Search results for: online learning activities
10013 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran
Authors: Alireza Hashemi
Abstract:
In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.Keywords: educational software, French language, Iran, learners in Semnan province
Procedia PDF Downloads 4610012 Students' Perspectives about Humor and the Process of Learning Spanish as a Foreign Language
Authors: Samuel Marínez González
Abstract:
In the last decades, the studies about humor have been increasing significantly in all areas. In the field of education and, specially, in the second language teaching, most research has concentrated on the beneficial effects that the introduction of humor in the process of teaching and learning a foreign language, as well as its impact on teachers and students. In the following research, we will try to know the learners’ perspectives about humor and its use in the Spanish as a Foreign Language classes. In order to do this, a different range of students from the Spanish courses at the University of Cape Town will participate in a survey that will reveal their beliefs about the frequency of humor in their daily lives and their Spanish lessons, their reactions to humorous situations, and the main advantages or disadvantages, from their point of view, to the introduction of humor in the teaching of Spanish as a Foreign Language.Keywords: education, foreign languages, humor, pedagogy, Spanish as a Foreign Language, students’ perceptions
Procedia PDF Downloads 34410011 Integrating AI in Education: Enhancing Learning Processes and Personalization
Authors: Waleed Afandi
Abstract:
Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education
Procedia PDF Downloads 4110010 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale
Authors: Wen-Wei Chiang
Abstract:
In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.Keywords: flow experience, positive psychology, questionnaire, science learning
Procedia PDF Downloads 12210009 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 65010008 Relationship Between Reading Comprehension and Achievement in Science Among Grade Eleven Bilingual Students in a Secondary School, Thailand
Authors: Simon Mauma Efange
Abstract:
The main aims of this research were to describe, in co-relational terms, the relationship, if any, between reading comprehension and academic achievement in science studied at the secondary level and, secondly, to find out possible trends in gender differences, such as whether boys would perform better than girls or vice versa. This research employed a quantitative design. Two kinds of instruments were employed: the Oxford Online Placement Test and the Local Assessment System Test. The Oxford Online Placement Test assesses students' English level quickly and easily. The results of these tests were subjected to statistical analysis using a special statistical software called SPSS. Statistical tools such as mean, standard deviation, percentages, frequencies, t-tests, and Pearson’s coefficient of correlation were used for the analysis of the results. Results of the t-test showed that the means are significantly different. Calculating the p-value revealed that the results were extremely statistically significant at p <.05. The value of r (Pearson correlation coefficient) was 0.2868. Although technically there is a positive correlation, the relationship between the variables is only weak (the closer the value is to zero, the weaker the relationship). However, in conclusion, calculations from the t-test using SPSS revealed that the results were statistically significant at p <.05, confirming a relationship between the two variables, and high scores in reading will give rise to slightly high scores in science. The research also revealed that having a high score in reading comprehension doesn’t necessarily mean having a high score in science or vice versa. Female subjects performed much better than male subjects in both tests, which is in line with the literature reviewed for this research.Keywords: achievement in science, achievement in English, and bilingual students, relationship
Procedia PDF Downloads 5110007 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 13510006 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning
Authors: A. D. Tayal
Abstract:
The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.Keywords: data, innovation, renewable, solar
Procedia PDF Downloads 37010005 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 10510004 Funding Innovative Activities in Firms: The Ownership Structure and Governance Linkage - Evidence from Mongolia
Authors: Ernest Nweke, Enkhtuya Bavuudorj
Abstract:
The harsh realities of the scandalous failure of several notable corporations in the past two decades have inextricably resulted in a surge in corporate governance studies. Nevertheless, little or no attention has been paid to corporate governance studies in Mongolian firms and much less to the comprehension of the correlation among ownership structure, corporate governance mechanisms and trend of innovative activities. Innovation is the bed rock of enterprise success. However, the funding and support for innovative activities in many firms are to a great extent determined by the incentives provided by the firm’s internal and external governance mechanisms. Mongolia is an East Asian country currently undergoing a fast-paced transition from socialist to democratic system and it is a widely held view that private ownership as against public ownership fosters innovation. Hence, following the privatization policy of Mongolian Government which has led to the transfer of the ownership of hitherto state controlled and state directed firms to private individuals and organizations, expectations are high that sufficient motivation would be provided for firm managers to engage in innovative activities. This research focuses on the relationship between ownership structure, corporate governance on one hand and the level of innovation on the hand. The paper is empirical in nature and derives data from both reliable secondary and primary sources. Secondary data for the study was in respect of ownership structure of Mongolian listed firms and innovation trend in Mongolia generally. These were analyzed using tables, charts, bars and percentages. Personal interviews and surveys were held to collect primary data. Primary data was in respect of corporate governance practices in Mongolian firms and were collected using structured questionnaire. Out of a population of three hundred and twenty (320) companies listed on the Mongolian Stock Exchange (MSE), a sample size of thirty (30) randomly selected companies was utilized for the study. Five (5) management level employees were surveyed in each selected firm giving a total of one hundred and fifty (150) respondents. Data collected were analyzed and research hypotheses tested using Chi-Square test statistic. Research results showed that corporate governance mechanisms were better and have significantly improved overtime in privately held as opposed to publicly owned firms. Consequently, the levels of innovation in privately held firms were considerably higher. It was concluded that a significant and positive relationship exists between private ownership and good corporate governance on one hand and the level of funding provided for innovative activities in Mongolian firms on the other hand.Keywords: corporate governance, innovation, ownership structure, stock exchange
Procedia PDF Downloads 19810003 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 3110002 Music Education in Aged Care: Positive Ageing through Instrumental Music Learning
Authors: Ellina Zipman
Abstract:
This research investigates the place of music education in aged care facilities through the implementation of a program of regular piano lessons for residents. Using a qualitative case study methodology, the research explores aged care residents’ experiences in learning to play the piano. Since the aged care homes are unlikely places for formal learning and since older adults, especially in residential care, are not considered likely candidates for learning, this research opens the door for innovative and transformative thinking about where and to whom educational programs can be delivered. By addressing the educational needs of residents in aged care facilities, this research fills the gap in the literature. The research took place in Australia in two of Melbourne’s residential aged care facilities, engaging two residents (a nonagenarian female and an octogenarian male) to participate in 12-months weekly individual piano lessons. The data was collected through video recording of lessons, observations, interviews, emails, and a reflective journal. Data analysis was done using Nvivo and hard copy analysis with identifications of themes. The case studies revealed that passion for music was a major driver in participants’ motivation to engage in a long-term piano lessons program. This participation led to experiences of positive emotions, positive attitude, successes and challenges, the exercise of control, maintaining and building new relationships, improved self-confidence through autonomy and independent skills development, and discovering new identities through finding a new purpose and new roles in life. Speaking through participants’ voices, this research project demonstrates the importance of music education for older adults and hopes to influence transformation in the residential aged care sector.Keywords: adult music education, quality of life, passion, positive ageing, wellbeing
Procedia PDF Downloads 8910001 Innovation Culture TV “Stars of Science”: 15 Seasons Case Study
Authors: Fouad Mrad, Viviane Zaccour
Abstract:
The accelerated developments in the political, economic, environmental, security, health, and social folders are exhausting planners across the world, especially in Arab countries. The impact of the tension is multifaceted and has resulted in conflicts, wars, migration, and human insecurity. The potential cross-cutting role that science, innovation and technology can play in supporting Arab societies to address these pressing challenges is a serious, unique chance for the people of the region. This opportunity is based on the existing capacity of educated youth and inaccessible talents in the local universities and research centers. It has been accepted that Arab countries have achieved major advancements in the economy, education and social wellbeing since the 70s of the 20th Century. Mainly direct outcome of the oil and other natural resources. The UN Secretary-General, during the Education Summit in Sep 2022, stressed that “Learning continues to underplay skills, including problem-solving, critical thinking and empathy.” Stars of Science by Qatar Foundation was launched in 2009 and has been sustained through 2023. Consistent mission from the start: To mobilize a new generation of Pan-Arab innovators and problem solvers by encouraging youth participation and interest in Science, Technology and Entrepreneurship throughout the Arab world via the program and its social media activities. To make science accessible and attractive to mass audiences by de-mystifying the process of innovation. Harnessing best practices within reality TV to show that science, engineering, and innovation are important in everyday life and can be fun.” Thousands of Participants learned unforgettable lessons; winners changed their lives forever as they learned and earned seed capital; they became drivers of change in their countries and families; millions of viewers were exposed to an innovative experimental process, and culturally, several relevant national institutions adopted the SOS track in their national initiatives. The program exhibited experientially youth self-efficacy as the most distinct core property of human agency, which is an individual's belief in his or her capacity to execute behaviors necessary to produce specific performance attainments. In addition, the program proved that innovations are performed by networks of people with different sets of technological, useful knowledge, skills and competencies introduced by socially shared technological knowledge as a main determinant of economic activities in any economy.Keywords: science, invention, innovation, Qatar foundation, QSTP, prototyping
Procedia PDF Downloads 8010000 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 1109999 Discourses in Mother Tongue-Based Classes: The Case of Hiligaynon Language
Authors: Kayla Marie Sarte
Abstract:
This study sought to describe mother tongue-based classes in the light of classroom interactional discourse using the Sinclair and Coulthard model. It specifically identified the exchanges, grouped into Teaching and Boundary types; moves, coded as Opening, Answering and Feedback; and the occurrence of the 13 acts (Bid, Cue, Nominate, Reply, React, Acknowledge, Clue, Accept, Evaluate, Loop, Comment, Starter, Conclusion, Aside and Silent Stress) in the classroom, and determined what these reveal about the teaching and learning processes in the MTB classroom. Being a qualitative study, using the Single Collective Case Within-Site (embedded) design, varied data collection procedures such as non-participant observations, audio-recordings and transcription of MTB classes, and semi-structured interviews were utilized. The results revealed the presence of all the codes in the model (except for the silent stress) which also implied that the Hiligaynon mother tongue-based class was eclectic, cultural and communicative, and had a healthy, analytical and focused environment which aligned with the aims of MTB-MLE, and affirmed the purported benefits of mother tongue teaching. Through the study, gaps in the mother tongue teaching and learning were also identified which involved the difficulty of children in memorizing Hiligaynon terms expressed in English in their homes and in the communities.Keywords: discourse analysis, language teaching and learning, mother tongue-based education, multilingualism
Procedia PDF Downloads 2619998 Quantifying the Aspect of ‘Imagining’ in the Map of Dialogical inquiry
Authors: Chua Si Wen Alicia, Marcus Goh Tian Xi, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee
Abstract:
In a world full of rapid changes, people often need a set of skills to help them navigate an ever-changing workscape. These skills, often known as “future-oriented skills,” include learning to learn, critical thinking, understanding multiple perspectives, and knowledge creation. Future-oriented skills are typically assumed to be domain-general, applicable to multiple domains, and can be cultivated through a learning approach called Dialogical Inquiry. Dialogical Inquiry is known for its benefits of making sense of multiple perspectives, encouraging critical thinking, and developing learner’s capability to learn. However, it currently exists as a quantitative tool, which makes it hard to track and compare learning processes over time. With these concerns, the present research aimed to develop and validate a quantitative tool for the Map of Dialogical Inquiry, focusing Imagining aspect of learning. The Imagining aspect four dimensions: 1) speculative/ look for alternatives, 2) risk taking/ break rules, 3) create/ design, and 4) vision/ imagine. To do so, an exploratory literature review was conducted to better understand the dimensions of Imagining. This included deep-diving into the history of the creation of the Map of Dialogical Inquiry and a review on how “Imagining” has been conceptually defined in the field of social psychology, education, and beyond. Then, we synthesised and validated scales. These scales measured the dimension of Imagination and related concepts like creativity, divergent thinking regulatory focus, and instrumental risk. Thereafter, items were adapted from the aforementioned procured scales to form items that would contribute to the preliminary version of the Imagining Scale. For scale validation, 250 participants were recruited. A Confirmatory Factor Analysis (CFA) sought to establish dimensionality of the Imagining Scale with an iterative procedure in item removal. Reliability and validity of the scale’s dimensions were sought through measurements of Cronbach’s alpha, convergent validity, and discriminant validity. While CFA found that the distinction of Imagining’s four dimensions could not be validated, the scale was able to establish high reliability with a Cronbach alpha of .96. In addition, the convergent validity of the Imagining scale was established. A lack of strong discriminant validity may point to overlaps with other components of the Dialogical Map as a measure of learning. Thus, a holistic approach to forming the tool – encompassing all eight different components may be preferable.Keywords: learning, education, imagining, pedagogy, dialogical teaching
Procedia PDF Downloads 979997 Forecasting Lake Malawi Water Level Fluctuations Using Stochastic Models
Authors: M. Mulumpwa, W. W. L. Jere, M. Lazaro, A. H. N. Mtethiwa
Abstract:
The study considered Seasonal Autoregressive Integrated Moving Average (SARIMA) processes to select an appropriate stochastic model to forecast the monthly data from the Lake Malawi water levels for the period 1986 through 2015. The appropriate model was chosen based on SARIMA (p, d, q) (P, D, Q)S. The Autocorrelation function (ACF), Partial autocorrelation (PACF), Akaike Information Criteria (AIC), Bayesian Information Criterion (BIC), Box–Ljung statistics, correlogram and distribution of residual errors were estimated. The SARIMA (1, 1, 0) (1, 1, 1)12 was selected to forecast the monthly data of the Lake Malawi water levels from August, 2015 to December, 2021. The plotted time series showed that the Lake Malawi water levels are decreasing since 2010 to date but not as much as was the case in 1995 through 1997. The future forecast of the Lake Malawi water levels until 2021 showed a mean of 474.47 m ranging from 473.93 to 475.02 meters with a confidence interval of 80% and 90% against registered mean of 473.398 m in 1997 and 475.475 m in 1989 which was the lowest and highest water levels in the lake respectively since 1986. The forecast also showed that the water levels of Lake Malawi will drop by 0.57 meters as compared to the mean water levels recorded in the previous years. These results suggest that the Lake Malawi water level may not likely go lower than that recorded in 1997. Therefore, utilisation and management of water-related activities and programs among others on the lake should provide room for such scenarios. The findings suggest a need to manage the Lake Malawi jointly and prudently with other stakeholders starting from the catchment area. This will reduce impacts of anthropogenic activities on the lake’s water quality, water level, aquatic and adjacent terrestrial ecosystems thereby ensuring its resilience to climate change impacts.Keywords: forecasting, Lake Malawi, water levels, water level fluctuation, climate change, anthropogenic activities
Procedia PDF Downloads 2339996 Da’wah (Proselytization) and Qur’anic Moral Excellence: An Exposition
Authors: Attahir Shehu Mainiyo, Ahmad Ibrahim Karfe
Abstract:
The Glorious Qur’an, as the central religious text of Islam, addresses various aspects of human life and provides guidance for personal and societal development. It also outlines the moral excellence of individuals and communities, focusing on spiritual, moral, and social dimensions. Da’wah is the act of inviting others to Islam, emphasizing the significance of conveying the message with kindness, patience, and understanding. Qur’anic moral excellence, as evinced in the Qur’an encompasses virtues such as compassion, honesty, humility, patience, and generosity. The Glorious Qur’an, therefore, harps on the importance of embodying these values in daily life, serving as a guide for individuals engaged in Da’wah activities to exemplify moral excellence through their actions and characters. It is in line with this backdrop that this article intends to assess the Da’wah and Qur’anic Moral Excellence. However, to achieve the objectives of the research, the article attempts to answer some basic questions. Emphasizes were laid in the Glorious on the need to invite others to the true path of Islam and the qualities of Da’i necessary for his Da’wah activities. The paper also discussed the impact of Qur’anic moral excellence on the Da’i and those invited to Islam. The paper adopts an analytical methodology and utilizes secondary data for the research.Keywords: Da'wah, Qur'an, moral, excellence
Procedia PDF Downloads 539995 A Method for Multimedia User Interface Design for Mobile Learning
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.Keywords: human-computer interaction, interface design, mobile learning, education
Procedia PDF Downloads 2499994 Academic Success, Problem-Based Learning and the Middleman: The Community Voice
Authors: Isabel Medina, Mario Duran
Abstract:
Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.Keywords: phenomenological, STEM education, student engagement, community involvement
Procedia PDF Downloads 949993 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3529992 The Impact of AI on Higher Education
Authors: Georges Bou Ghantous
Abstract:
This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning
Procedia PDF Downloads 319991 Language Activation Theory: Unlocking Bilingual Language Processing
Authors: Leorisyl D. Siarot
Abstract:
It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined.Keywords: bilingualism, psycholinguistics, second language learning, languages
Procedia PDF Downloads 5169990 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin
Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele
Abstract:
The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1059989 Children and Communities Benefit from Mother-Tongue Based Multi-Lingual Education
Authors: Binay Pattanayak
Abstract:
Multilingual state, Jharkhand is home to more than 19 tribal and regional languages. These are used by more than 33 communities in the state. The state has declared 12 of these languages as official languages of the state. However, schools in the state do not recognize any of these community languages even in early grades! Children, who speak in their mother tongues at home, local market and playground, find it very difficult to understand their teacher and textbooks in school. They fail to acquire basic literacy and numeracy skills in early grades. Out of frustration due to lack of comprehension, the majority of children leave school. Jharkhand sees the highest dropout in early grades in India. To address this, the state under the guidance of the author designed a mother tongue based pre-school education programme named Bhasha Puliya and bilingual picture dictionaries in 9 tribal and regional mother tongues of children. This contributed significantly to children’s school readiness in the school. Followed by this, the state designed a mother-tongue based multilingual education programme (MTB-MLE) for multilingual context. The author guided textbook development in 5 tribal (Santhali, Mundari, Ho, Kurukh and Kharia) and two regional (Odia and Bangla) languages. Teachers and community members were trained for MTB-MLE in around 1,000 schools of the concerned language pockets. Community resource groups were constituted along with their academic calendars in each school to promote story-telling, singing, painting, dancing, riddles, etc. with community support. This, on the one hand, created rich learning environments for children. On the other hand, the communities have discovered a great potential in the process of developing a wide variety of learning materials for children in own mother-tongue using their local stories, songs, riddles, paintings, idioms, skits, etc. as a process of their literary, cultural and technical enrichment. The majority of children are acquiring strong early grade reading skills (basic literacy and numeracy) in grades I-II thereby getting well prepared for higher studies. In a phased manner they are learning Hindi and English after 4-5 years of MTB-MLE using the foundational language learning skills. Community members have started designing new books, audio-visual learning materials in their mother-tongues seeing a great potential for their cultural and technological rejuvenation.Keywords: community resource groups, MTB-MLE, multilingual, socio-linguistic survey, learning
Procedia PDF Downloads 2009988 AI Applications in Accounting: Transforming Finance with Technology
Authors: Alireza Karimi
Abstract:
Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance
Procedia PDF Downloads 659987 The Possible Antioxidant, Hypoglycemic Effect and Antimicrobial Potential of Mangifera Indicia Leaves Aqueous Extract in Albino Rats
Authors: Sahar B. Ahmed, M. Mostafa Said, Mona I. Mohamed
Abstract:
Streptozotocin (STZ) caused a significant increase in blood glucose and malondialdehyde (MDA) levels in serum accompanied by a significant decrease in blood reduced glutathione (GSH) and superoxide dismutase (SOD) activities. Also, ALT, AST, albumin and urea were markedly affected by STZ injection. The oral administration of Mango leaves extract (MLE) one hour before STZ injection was significantly improved the blood glucose level, ALT, AST activities, albumin and urea that associated with the regulation of MDA, GSH and SOD levels. The antimicrobial activity of MLE showed a significant inhibitory activity against multidrug resistant gram positive and gram negative bacteria isolated from patients in Egyptian hospitals especially Salmonella typhi and typhimurium. In conclusion, results revealed the antioxidant, hypoglycemic effect and antimicrobial potentials of MLE under investigation. Further studies will be needed to investigate the prolonged period of MLE administration and its possible side effects.Keywords: aqueous extract of mango leaves, STZ, antioxidant, hypoglycemic effect, antimicrobial potentials.
Procedia PDF Downloads 4619986 Domains of Socialization Interview: Development and Psychometric Properties
Authors: Dilek Saritas Atalar, Cansu Alsancak Akbulut, İrem Metin Orta, Feyza Yön, Zeynep Yenen, Joan Grusec
Abstract:
Objective: The aim of this study was to develop semi-structured Domains of Socialization Interview and its coding manual and to test their psychometric properties. Domains of Socialization Interview was designed to assess maternal awareness regarding effective parenting in five socialization domains (protection, mutual reciprocity, control, guided learning, and group participation) within the framework of the domains-of-socialization approach. Method: A series of two studies were conducted to develop and validate the interview and its coding manual. The pilot study, sampled 13 mothers of preschool-aged children, was conducted to develop the assessment tools and to test their function and clarity. Participants of the main study were 82 Turkish mothers (Xage = 34.25, SD = 3.53) who have children aged between 35-76 months (Xage = 50.75, SD = 11.24). Mothers filled in a questionnaire package including Coping with Children’s Negative Emotions Questionnaire, Social Competence and Behavior Evaluation-30, Child Rearing Questionnaire, and Two Dimensional Social Desirability Questionnaire. Afterward, interviews were conducted online by a single interviewer. Interviews were rated independently by two graduate students based on the coding manual. Results: The relationships of the awareness of effective parenting scores to the other measures demonstrate convergent, discriminant, and predictive validity of the coding manual. Intra-class correlation coefficient estimates were ranged between 0.82 and 0.90, showing high interrater reliability of the coding manual. Conclusion: Taken as a whole, the results of these studies demonstrate the validity and reliability of a new and useful interview to measure maternal awareness regarding effective parenting within the framework of the domains-of-socialization approach.Keywords: domains of socialization, parenting, interview, assessment
Procedia PDF Downloads 1949985 Focusing of Technology Monitoring Activities Using Indicators
Authors: Günther Schuh, Christina König, Toni Drescher
Abstract:
One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring
Procedia PDF Downloads 4759984 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 60