and validity of content was determined through reviewing it by (12) experts in different specialties and was determined through pilot study. Descriptive and inferential statistics were used to analyze collected data. Result: Result of study revealed that (35.3%) of study sample was (35-39) years old with mean and SD is (X & SD = 33.57 ± 5.54) years, and (34.7%) of the study sample was graduated from primary school and less, half of the study sample was government employment and self employed, (42.7%) of the study sample had moderate socioeconomic status, the highest percentage (70.0%) of the study sample was nonsmokers, The result indicates that oral hygiene behaviors have moderate mean score in all items. There are no statistical significant association between oral hygiene domain and studied variables. Conclusions: All items related to health behavior concerning oral hygiene is in moderate mean of score, which may expose pregnant women with diabetes to high risk of periodontal diseases. Recommendations: Dental care provider should perform a dental examination at least every three months for each pregnant woman with diabetes, explanation of the effect of DM on periodontal health, oral hygiene instruction, oral prophylaxis, professional cleaning and treatment of periodontal diseases(scaling and root planing) when needed.

Keywords: diabetes, health behavior, pregnant women, oral hygiene

Procedia PDF Downloads 266
5342 Effect of Different Knee-Joint Positions on Passive Stiffness of Medial Gastrocnemius Muscle and Aponeuroses during Passive Ankle Motion

Authors: Xiyao Shan, Pavlos Evangelidis, Adam Kositsky, Naoki Ikeda, Yasuo Kawakami

Abstract:

The human triceps surae (two bi-articular gastrocnemii and one mono-articular soleus) have aponeuroses in the posterior and anterior aspects of each muscle, where the anterior aponeuroses of the gastrocnemii adjoin the posterior aponeurosis of the soleus, possibly contributing to the intermuscular force transmission between gastrocnemii and soleus. Since the mechanical behavior of these aponeuroses at different knee- and ankle-joint positions remains unclear, the purpose of this study was to clarify this through observations of the localized changes in passive stiffness of the posterior aponeuroses, muscle belly and adjoining aponeuroses of the medial gastrocnemius (MG) induced by different knee and ankle angles. Eleven healthy young males (25 ± 2 yr, 176.7 ± 4.7 cm, 71.1 ± 11.1 kg) participated in this study. Each subject took either a prone position on an isokinetic dynamometer while the knee joint was fully extended (K180) or a kneeling position while the knee joint was 90° flexed (K90), in a randomized and counterbalanced order. The ankle joint was then passively moved through a 50° range of motion (ROM) by the dynamometer from 30° of plantar flexion (PF) to 20° of dorsiflexion (DF) at 2°/s and the ultrasound shear-wave velocity was measured to obtain shear moduli of the posterior aponeurosis, MG belly, and adjoining aponeuroses. The main findings were: 1) shear modulus in K180 was significantly higher (p < 0.05) than K90 for the posterior aponeurosis (across all ankle angles, 10.2 ± 5.7 kPa-59.4 ± 28.7 kPa vs. 5.4 ± 2.2 kPa-11.6 ± 4.1 kPa), MG belly (from PF10° to DF20°, 9.7 ± 2.2 kPa-53.6 ± 18.6 kPa vs. 8.0 ± 2.7 kPa-9.5 ± 3.7 kPa), and adjoining aponeuroses (across all ankle angles, 17.3 ± 7.8 kPa-80 ± 25.7 kPa vs. 12.2 ± 4.5 kPa-52.4 ± 23.0 kPa); 2) shear modulus of the posterior aponeuroses significantly increased (p < 0.05) from PF10° to PF20° in K180, while shear modulus of MG belly significantly increased (p < 0.05) from 0° to PF20° only in K180 and shear modulus of adjoining aponeuroses significantly increased (p < 0.05) across the whole ROM of ankle both in K180 and K90. These results suggest that different knee-joint positions can affect not only the bi-articular gastrocnemius but also influence the mechanical behavior of aponeuroses. In addition, compared to the gradual stiffening of the adjoining aponeuroses across the whole ROM of ankle, the posterior aponeurosis became slack in the plantar flexed positions and then was stiffened gradually as the knee was fully extended. This suggests distinct stiffening for the posterior and adjoining aponeuroses which is joint position-dependent.

Keywords: aponeurosis, plantar flexion and dorsiflexion, shear modulus, shear wave elastography

Procedia PDF Downloads 169
5341 Identification of Flood Prone Areas in Adigrat Town Using Boolean Logic with GIS and Remote Sensing Technique

Authors: Fikre Belay Tekulu

Abstract:

The Adigrat town lies in the Tigray region of Ethiopia. This region is mountainous and experiences a semiarid type of climate. Most of the rainfall occurs in four months of the year, which are June to September. During this season, flood is a common natural disaster, especially in urban areas. In this paper, an attempt is made to identify flood-prone areas in Adigrat town using Boolean logic with GIS and remote sensing techniques. Three parameters were incorporated as land use type, elevation, and slope. Boolean logic was used as land use equal to buildup land, elevation less than 2430 m, and slope less than 5 degrees. As a result, 0.575 km² was identified severely affected by floods during the rainy season.

Keywords: flood, GIS, hydrology, Adigrat

Procedia PDF Downloads 113