Search results for: transport carbon dioxide emissions
1410 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 821409 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions, and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 791408 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md. Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser-machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 821407 Characterization of Mineralogy, Geochemical and Origin of Nephelinitic Jurf Ed-darawish Volcano in Western Central Jordan
Authors: Hassan Farhan Alfugha
Abstract:
the cenozoic volcanism in westt central jordan which show homohgenous lava from upper mantle.es represented by basaltic scoria cones and flows and covers approximately 10 km. fourtten nephelinitic rock samples were collected at jurf ed-darawish volcanism to analyze major minor and trace elements by using XRF.. geochemical parameters of these samp;es such as MG/MG+FE+2, the ratio range from 0.41 to 0.45 and high ti contents 3.09-3.28wt % indicate that the corresponding magmas are nearly of primary origin . this magma show low variable abundances of compatible and incompatible trace elements reflecting a homogenous source. the studied volcanic rocks, which are mainly nephlinites, belong to the alkaline rocks series containing 4.38-5.95wt% alkali oxides they are usually undersaturated in regard it the silica content, which ranges between 39.88-41.50wt.%.value compared to other jordanien basaltic rocks majorminor and trace elementes data as well as mantel xenoliths entrained in the volcanic rocks are spinel iherzolites that suggest the lithospheric mantle as the source for the pleistocene volcanism these xenoliths resided at shallow mantle depths (45 km ) because a geothermobarometric analysis yielded p-t conditions close to 15 kbar and 1100c the mantle nodules did not equilibrate with the melts indicating a fast transport from the mantle to the surface and a mgma >65 km deeper source area of the melts.Keywords: nephelinite plestocene western central jordan, western central jordan, volcano in western central jordan, central jordan
Procedia PDF Downloads 761406 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment
Authors: K. Sushma Varma, Rajesh Singh
Abstract:
Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria
Procedia PDF Downloads 1021405 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA
Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen
Abstract:
To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis
Procedia PDF Downloads 1471404 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists
Authors: Sakul Jariyachansit
Abstract:
The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.Keywords: factor, decision making, ASEAN tourists, tourism in Thailand
Procedia PDF Downloads 2061403 Systems Approach on Thermal Analysis of an Automatic Transmission
Authors: Sinsze Koo, Benjin Luo, Matthew Henry
Abstract:
In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.Keywords: thermal management, automatic transmission, hybrid, and systematic approach
Procedia PDF Downloads 3751402 E-Tongue Based on Metallo-Porphyrins for Histamine Evaluation
Authors: A. M. Iordache, S. M. Iordache, V. Barna, M. Elisa, I. C. Vasiliu, C. R. Stefan, I. Chilibon, I. Stamatin, S. Caramizoiu, C. E. A. Grigorescu
Abstract:
The general objective of the presentation is the development of an e-tongue like sensor based on modified screen printed electrode (SPE) structures with a receptor part made of porphyrins/metalloporphyrins chemically bound to graphene (the sensitive assembly) to act as antennas and “capture” the histamine molecules. Using a single, ultra-sensitive electrochemical sensor, we measured the concentration of histamine, a compound which is strongly connected to the level of freshness in foods (the caution level of histamine is 50 ppm, whereas the maximum accepted levels range from 200 ppm to 500 ppm). Our approach for the chemical immobilization of the porphyrins onto the surface of the graphenes was via substitution reaction: a solution of graphene in SOCl2 was heated to 800C for 6 hours. Upon cooling, the metallo-porphyrins were added and ultrasonicated for 4 hours. The solution was then allowed to cool to room temperature and then centrifuged in order to separate the deposit. The sensitive assembly was drop casted onto the carbon SPE and cyclic voltammetry was performed in the presence of histamine. The reaction is quasi-reversible and the sensor showed an oxidation potential for histamine at 600 mV. The results indicate a linear dependence of concentration of histamine as function of intensity. The results are reproducible; however the chemical stability of the sensitive assembly is low.Keywords: histamine, cyclic voltammetry, metallo-porphyrin, food freshness
Procedia PDF Downloads 1391401 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures
Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi
Abstract:
Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation
Procedia PDF Downloads 2541400 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis
Authors: Enemeri George Uweiyohowo
Abstract:
Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)
Procedia PDF Downloads 2111399 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations
Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh
Abstract:
Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle
Procedia PDF Downloads 1521398 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application
Authors: Syali Pradhan, Neetu Jha
Abstract:
The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.Keywords: marigold, flower waste, energy storage, cathode, supercapacitor
Procedia PDF Downloads 731397 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production
Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara
Abstract:
Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.Keywords: foam glass, foaming, silicon carbide, waste glass
Procedia PDF Downloads 3631396 Tourism and Sustainability Example Projects in the EU
Authors: Renee Yi-Mond Yuan
Abstract:
The fast development of tourism industries around the world, has largely contributed to many cities, and countries economical and social progress. Past year Taiwan in particular was ranked among one of fastest raise growth country. Thanks to the prominent importance of this phenomenon; seasonal mobility or multipurpose trips have reached more than 1 Billion tourists crossing International borders and more than 4 billion intramural travelers that have nourished the economy and employment in the service sector in most attractive regions, representing about one tenth of World GDP amount, including trade, research, cultural or journalistic purposes. Then the increased activities are giving pressure to the consumption of energy, water, resources, and Greenhouse Gas emissions. The further concentration of tourists in most beautiful sites of the World with consistent supply and reduced pollutions and means for waste control and risks management are challenging the preservation and protection of the natural original environment, including species and their ecosystems, ethnics and their cultures or languages, protection of inherited landscapes and monuments for the future generations to come. In this article, few projects will be analyzed, methods and directions in the EU sustainable development scheme giving way to economical and social activities and preserve rural areas and remote countryside as well as smarter cities development. EU ETS forecasting escalation in the next few decades for road and air, and will reconsider investments and reliance on Biobased alternatives that may turn out solutions and contributions to sustain popularization of tourism development. Study of Examples of Stakeholders practices and Governments efforts, consumer’s attitude to bring new forms of more responsible holidays models: ecotourism, eco-certification, partnerships, investment in technologies and facilities, and possibly create greener perceptions and less impacting demands for the longer term through association, organizations and awards.Keywords: tourism, sustainability, protection, risks management, change in rural/urban environment
Procedia PDF Downloads 3341395 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells
Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin
Abstract:
Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².Keywords: chromophore, organic solar cells, photoactive materials, small molecule
Procedia PDF Downloads 1611394 Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage
Authors: Umar Hayatu Sidik
Abstract:
The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications.Keywords: natural gas, adsorbent, compressed natural gas, adsorption
Procedia PDF Downloads 591393 New Environmental Culture in Algeria: Eco Design
Authors: S. Tireche, A. Tairi abdelaziz
Abstract:
Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.Keywords: eco design, impact, life cycle analysis (LCA), sustainability
Procedia PDF Downloads 4261392 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel
Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi
Abstract:
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.Keywords: heat transfer, mini channel, nanofluid, PEMFC
Procedia PDF Downloads 3371391 Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process
Authors: Ikram Kamal, Mohamed Blaghen
Abstract:
Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified.Keywords: petroleum hydrocarbons, biosurfactants, biodegradation, lagoon marchika, emulsification index
Procedia PDF Downloads 2601390 Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures
Authors: T. Nakkeran, C. Dhamodharan, Win Myint Soe , Ramasamy Deverajan, M. Ganesh Babu
Abstract:
This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm.Keywords: S355 carbon steel, weld proximity, SAW process, FCAW process, heat input, bend test, tensile test, hardness test, impact test, macro and microscopic examinations
Procedia PDF Downloads 971389 Advanced Nanomaterials in Catalysis: Bridging the Gap Between Pollution Control and Renewable Energy
Authors: Abonyi Matthew Ndubuisi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne
Abstract:
This review focuses on the application of advanced nanomaterials in catalysis for pollution control and renewable energy solutions. This review provides a comprehensive examination of the latest developments in nanocatalysts, highlighting their role in addressing environmental challenges and facilitating sustainable energy solutions. The unique properties of nanomaterials, including high surface area, tunable electronic properties, and enhanced reactivity, make them ideal candidates for catalytic applications. This review explores various types of nanomaterials, such as metal nanoparticles, carbon-based nanostructures, and metal-organic frameworks, and their effectiveness in processes like photocatalysis, electrocatalysis, and hydrogen production. Additionally, the review discusses the environmental benefits of using nanocatalysts in pollution control, focusing on the degradation of pollutants in water and air. The potential of these materials to bridge the gap between environmental remediation and clean energy production is emphasized, showcasing their dual role in mitigating pollution and advancing renewable energy technologies. In conclusion, the review analyzes the current challenges and future directions in the field, highlighting the need for continued research to improve the design and application of nanocatalysts for a sustainable future.Keywords: nanomaterials, catalysis, pollution control, renewable energy, sustainable technology
Procedia PDF Downloads 211388 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins
Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа
Abstract:
Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins
Procedia PDF Downloads 1931387 Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations
Authors: Stephane Laussac, Jacques Piazzola, Gilles Tedeschi
Abstract:
Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed.Keywords: sea-spray aerosols, coastal areas, sea-spray concentrations, short fetch, WRF-Chem model
Procedia PDF Downloads 1941386 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation
Procedia PDF Downloads 4591385 Priority Sites for Deforested and Degraded Mountain Restoration Projects in North Korea
Authors: Koo Ja-Choon, Seok Hyun-Deok, Park So-Hee
Abstract:
Even though developed countries have supported aid projects for restoring degraded and deforested mountain, recent North Korean authorities announced that North Korean forest is still very serious. Last 12 years, more than 16 thousand ha of forest were destroyed. Most of previous researches concluded that food and fuel problems should be solved for preventing people from deforesting and degrading forest in North Korea. It means that mountain restoration projects such as A/R(afforestation/reforestation) and REDD(Reducing Emissions from Deforestation and Forest Degradation) project should be implemented with the agroforestry and the forest tending project. Because agroforestry and the forest tending can provide people in the project area with foods and fuels, respectively. Especially, Agroforestry has been operated well with the support of Swiss agency of Development and cooperation since 2003. This paper aims to find the priority sites for mountain restoration project where all types of projects including agroforesty can be implemented simultaneously. We tried to find the primary counties where the areas of these activities were distributed widely and evenly. Recent spatial data of 186 counties representing altitude, gradient and crown density were collected from World Forest Watch. These 3 attributes were used to determine the type of activities; A/R, REDD, Agroforestry and forest tending project. Finally, we calculated the size of 4 activities in 186 counties by using GIS technique. Result shows that Chongjin in Hamgyeongbuk-do, Hoeryong in Hamgyeongbuk-do and Tongchang in Pyeonganbuk-do are on the highest priority of counties. Most of feasible counties whose value of richness and uniformity were greater than the average were located near the eastern coast of North Korea. South Korean government has not supported any aid projects in North Korea since 2010. Recently, South Korea is trying to continue the aid projects for North Korea. Forest project which is not affected by the political situation between North- and South- Korea can be considered as a priority activities. This result can be used when South Korean government determine the priority sites for North Korean mountain restoration project in near future.Keywords: agroforestry, forest restoration project, GIS, North Korea, priority
Procedia PDF Downloads 3181384 Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel
Authors: Mufath Zorgani, Carlos Garcia-Mateo, Mohammad Jahazi
Abstract:
In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes.Keywords: ausforming, carbide free bainite, dilatometry, microstructure
Procedia PDF Downloads 1251383 Systems for Air Renewal Inside Bus Bodies Importance in the Prevention of Disease Transmission
Authors: Giovanni Matheus Rech, Gilberto Zan, Filipe P. Aguiar
Abstract:
The current pandemic scenario raises questions that many times would have previously gone unnoticed. One of these issues is the quality of the air we breathe in the most diverse environments in which we are inserted in an everyday. It is plausible to suppose that, at times like this, there is apprehension regarding the possibility of contamination by pathological agents such as viruses and bacterias through the airways. However, the renewal of indoor air, combined with a properly sanitized air conditioning system, are important tools for the prevention of viral diseases, as is the case with COVID-19. The bus is an example of an environment where renovation is applied to improve the quality of indoor air, helping to reduce the possibility of spreading pathological agents. Together with other care, such as an alcohol gel dispenser, curtains to separate the passengers, cleaning the environment more frequently, and mandatory use of masks, help to reduce the transmission of pathologies, such as COVID-19. Knowing the reality of a large part of the population regarding the need for public transport, there are standards and devices dedicated to promoting air quality, ensuring greater comfort and safety for users. This paper seeks to present such standards and recommendations to improve the quality of indoor air, as well as the equipment responsible for the renewal of the air in the body of a bus. Experimental measurement of the flow rates of the renewal devices present in the bus body allows quantifying the average volume of external air admitted in each type of body. This way, it was possible to compare, in terms of airflow per person, the values of a bus in relation to a series of other environments, using recommendations for air renewal are described through the Brazilian standard ABNT NBR 16401.Keywords: air quality, air renewal, buses, Covid-19
Procedia PDF Downloads 1501382 Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020
Authors: Lucille McWilliams
Abstract:
As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction.Keywords: sea turtles, kemp's ridleys, greens, loggerheads, cold-stunning, diet analysis, stable isotope analysis, environmental science, marine biology
Procedia PDF Downloads 1181381 Isolation, Identification and Crude Oil Biodegradation Potential of Providencia sp. BAZ 01
Authors: Aisami A., Z. A. Adamu, Lawan Bulama
Abstract:
Due to growing issues of crude oil pollution in both marine and terrestrial environments, Billions to Trillions of US Dollars were spent over the years for the treatment of this spill. There is an urgent need for effective bioremediation strategies. This current study focuses on the isolation and characterization of a crude oil-degrading bacterium from hydrocarbon-contaminated soil samples. Soil samples were collected from an oil spill site and subjected to enrichment culture techniques in a mineral salt medium supplemented with crude oil as the singular carbon source. The isolates were screened for their crude oil-degrading capabilities using gravimetric analysis. The most efficient isolation was identified through 16S rRNA gene sequencing. Cultural and physical conditions such pH, temperature salinity and crude oil concentrations were optimized. The isolates showed significant crude oil degradation efficiency, reducing oil concentration (2.5%) by 75% within 15 days of incubation. The strain was identified as Providencia sp. through molecular characterization, the sequence was deposited at the NCBI Genbank with accession number MN880494. The bacterium exhibited optimal growth at 32.5°C, pH 7.0 to 7.5, and in the presence of 1.5% (w/v) NaCl. The isolated Providencia sp. shows encouraging potential for bioremediation of crude oil-contaminated environments. This study successfully isolated and characterized a crude oil-degrading Providencia sp., highlighting its potential in bioremediation.Keywords: crude oil degradation, providencia sp., bioremediation, hydrocarbon utilization, environmental pollution.
Procedia PDF Downloads 40