Search results for: tool validation
1859 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels
Authors: Abdulrahman Abdulrahman
Abstract:
A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile
Procedia PDF Downloads 2371858 Applying Kinect on the Development of a Customized 3D Mannequin
Authors: Shih-Wen Hsiao, Rong-Qi Chen
Abstract:
In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision
Procedia PDF Downloads 3061857 Collaborative Platform for Learning Basic Programming (Algorinfo)
Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez
Abstract:
The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.Keywords: collaborative platform, learning, feedback, programming, heat maps
Procedia PDF Downloads 1621856 Use of Cow Dung Residues of Biogas Plants for Sustainable Development of Rural Communities in Pakistan
Authors: Sumra Siddique Abbasi, Cheng Shikun
Abstract:
Biogas technology has rapidly developed in agriculture sector to upgrade and improve the life of farmers by providing them alternative and cost-effective energy source. Main purpose of this study is to understand the advantages of biogas plants by livestock owners either they are household-based livestock owners or may own farms for livestock. Similarly, a pertinent and major purpose of this research is to examine the factors affecting the decision to adopt biogas technologies at the household level. Based on the result, both public and private sector organization can make decisions related to the installation of biogas projects. Biogas is major energy source which can be used as an alternative and renewable energy source. This energy production technology can contribute in uplifting the lifestyle of farmers and can contribute into sustainable development of rural communities in Pakistan. People with livestock in any community in Pakistan can get benefit from biogas plants and it will contribute in sustainable development program which generates socio economic benefits, heath upgradation, cost effective energy source and positive impact on climate change or environmental issues. This study was conductive using survey method and descriptive analysis. One hundred fifty (150) farmers were the respondents who participated in survey. These farmers were from Layyah district of Punjab and were selected using snowball sampling technique. To generate the results, SPSS tool was used for data analysis.Keywords: biogas plant, animal dunk, renewable energy, pakistan
Procedia PDF Downloads 711855 Predictive Analytics in Oil and Gas Industry
Authors: Suchitra Chnadrashekhar
Abstract:
Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.Keywords: hydrocarbon, information technology, SAS, predictive analytics
Procedia PDF Downloads 3601854 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 2921853 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics
Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono
Abstract:
In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design
Procedia PDF Downloads 1071852 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling
Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky
Abstract:
Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.Keywords: nano-particles, formation damage, permeability, fines migration
Procedia PDF Downloads 6211851 Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites
Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez
Abstract:
The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods.Keywords: coir fiber, polyester composites, low velocity impact, Charpy impact test, drop-weight impact test
Procedia PDF Downloads 4521850 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 4691849 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview
Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes
Abstract:
Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality
Procedia PDF Downloads 2571848 Human Development Outcomes and Macroeconomic Indicators Nexus in Nigeria: An Empirical Investigation
Authors: Risikat Oladoyin S. Dauda, Onyebuchi Iwegbu
Abstract:
This study investigates the response of human development outcomes to selected macroeconomic indicators in Nigeria. Human development outcomes is measured by human development index while the selected macroeconomic variables are inflation rate, real interest rate, government capital expenditure, real exchange rate, current account balance, and savings. Structural Vector Autoregression (SVAR) technique is employed in examining the response of human development index to the macroeconomic shocks. The result from the forecast error variance decomposition and Impulse-Response analysis reveals that fiscal policy (government capital expenditure) shock is the greatest determinant of human development outcomes. This result reiterates the role which the government plays in improving the welfare of the citizenry. The fiscal policy tool is pivotal in human development which comes in the form of investment in education, health, housing, and infrastructure. Further conclusion drawn from this study is that human development outcome positively and significantly responds to shocks from real interest rate, a monetary policy transmission variable and is felt greatly in the short run period. The policy implication of this study is that if capital budget implementation falls below expectations, human development will be engendered. Hence, efforts should be made to ensure that full implementation and appraisal of government capital expenditure is taken sacrosanct as any shock from such plan, engenders human development outcome.Keywords: human development outcome, macroeconomic outcomes, structural vector autoregression, SVAR
Procedia PDF Downloads 1551847 Optimization of Multi Commodities Consumer Supply Chain: Part 1-Modelling
Authors: Zeinab Haji Abolhasani, Romeo Marian, Lee Luong
Abstract:
This paper and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain problems known as Multi- Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem belongs to production-distribution (P-D) planning category. It aims to determine facilities location, consumers’ allocation, and facilities configuration to minimize total cost (CT) of the entire network. These facilities can be manufacturer units (MUs), distribution centres (DCs), and retailers/end-users (REs) but not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a mixed integer non-linear programming (MINP) mathematical model is developed. Then, system’s behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization technique. Due to the large size of the problem, and the uncertainties in finding the most optimum solution, integration of modeling and simulation methodologies is proposed followed by developing new approach known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the methodology of this research. In part II, MCCSC is simulated using discrete-event simulation (DES) device within an integrated environment of SimEvents and Simulink of MATLAB® software package followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators on the obtained optimal/near optimal solution by the simulation model will be discussed in part III.Keywords: supply chain, genetic algorithm, optimization, simulation, discrete event system
Procedia PDF Downloads 3161846 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1491845 Cone Beam Computed Tomography: A Useful Diagnostic Tool to Determine Root Canal Morphology in a Sample of Egyptian Population
Authors: H. El-Messiry, M. El-Zainy, D. Abdelkhalek
Abstract:
Cone-beam computed tomography (CBCT) provides high-quality 3-dimensional images of dental structures because of its high spatial resolution. The study of dental morphology is important in research as it provides information about diversities within a population. Many studies have shown different shapes and numbers of roots canals among different races, especially in molars. The aim of this study was to determine the morphology of root canals of mandibular first and third molars in a sample of Egyptian population using CBCT scanning. Fifty mandibular first Molars (M1) and fifty mandibular third (M3) extracted molars were collected. Thick rectangular molds were made using pink wax to hold the samples. Molars were embedded in the wax mold by aligning them in rows leaving arbitrary 0.5cm space between them. The molds with the samples in were submitted for CBCT scan. The number and morphology of root canals were assessed and classified according to Vertucci's classification. The mesial and the distal roots were examined separately. Finally, data was analyzed using Fisher exact test. The most prevalent mesial root canal frequency in M1 was type IV (60%) and type II (40 %), while M3 showed prevalence of type I (40%) and II (40%). Distal root canal morphology showed prevalence of type I in both M1 (66%) and M3 (86%). So, it can be concluded that CBCT scanning provides supplemental information about the root canal configurations of mandibular molars in a sample of Egyptian population. This study may help clinicians in the root canal treatment of mandibular molars.Keywords: cone beam computed tomography, mandibular first molar, mandibular third molar, root canal morphology
Procedia PDF Downloads 3181844 Risk of Type 2 Diabetes among Female College Students in Saudi Arabia
Authors: Noor A. Hakim
Abstract:
Several studies in the developed countries investigated the prevalence of diabetes and obesity among individuals from different socioeconomic levels and suggested lower rates among the higher socioeconomic groups. However, studies evaluating diabetes risk and prevalence of obesity among the population of middle- to high-income status in developing countries are limited. The aim of this study is to evaluate the risk of developing type-2 diabetes mellitus (T2DM) and the weight status of female students in private universities in Jeddah City, Saudi Arabia. This is a cross-sectional study of 121 female students aged ≤ 25 years old was conducted; participants were recruited from two private universities. Diabetes risk was evaluated using the Finnish Diabetes Risk Score. Anthropometric measurements were assessed, and body-mass-index (BMI) was calculated. Diabetes risk scores indicated that 35.5% of the female students had a slightly elevated risk, and 10.8% had a moderate to high risk to develop T2DM. One-third of the females (29.7%) were overweight or obese. The majority of the normal weight and underweight groups were classified to have a low risk of diabetes, 22.2% of the overweight participants were classified to have moderate to high risk, and over half of the obese participants (55.5%) were classified to be at the moderate to high-risk category. Conclusions: Given that diabetes risk is alarming among the population in Saudi Arabia, healthcare providers should utilize a simple screening tool to identify high-risk individuals and initiate diabetes preventive strategies to prevent, or delay, the onset of T2DM and improve the quality of life.Keywords: risk of type 2 diabetes, weight status, college students, socioeconomic status
Procedia PDF Downloads 1791843 In-Fun-Mation: Putting the Fun in Information Retrieval at the Linnaeus University, Sweden
Authors: Aagesson, Ekstrand, Persson, Sallander
Abstract:
A description of how a team of librarians at Linnaeus University Library in Sweden utilizes a pedagogical approach to deliver engaging digital workshops on information retrieval. The team consists of four librarians supporting three different faculties. The paper discusses the challenges faced in engaging students who may perceive information retrieval as a boring and difficult subject. The paper emphasizes the importance of motivation, inclusivity, constructive feedback, and collaborative learning in enhancing student engagement. By employing a two-librarian teaching model, maintaining a lighthearted approach, and relating information retrieval to everyday experiences, the team aimed to create an enjoyable and meaningful learning experience. The authors describe their approach to increase student engagement and learning outcomes through a three-phase workshop structure: before, during, and after the workshops. The "flipped classroom" method was used, where students were provided with pre-workshop materials, including a short film on information search and encouraged to reflect on the topic using a digital collaboration tool. During the workshops, interactive elements such as quizzes, live demonstrations, and practical training were incorporated, along with opportunities for students to ask questions and provide feedback. The paper concludes by highlighting the benefits of the flipped classroom approach and the extended learning opportunities provided by the before and after workshop phases. The authors believe that their approach offers a sustainable alternative for enhancing information retrieval knowledge among students at Linnaeus University.Keywords: digital workshop, flipped classroom, information retrieval, interactivity, LIS practitioner, student engagement
Procedia PDF Downloads 661842 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia
Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze
Abstract:
Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image
Procedia PDF Downloads 2741841 Rear Seat Belt Use in Developing Countries: A Case Study from the United Arab Emirates
Authors: Salaheddine Bendak, Sara S. Alnaqbi
Abstract:
The seat belt is a vital tool in improving traffic safety conditions and minimising injuries due to traffic accidents. Most developing countries are facing a big problems associated with the human and financial losses due to traffic accidents. One way to minimise these losses is the use of seat belts by passengers both in the front and rear seats of a vehicle; however, at the same time, close to nothing is known about the rates of seat belt utilisation among rear seat passengers in many developing countries. Therefore, there is a need to estimate these rates in order to know the extent of this problem and how people interact with traffic safety measures like seat belts and find demographic characteristics that contribute to wearing or non-wearing of seat belts with the aim of finding solutions to improve wearing rates. In this paper, an observational study was done to gather data on restraints use in motor vehicle rear seats in eight observational stations in a rapidly developing country, the United Arab Emirates (UAE), and estimate a use rate for the whole country. Also, a questionnaire was used in order to study demographic characteristics affecting the wearing of seatbelts in rear seats. Results of the observational study showed that the overall wearing/usage rate was 12.3%, which is considered very low when compared to other countries. Survey results show that single, male, less educated passengers from Arab and South Asian backgrounds use seat belts reportedly less than others. Finally, solutions are put forward to improve this wearing rate based on the results of this study.Keywords: Seat belts, traffic crashes, United Arab Emirates, rear seats
Procedia PDF Downloads 2501840 Label Free Detection of Small Molecules Using Surface-Enhanced Raman Spectroscopy with Gold Nanoparticles Synthesized with Various Capping Agents
Authors: Zahra Khan
Abstract:
Surface-Enhanced Raman Spectroscopy (SERS) has received increased attention in recent years, focusing on biological and medical applications due to its great sensitivity as well as molecular specificity. In the context of biological samples, there are generally two methodologies for SERS based applications: label-free detection and the use of SERS tags. The necessity of tagging can make the process slower and limits the use for real life. Label-free detection offers the advantage that it reports direct spectroscopic evidence associated with the target molecule rather than the label. Reproducible, highly monodisperse gold nanoparticles (Au NPs) were synthesized using a relatively facile seed-mediated growth method. Different capping agents (TRIS, citrate, and CTAB) were used during synthesis, and characterization was performed. They were then mixed with different analyte solutions before drop-casting onto a glass slide prior to Raman measurements to see which NPs displayed the highest SERS activity as well as their stability. A host of different analytes were tested, both non-biomolecules and biomolecules, which were all successfully detected using this method at concentrations as low as 10-3M with salicylic acid reaching a detection limit in the nanomolar range. SERS was also performed on samples with a mixture of analytes present, whereby peaks from both target molecules were distinctly observed. This is a fast and effective rapid way of testing samples and offers potential applications in the biomedical field as a tool for diagnostic and treatment purposes.Keywords: gold nanoparticles, label free, seed-mediated growth, SERS
Procedia PDF Downloads 1251839 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria
Authors: Segun Steven Bodunde
Abstract:
Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.Keywords: mudlogging, chromatograph, drilling fluids, calcareous
Procedia PDF Downloads 1501838 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration
Authors: Usman Jilani, Ibad Khurram, Irshad Hussain
Abstract:
Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar
Procedia PDF Downloads 3761837 Salvage Reconstruction of Intraoral Dehiscence following Free Fibular Flap with a Superficial Temporal Artery Islandized Flap (STAIF)
Authors: Allyne Topaz
Abstract:
Intraoral dehiscence compromises free fibula flaps following mandibular reconstruction. Salivary contamination risks thrombosis of microvascular anastomosis and hardware infection. The superficial temporal artery islandized flap (STAIF) offers an efficient, non-microsurgical reconstructive option for regaining intraoral competency for a time sensitive complication. Methods: The STAIF flap is based on the superficial temporal artery coursing along the anterior hairline. The flap is mapped with assistance of the doppler probe. The width of the skin paddle is taken based on the ability to close the donor site. The flap is taken down to the level of the zygomatic arch and tunneled into the mouth. Results: We present a case of a patient who underwent mandibular reconstruction with a free fibula flap after a traumatic shotgun wound. The patient developed repeated intraoral dehiscence following failed local buccal and floor of mouth flaps leading to salivary contamination of the flap and hardware. The intraoral dehiscence was successfully salvaged on the third attempt with a STAIF flap. Conclusions: Intraoral dehiscence creates a complication requiring urgent attention to prevent loss of free fibula flap after mandibular reconstruction. The STAIF is a non-microsurgical option for restoring intraoral competency. This robust, axially vascularized skin paddle may be split for intra- and extra-oral coverage, as needed and can be an important tool in the reconstructive armamentarium.Keywords: free fibula flap, intraoral dehiscence, mandibular reconstruction, superficial temporal artery islandized flap
Procedia PDF Downloads 1331836 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy
Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather
Abstract:
Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging
Procedia PDF Downloads 2481835 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi, Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria
Procedia PDF Downloads 1201834 Development and Validation of a Quantitative Measure of Engagement in the Analysing Aspect of Dialogical Inquiry
Authors: Marcus Goh Tian Xi, Alicia Chua Si Wen, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee
Abstract:
The Map of Dialogical Inquiry provides a conceptual look at the underlying nature of future-oriented skills. According to the Map, learning is learner-oriented, with conversational time shifted from teachers to learners, who play a strong role in deciding what and how they learn. For example, in courses operating on the principles of Dialogical Inquiry, learners were able to leave the classroom with a deeper understanding of the topic, broader exposure to differing perspectives, and stronger critical thinking capabilities, compared to traditional approaches to teaching. Despite its contributions to learning, the Map is grounded in a qualitative approach both in its development and its application for providing feedback to learners and educators. Studies hinge on openended responses by Map users, which can be time consuming and resource intensive. The present research is motivated by this gap in practicality by aiming to develop and validate a quantitative measure of the Map. In addition, a quantifiable measure may also strengthen applicability by making learning experiences trackable and comparable. The Map outlines eight learning aspects that learners should holistically engage. This research focuses on the Analysing aspect of learning. According to the Map, Analysing has four key components: liking or engaging in logic, using interpretative lenses, seeking patterns, and critiquing and deconstructing. Existing scales of constructs (e.g., critical thinking, rationality) related to these components were identified so that the current scale could adapt items from. Specifically, items were phrased beginning with an “I”, followed by an action phrase, to fulfil the purpose of assessing learners' engagement with Analysing either in general or in classroom contexts. Paralleling standard scale development procedure, the 26-item Analysing scale was administered to 330 participants alongside existing scales with varying levels of association to Analysing, to establish construct validity. Subsequently, the scale was refined and its dimensionality, reliability, and validity were determined. Confirmatory factor analysis (CFA) revealed if scale items loaded onto the four factors corresponding to the components of Analysing. To refine the scale, items were systematically removed via an iterative procedure, according to their factor loadings and results of likelihood ratio tests at each step. Eight items were removed this way. The Analysing scale is better conceptualised as unidimensional, rather than comprising the four components identified by the Map, for three reasons: 1) the covariance matrix of the model specified for the CFA was not positive definite, 2) correlations among the four factors were high, and 3) exploratory factor analyses did not yield an easily interpretable factor structure of Analysing. Regarding validity, since the Analysing scale had higher correlations with conceptually similar scales than conceptually distinct scales, with minor exceptions, construct validity was largely established. Overall, satisfactory reliability and validity of the scale suggest that the current procedure can result in a valid and easy-touse measure for each aspect of the Map.Keywords: analytical thinking, dialogical inquiry, education, lifelong learning, pedagogy, scale development
Procedia PDF Downloads 911833 I Feel Pretty: Using Discretization to Unpack Gender Disparity in Musical Theatre - A Study of Leonard Bernstein’s West Side Story
Authors: Erin McKellar, Narelle Yeo
Abstract:
Gender disparity can be found in the representation of the female characters in Leonard Bernstein’s musical West Side Story. As a postmodern composer, Bernstein was open about his social activism, yet did not consider his compositional portrayal of female characters as part of that activism. Using discretization as an analysis tool, this thesis explores the melodic contours of male and female songs in West Side Story to show differences in complexity between male and female characterisation. The analysis explores the intervallic relationship between the vocal line and melodic color in relation to the accompaniment harmony, taking into consideration the use of consonance and dissonance. West Side Story is commonly known for its distinct use of the tritone motif and its inherent dissonance. It is evident when reviewing the findings of this study that there is a distinct disparity between male-led and female-led music. The male-led numbers consistently adhere to a dissonant aesthetic with the tritone motif implemented in all of the extracted songs. By contrast, the female songs remain consonant with simple intervallic movements. By examining the results of this study through the lens of Equality Feminism, this thesis finds that Bernstein has simplified the characterisations of the female leads. The thesis further proposes that without cognisant consideration of the compositional portrayal of women, the musical theatre will continue to reinforce gender stereotypes, as evident through this study of Bernstein’s West Side Story.Keywords: music theatre, gender bias, composition, Leonard Bernstein
Procedia PDF Downloads 1611832 Expert System for Road Bridge Constructions
Authors: Michael Dimmer, Holger Flederer
Abstract:
The basis of realizing a construction project is a technically flawless concept which satisfies conditions regarding environment and costs, as well as static-constructional terms. The presented software system actively supports civil engineers during the setup of optimal designs, by giving advice regarding durability, life-cycle costs, sustainability and much more. A major part of the surrounding conditions of a design process is gathered and assimilated by experienced engineers subconsciously. It is a question about eligible building techniques and their practicability by considering emerging costs. Planning engineers have acquired many of this experience during their professional life and use them for their daily work. Occasionally, the planning engineer should disassociate himself from his experience to be open for new and better solutions which meet the functional demands, as well. The developed expert system gives planning engineers recommendations for preferred design options of new constructions as well as for existing bridge constructions. It is possible to analyze construction elements and techniques regarding sustainability and life-cycle costs. This way the software provides recommendations for future constructions. Furthermore, there is an option to design existing road bridges especially for heavy duty transport. This implies a route planning tool to get quick and reliable information as to whether the bridge support structures of a transport route have been measured sufficiently for a certain heavy duty transport. The use of this expert system in bridge planning companies and building authorities will save costs massively for new and existent bridge constructions. This is achieved by consequently considering parameters like life-cycle costs and sustainability for its planning recommendations.Keywords: expert system, planning process, road bridges, software system
Procedia PDF Downloads 2771831 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 571830 Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran
Authors: M. Sanjarani, A. Danehkar, A. Mashincheyan, A. H. Javid, S. M. R. Fatemi
Abstract:
The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management.Keywords: ESI, oil spill, GIS, Chabahar Bay, Iran
Procedia PDF Downloads 366