Search results for: Spatial Data Analyses
24327 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection
Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi
Abstract:
The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure
Procedia PDF Downloads 28024326 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters
Authors: K. Parandhama Gowd
Abstract:
The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)
Procedia PDF Downloads 57224325 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 30224324 Imaging of Underground Targets with an Improved Back-Projection Algorithm
Authors: Alireza Akbari, Gelareh Babaee Khou
Abstract:
Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.Keywords: algorithm, back-projection, GPR, remote sensing
Procedia PDF Downloads 45224323 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 44124322 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 3024321 Data Security in Cloud Storage
Authors: Amir Rashid
Abstract:
Today is the world of innovation and Cloud Computing is becoming a day to day technology with every passing day offering remarkable services and features on the go with rapid elasticity. This platform took business computing into an innovative dimension where clients interact and operate through service provider web portals. Initially, the trust relationship between client and service provider remained a big question but with the invention of several cryptographic paradigms, it is becoming common in everyday business. This research work proposes a solution for building a cloud storage service with respect to Data Security addressing public cloud infrastructure where the trust relationship matters a lot between client and service provider. For the great satisfaction of client regarding high-end Data Security, this research paper propose a layer of cryptographic primitives combining several architectures in order to achieve the goal. A survey has been conducted to determine the benefits for such an architecture would provide to both clients/service providers and recent developments in cryptography specifically by cloud storage.Keywords: data security in cloud computing, cloud storage architecture, cryptographic developments, token key
Procedia PDF Downloads 29424320 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.Keywords: settlement, Subway Line, FLAC3D, ANFIS Method
Procedia PDF Downloads 23324319 The Study of the Physical, Chemical and Mechanical Properties of Recycled Thermoplastic Polypropylene and Polyamide Materials Used in the Automotive Industry
Authors: Sevim Gecici, Erdinc Doganci
Abstract:
Thermoplastic materials are widely used in the automotive industry due to their lightweight nature, durability, recyclability and versatility in shaping. They serve various purposes in the automotive sector, including interior and exterior components, vehicle body parts and insulation. The recycling of thermoplastic polymer materials used in the automotive industry helps reduce waste and mitigate environmental impacts. The aim of this study is to facilitate the recycling of thermoplastic materials used in the automotive industry. Recycled materials, such as sprues and defective parts, are generated from thermoplastic polymer materials used in the automotive sector after the injection process. In this study, the physical, chemical and mechanical properties of the recycled parts obtained from the reprocessing of these materials were determined through various tests. Thermoplastic products (PP and PA) that were recycled after the injection process were processed through a grinding unit and then subjected to a second injection process with physical, chemical and mechanical tests applied to the resulting products. This is a result of the initial grinding process. The same procedures were applied to each thermoplastic material through a series of steps first injection, first grinding, second injection, second grinding, third injection, third grinding, fourth injection and fourth grinding, followed by product testing. Subsequently, the test results of the original raw material's Technical Data Sheet (TDS) were compared with the results obtained from the products after the injection process to determine the raw material based on physical, chemical and mechanical changes. The study included tests for Density, Melt Flow Rate, Tensile Modulus, Tensile Stress, Flexural Modulus (Injection Molded), Charpy Notched Impact Strength, Notched Izod Impact Strength, Shore Hardness, Heat Deflection Temperature, Vicat Softening Temperature and UV tests. Additionally, more specific tests such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Heat Aging, FTIR, SEM and TEM analyses were conducted to examine structural changes in thermoplastic materials subjected to multiple recycling processes. In the later stages of the study, injection molding process trials will be conducted with raw materials such as ABS, PC, PC-ABS and PE.Keywords: injection molding, recycling, automotive, polypropylene, thermoplastic
Procedia PDF Downloads 1524318 Fuzzy Total Factor Productivity by Credibility Theory
Authors: Shivi Agarwal, Trilok Mathur
Abstract:
This paper proposes the method to measure the total factor productivity (TFP) change by credibility theory for fuzzy input and output variables. Total factor productivity change has been widely studied with crisp input and output variables, however, in some cases, input and output data of decision-making units (DMUs) can be measured with uncertainty. These data can be represented as linguistic variable characterized by fuzzy numbers. Malmquist productivity index (MPI) is widely used to estimate the TFP change by calculating the total factor productivity of a DMU for different time periods using data envelopment analysis (DEA). The fuzzy DEA (FDEA) model is solved using the credibility theory. The results of FDEA is used to measure the TFP change for fuzzy input and output variables. Finally, numerical examples are presented to illustrate the proposed method to measure the TFP change input and output variables. The suggested methodology can be utilized for performance evaluation of DMUs and help to assess the level of integration. The methodology can also apply to rank the DMUs and can find out the DMUs that are lagging behind and make recommendations as to how they can improve their performance to bring them at par with other DMUs.Keywords: chance-constrained programming, credibility theory, data envelopment analysis, fuzzy data, Malmquist productivity index
Procedia PDF Downloads 36524317 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 42324316 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 18324315 The Evaluation of Subclinical Hypothyroidism in Children with Morbid Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Cardiovascular pathology is one of the expected consequences of excessive fat gain. The role of zinc in thyroid hormone metabolism is an important matter. The concentrations of both thyroid stimulating hormone (TSH) and zinc are subject to variation in obese individuals. Zinc exhibits protective effects on cardiovascular health and is inversely correlated with cardiovascular markers in childhood obesity. The association between subclinical hypothyroidism (SCHT) and metabolic disorders is under investigation due to its clinical importance. Underactive thyroid gland causes high TSH levels. Subclinical hypothyroidism is defined as the elevated serum TSH levels in the presence of normal free thyroxin (T4) concentrations. The aim of this study was to evaluate the associations between TSH levels and zinc concentrations in morbid obese (MO) children exhibiting SCHT. The possibility of using the probable association between these parameters was also evaluated for the discrimination of metabolic syndrome positive (MetS+) and metabolic syndrome negative (MetS-) groups. Forty-two children were present in each group. Informed consent forms were obtained. Institutional Ethics Committee approved the study protocol. Tables prepared by World Health Organization were used for the definition of MO children. Children, whose age- and sex-dependent body mass index percentile values were above 99, were defined as MO. Children with at least two MetS components were included in MOMetS+ group. Elevated systolic/diastolic blood pressure values, increased fasting blood glucose, triglycerides (TRG)/decreased high density lipoprotein-cholesterol (HDL-C) concentrations in addition to central obesity were listed as MetS components. Anthropometric measures were recorded. Routine biochemical analyses were performed. Thirteen and fifteen children had SCHT in MOMetS- and MOMetS+ groups, respectively. Statistical analyses were performed. p<0.05 was accepted as statistically significant. In MOMetS- and MOMetS+ groups, TSH levels were 4.1±2.9 mU/L and 4.6±3.1 mU/L, respectively. Corresponding values for SCHT cases in these groups were 7.3±3.1 mU/L and 8.0±2.7 mU/L. Free T4 levels were within normal limits. Zinc concentrations were negatively correlated with TSH levels in both groups. The significant negative correlation calculated in MOMetS+ group (r= -0.909; p<0.001) was much stronger than that found in MOMetS- group (r= -0.706; p<0.05). This strong correlation (r= -0.909; p<0.001) calculated for cases with SCHT in MOMetS+ group was much lower (r= -0.793; p<0.001) when all MOMetS+ cases were considered. Zinc is closely related to T4 and TSH therefore, it participates in thyroid hormone metabolism. Since thyroid hormones are required for zinc absorption, hypothyroidism can lead to zinc deficiency. The presence of strong correlations between TSH and zinc in SCHT cases found in both MOMetS- and MOMetS+ groups pointed out that MO children were under the threat of cardiovascular pathologies. The detection of the much stronger correlation in MOMetS+ group in comparison with the correlation found in MOMetS- group was the indicator of greater cardiovascular risk due to the presence of MetS. In MOMetS+ group, correlation in SCHT cases found higher than correlation calculated for all cases confirmed much higher cardiovascular risk due to the contribution of SCHT.Keywords: cardiovascular risk, children, morbid obesity, subclinical hypothyroidism, zinc
Procedia PDF Downloads 7824314 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems
Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei
Abstract:
A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow
Procedia PDF Downloads 33724313 Engoglaze Development for the Production of Glazed Porcelain Tiles
Authors: Sezgi Isik, Yasin Urersoy, Gizem Ustunel, Ilkyaz Yalcin
Abstract:
Improvement of the digital tile application, lots of process revolutions have occurred in the tile production. In order to create unique and inimitable designs, all the competitors start to try different applications. Both Europian and domestic ceramic producers focus on the deep and realistic surfaces. In this study, the trend of engoglaze, which is becoming widespread in glaze porcelain tile designs to create the most intensive colours, were investigated. The aim of the study is to develop engoglaze formulation that supports digital ink activation. Thermal expansion coefficient values were determined by a dilatometer. Chemical analyses and sintering behaviors of engoglazes were made by X-ray diffraction and heat microscopy analysis. According to these glaze formulation studies, it has been reported that using engoglaze could easily reduce the digital ink consumption of the design. On the other hand, the advantage of the production cost is gained, and deepness of the design is provided.Keywords: ceramic, engoglaze, digital ink activation, glazed porcelain tile
Procedia PDF Downloads 13324312 Development of Automatic Laser Scanning Measurement Instrument
Authors: Chien-Hung Liu, Yu-Fen Chen
Abstract:
This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW
Procedia PDF Downloads 36024311 Road Maintenance Management Decision System Using Multi-Criteria and Geographical Information System for Takoradi Roads, Ghana
Authors: Eric Mensah, Carlos Mensah
Abstract:
The road maintenance backlogs created as a result of deferred maintenance especially in developing countries has caused considerable deterioration of many road assets. This is usually due to difficulties encountered in selecting and prioritising maintainable roads based on objective criteria rather than some political or other less important criteria. In order to ensure judicious use of limited resources for road maintenance, five factors were identified as the most important criteria for road management within the study area. This was based on the judgements of 40 experts. The results were further used to develop weightings using the Multi-Criteria Decision Process (MCDP) to analyse and select road alternatives according to maintenance goal. Using Geographical Information Systems (GIS), maintainable roads were grouped using the Jenk’s natural breaks to allow for further prioritised in order of importance for display on a dashboard of maps, charts, and tables. This reduces the problems of subjective maintenance and road selections, thereby reducing wastage of resources and easing the maintenance process through an object organised spatial decision support system.Keywords: decision support, geographical information systems, multi-criteria decision process, weighted sum
Procedia PDF Downloads 37624310 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 42124309 On the Limits of Board Diversity: Impact of Network Effect on Director Appointments
Authors: Vijay Marisetty, Poonam Singh
Abstract:
Research on the effect of director's network connections on investor welfare is inconclusive. Some studies suggest that directors' connections are beneficial, in terms of, improving earnings information, firms valuation for new investors. On the other hand, adverse effects of directorial networks are also reported, in terms of higher earnings management, options back dating fraud, reduction in firm performance, lower board monitoring. From regulatory perspective, the role of directorial networks on corporate welfare is crucial. Cognizant of the possible ill effects associated with directorial networks, large investors, for better representation on the boards, are building their own database of prospective directors who are highly qualified, however, sourced from outside the highly connected directorial labor market. For instance, following Dodd-Frank Reform Act, California Public Employees' Retirement Systems (CalPERs) has initiated a database for registering aspiring and highly qualified directors to nominate them for board seats (proxy access). Our paper stems from this background and tries to explore the chances of outside directors getting directorships who lack established network connections. The paper is able to identify such aspiring directors' information by accessing a unique Indian data sourced from an online portal that aims to match the supply of registered aspirants with the growing demand for outside directors in India. The online portal's tie-up with stock exchanges ensures firms to access the new pool of directors. Such direct access to the background details of aspiring directors over a period of 10 years, allows us to examine the chances of aspiring directors without corporate network, to enter directorial network. Using this resume data of 16105 aspiring corporate directors in India, who have no prior board experience in the directorial labor market, the paper analyses the entry dynamics in corporate directors' labor market. The database also allows us to investigate the value of corporate network by comparing non-network new entrants with incumbent networked directors. The study develops measures of network centrality and network degree based on merit, i.e. network of individuals belonging to elite educational institutions, like Indian Institute of Management (IIM) or Indian Institute of Technology (IIT) and based on job or company, i.e. network of individuals serving in the same company. The paper then measures the impact of these networks on the appointment of first time directors and subsequent appointment of directors. The paper reports the following main results: 1. The likelihood of becoming a corporate director, without corporate network strength, is only 1 out 100 aspirants. This is inspite of comparable educational background and similar duration of corporate experience; 2. Aspiring non-network directors' elite educational ties help them to secure directorships. However, for post-board appointments, their newly acquired corporate network strength overtakes as their main determinant for subsequent board appointments and compensation. The results thus highlight the limitations in increasing board diversity.Keywords: aspiring corporate directors, board diversity, director labor market, director networks
Procedia PDF Downloads 31224308 Mirror-Like Effect Based on Correlations among Atoms
Authors: Qurrat-ul-Ain Gulfam, Zbigniew Ficek
Abstract:
The novel idea to use single atoms as highly reflecting mirrors has recently gained much attention. Usually, to observe the reflective nature of an atom, it is required to couple the atom to an external medium such that a directional spontaneous emission could be realized. We propose an alternative way to achieve the directional emission by considering a system of correlated atoms in free space. It is well known that mutually interacting atoms have a strong tendency to emit the radiation along particular discrete directions. That relieves one from the stingy condition of associating the atomic system to another media and facilitates the experimental implementation to a large degree. Moreover, realistic 3-dimensional collective emission can be taken into account in the dynamics. Two interesting spatial setups have been considered; one where a probe atom is confined in a linear cavity formed by two atomic mirrors and, the other where a probe atom faces a chain of correlated atoms. We observe an evidence of the mirror-like effect in a simple system of a chain of three atoms. The angular distribution of the radiation intensity observed in the far field is greatly affected by the atomic interactions. Hence, suitable directions for enhanced reflectivity can be determined.Keywords: atom-mirror effect, correlated system, dipole-dipole interactions, intensity
Procedia PDF Downloads 54924307 The Effect of a Multidisciplinary Spine Clinic on Treatment Rates and Lead Times to Care
Authors: Ishan Naidu, Jessica Ryvlin, Devin Videlefsky
Abstract:
Introduction: Back pain is a leading cause of years lived with disability and economic burden, exceeding over $20 billion in healthcare costs not including indirect costs such as absence from work and caregiving. The multifactorial nature of back pain leads to treatment modalities administered by a variety of specialists, which are often disjointed. Multiple studies have found that patients receiving delayed physical therapy for lower back pain had higher medical-related costs from increased health service utilization as well as a reduced improvement in pain severity compared to early management. Uncoordinated health care delivery can exacerbate the physical and economic toll of the chronic condition, thus improvements in interdisciplinary, shared decision-making may improve outcomes. Objective: To assess whether a multidisciplinary spine clinic (MSC), consisting of orthopedic surgery, neurosurgery, pain medicine, and physiatry, alters interventional and non-interventional planning and treatment compared to a traditional unidisciplinary spine clinic (USC) including only orthopedic surgery. Methods: We conducted a retrospective cohort study with patients initially presenting for spine care to orthopedic surgeons between July 1, 2018 to June 30, 2019. Time to treatment recommendation, time to treatment and rates of treatment recommendations were assessed, including physical therapy, injections and surgery. Treatment rates were compared between MSC and USC using Pearson’s chi-square test logistic regression. Time to treatment recommendation and time to treatment were compared using log-rank test and Cox proportional hazard regression. All analyses were repeated for the propensity score (PS) matched subsample. Results: This study included 1,764 patients, with 692 at MSC and 1,072 at USC. Patients in MSC were more likely to be recommended injection when compared to USC (8.5% vs. 5.4%, p=0.01). When adjusted for confounders, the likelihood of injection recommendation remained greater in MSC than USC (Odds ratio [OR]=2.22, 95% CI: (1.39, 3.53), p=0.001). MSC was also associated with a shorter time to receiving injection recommendation versus USC (median: 21 vs. 32 days, log-rank: p<0.001; hazard ratio [HR]=1.90, 95% CI: (1.25, 2.90), p=0.003). MSC was associated with a higher likelihood of injection treatment (OR=2.27, 95% CI: (1.39, 3.73), p=0.001) and shorter lead time (HR=1.98, 95% CI: (1.27, 3.09), p=0.003). PS-matched analyses yielded similar conclusions. Conclusions: Care delivered at a multidisciplinary spine clinic was associated with a higher likelihood of recommending injection and a shorter lead time to injection administration when compared to a traditional unidisciplinary spine surgery clinic. Multidisciplinary clinics may facilitate coordinated care amongst different specialties resulting in increased utilization of less invasive treatment modalities while also improving care efficiency. The multidisciplinary clinic model is an important advancement in care delivery and communication, which can be used as a powerful method of improving patient outcomes as treatment guidelines evolve.Keywords: coordinated care, epidural steroid injection, multi-disciplinary, non-invasive
Procedia PDF Downloads 14024306 Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems
Authors: Alhasan Hakami, Arun Kumar, Sung J. Shim, Yousef Abu Nahleh
Abstract:
In recent years, many high intensity earthquakes have occurred around the world, such as the 2011 earthquake in Tohoku, Japan. These large-scale disasters caused huge casualties and losses. In addition, inefficient disaster response operations also caused the second wave of casualties and losses, and expanded the damage. Effective disaster management can be used to respond to the chaotic situation, and reduce the damage. However, some inefficient disaster response operations are still used. Therefore, this case study chose the 921 earthquakes for analysing disaster emergency logistics problems and proposed the Soft Systems Methodology (SSM) to solve disaster emergency logistics problems. Moreover, it analyses the effect of human factors on system operation, and suggests a solution to improve the system.Keywords: soft systems methodology, emergency logistics, earthquakes, Japan, system operation
Procedia PDF Downloads 44024305 Development of an Intervention Program for Moral Education of Undergraduate Students of Sport Sciences and Physical Education
Authors: Najia Zulfiqar
Abstract:
Imparting moral education is the need of time, considering the obvious moral decline in society. Recent research shows the downfall of moral competence among university students. The main objective of the present study was to develop moral development intervention strategies for undergraduate students of Sports and Physical Education. Using an interpretative phenomenological approach, insight into field-specific moral issues was gained through interviews with 7 subject experts and a focus-group discussion session with 8 students. Two research assistants who were trained in qualitative interviewing collected, transcribed and analyzed data into the MAXQDA software using content and discourse analyses. The identified moral issues in Sports and Physical Education were sports gambling and betting, pay-for-play, doping, coach misconduct, tampering, cultural bias, gender equity/nepotism, bullying/discrimination, and harassment. Next, intervention modules were developed for each moral issue based on hypothetical situations, and followed by guided reflection and dilemma discussion questions. The third moral development strategy was community services that included posture screening, diet plan for different age groups, open fitness ground training, exercise camps for physical fitness, balanced diet awareness camp, gymnastic camp, shoe assessment as per health standards, and volunteering for public awareness at the playground, gymnasium, stadium, park, etc. The intervention modules were given to four subject specialists for expert validation who were from different backgrounds within Sport Sciences. Upon refinement and finalization, four students were presented with these intervention modules and questioned about accuracy, relevance, comprehension, and content organization. Iterative changes were made in the content of the intervention modules to tailor them to the moral development needs of undergraduate students. This intervention will strengthen positive moral values and foster mature decision-making about right and wrong acts. As this intervention is easy to apply as a remedial tool, academicians and policymakers can use this to promote students’ moral development.Keywords: community service, dilemma discussion, morality, physical education, university students.
Procedia PDF Downloads 7224304 Analyses of Reference Evapotranspiration in West of Iran under Climate Change
Authors: Saeed Jahanbakhsh Asl, Yaghob Dinpazhoh, Masoumeh Foroughi
Abstract:
Reference evapotranspiration (ET₀) is an important element in the water cycle that integrates atmospheric demands and surface conditions, and analysis of changes in ET₀ is of great significance for understanding climate change and its impacts on hydrology. As ET₀ is an integrated effect of climate variables, increases in air temperature should lead to increases in ET₀. ET₀ estimated by using the globally accepted Food and Agriculture Organization (FAO) Penman-Monteith (FAO-56 PM) method in 18 meteorological stations located in the West of Iran. The trends of ET₀ detected by using the Mann-Kendall (MK) test. The slopes of the trend lines were computed by using the Sen’s slope estimator. The results showed significant increasing as well as decreasing trends in the annual and monthly ET₀. However, ET₀ trends were increasing. In the monthly scale, the number of the increasing trends was more than the number of decreasing trends, in the majority of warm months of the year.Keywords: climate change, Mann–Kendall, Penman-Monteith method (FAO-56 PM), reference crop evapotranspiration
Procedia PDF Downloads 28924303 Failure Statistics Analysis of China’s Spacecraft in Full-Life
Authors: Xin-Yan Ji
Abstract:
The historical failures data of the spacecraft is very useful to improve the spacecraft design and the test philosophies and reduce the spacecraft flight risk. A study of spacecraft failures data was performed, which is the most comprehensive statistics of spacecrafts in China. 2593 on-orbit failures data and 1298 ground data that occurred on 150 spacecraft launched from 2000 to 2016 were identified and collected, which covered the navigation satellites, communication satellites, remote sensing deep space exploration manned spaceflight platforms. In this paper, the failures were analyzed to compare different spacecraft subsystem and estimate their impact on the mission, then the development of spacecraft in China was evaluated from design, software, workmanship, management, parts, and materials. Finally, the lessons learned from the past years show that electrical and mechanical failures are responsible for the largest parts, and the key solution to reduce in-orbit failures is improving design technology, enough redundancy, adequate space environment protection measures, and adequate ground testing.Keywords: spacecraft anomalies, anomalies mechanism, failure cause, spacecraft testing
Procedia PDF Downloads 11724302 Impacts of Racialization: Exploring the Relationships between Racial Discrimination, Racial Identity, and Activism
Authors: Brianna Z. Ross, Jonathan N. Livingston
Abstract:
Given that discussions of racism and racial tensions have become more salient, there is a need to evaluate the impacts of racialization among Black individuals. Racial discrimination has become one of the most common experiences within the Black American population. Likewise, Black individuals have indicated a need to address their racial identities at an earlier age than their non-Black peers. Further, Black individuals have been found at the forefront of multiple social and political movements, including but not limited to the Civil Rights Movement, Black Lives Matter, MeToo, and Say Her Name. Moreover, the present study sought to explore the predictive relationships that exist between racial discrimination, racial identity, and activism in the Black community. The results of standard and hierarchical regression analyses revealed that racial discrimination and racial identity significantly predict each other, but only racial discrimination is a significant predictor for the relationship to activism. Nonetheless, the results from this study will provide a basis for social scientists to better understand the impacts of racialization on the Black American population.Keywords: activism, racialization, racial discrimination, racial identity
Procedia PDF Downloads 15224301 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 6124300 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories
Authors: Heba M. Wagih, Hoda M. O. Mokhtar
Abstract:
Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.Keywords: human behavior trajectory, location-based social network, ontology, social network
Procedia PDF Downloads 45224299 Effect of Contaminants on the Behavior of Shallow Foundations
Authors: Ghazal Horiat, Alireza Hajiani Bushehrian
Abstract:
leakage of contamination from fuel or oil reservoirs can alter the geotechnical properties of the soil under their foundation and finally affect their performance in their service life. This article investigates the behavior of shallow foundations on the soil contaminated with diesel and kerosene using the Plaxis Tunnel3D V1.2 software. The information required for the numerical modeling in the paper was obtained from a similar experimental study. The present study seeks to compare the behavior of square foundations on sandy soil without contamination and the soil contaminated with different percentages of diesel and crude oil. The study was conducted on a small square foundation. The depth of the contamination was assumed constant, and the soil was evaluated with four different percentages of both contaminants. The results of analyses were plotted and assessed in the form of load-displacement curves for the foundation. The results indicate reduced bearing capacity of the foundation with the rise in the contamination percentage.Keywords: bearing capacity, contaminated soils, shallow foundations, 3D numerical analysis
Procedia PDF Downloads 14224298 An Accelerated Stochastic Gradient Method with Momentum
Authors: Liang Liu, Xiaopeng Luo
Abstract:
In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum
Procedia PDF Downloads 162