Search results for: fundamental models
4076 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: dielectric analysis, electronic packages, epoxy molding compounds, transfer molding process
Procedia PDF Downloads 3824075 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1014074 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 1294073 Mental Illness, Dargahs and Healing: A Qualitative Exploration in a North Indian City
Authors: Reetinder Kaur, R. K. Pathak
Abstract:
Mental health is recognised as an important global health concern. World Health Organisation in 2004 estimated that neuropsychiatric illnesses in India account for 10.8 percent of the global burden. The prevalence of serious mental illnesses is estimated as 6.5 percent by National Commission of Macroeconomics and Health in 2005. India spends only 0.06 percent of its health budget on mental health. One of the major problems that exist in Indian mental health care is the treatment gap due to scarcity of manpower, inadequate infrastructure and deficiencies in policy initiatives. As a result, traditional healing is a popular resource for mentally ill individuals and their families. The various traditional healing resources include faith healers, healers at temples and Dargahs. Chandigarh is a Union Territory located in North India. It has surplus manpower and infrastructure available for mental health care. Inspite of availability of mental health care services, mentally ill individuals and their families seek help from traditional healers at various Dargahs within or outside Chandigarh. For the present study, the data was collected from four dargahs. A total of thirty patients medically diagnosed with various mental illnesses, their family members who accompanied them and healers were part of this study. The aim of the study was to: Understand the interactions between healer, patient and family members during the course of treatment, understand explanations of mental illnesses and analyse the healing practices in context of culture. The interviews were conducted using an interview guide for the three sets of informants: Healers, patients and family members. The interview guide for healer focussed on the healing process, healer’s understanding of patient’s explanatory models, healer’s knowledge about mental illnesses and types of these illnesses cured by the healer. The interview guide for patients and family members focussed on their understanding of the symptoms, explanations for illness and help-seeking behaviour. The patients were observed over the weeks (every Thursday, the day of pir and healing) during their visits to the healer. Detailed discussions were made with the healer regarding the healing process and benefits of healing. The data was analysed thematically and the themes: The role of sacred, holistic healing, healer’s understanding of patient’s explanatory models of mental illness, the patient’s, and family’s understanding of mental illnesses, healer’s knowledge about mental illnesses, types of mental illnesses cured by the healer, bad dreams and their interpretation emerged. From the analysis of data, it was found that the healers concentrate their interventions in the social arena, ‘curing’ distressed patients by bringing significant changes in their social environment. It is suggested that in order to make the mental health care services effective in India, the collaboration between healers and psychiatrist is essential. However, certain specifications need to be made to make this kind of collaboration successful and beneficial for the stakeholders.Keywords: Dargah, mental illness, traditional healing, policy
Procedia PDF Downloads 3194072 Journey of Striped Fabric in the History and Designs of Evening Dress from Striped Fabric
Authors: Filiz Erden, E. Elhan Özus, Melek Tufan
Abstract:
If the history of clothing is examined, it is seen that clothing has gone through many stages from ancient times to present. Each nation has shaped its clothing according to its own traditions, customs, beliefs, living conditions. While clothes are being prepared, attributing different meanings to colors and patterns of the fabrics has become a common characteristic of many cultures. It is known that cloths worn in special days such as mourning, weddings, engagements, festivals and business vary according to their models, fabrics, colors and patterns. We witness use of cloth to differentiate people belonging to certain classes from nobles throughout the history. Striped fabric has carried many different meanings and uses throughout the history. In this study, place has been given to the important periods related to the history of striped fabric by examining current meaning of the striped fabric and dimensions of its meanings in the past. Also, evening dresses have been designed by using striped fabrics in order to reveal how striped fabric is liked and demanded after it coped with difficulties and being despised in its history.Keywords: striped fabric, design, clothing, fasion
Procedia PDF Downloads 3114071 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.Keywords: cloud-based e-learning, e-learning, cloud computing application, smart learning
Procedia PDF Downloads 4084070 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia
Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati
Abstract:
Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards
Procedia PDF Downloads 4684069 Strategic Model of Implementing E-Learning Using Funnel Model
Authors: Mohamed Jama Madar, Oso Wilis
Abstract:
E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.Keywords: e-learning, pedagogical, technology, strategy
Procedia PDF Downloads 4524068 Consumer Cognitive Models of Vaccine Attitudes: Behavioral Informed Strategies Promoting Vaccination Policy in Greece
Authors: Halkiopoulos Constantinos, Koutsopoulou Ioanna, Gkintoni Evgenia, Antonopoulou Hera
Abstract:
Immunization appears to be an essential part of health care service in times of pandemics such as covid-19 and aims not only to protect the health of the population but also the health and sustainability of the economies of the countries affected. It is reported that more than 3.44 billion doses have been administered so far, which accounts for 45 doses for 100 people. Vaccination programs in various countries have been promoted and accepted by people differently and therefore they proceeded in different ways and speed; most countries directing them towards people with vulnerable chronic or recent health statuses. Large scale restriction measures or lockdown, personal protection measures such as masks and gloves and a decrease in leisure and sports activities were also implemented around the world as part of the protection health strategies against the covid-19 pandemic. This research aims to present an analysis based on variations on people’s attitudes towards vaccination based on demographic, social and epidemiological characteristics, and health status on the one hand and perception of health, health satisfaction, pain, and quality of life on the other hand. 1500 Greek e-consumers participated in the research, mainly through social media who took part in an online-based survey voluntarily. The questionnaires included demographic, social and medical characteristics of the participants, and questions asking people’s willingness to be vaccinated and their opinion on whether there should be a vaccine against covid-19. Other stressor factors were also reported in the questionnaires and participants’ loss of someone close due to covid-19, or staying at home quarantine due to being infected from covid-19. WHOQUOL-BREF and GLOBAL PSYCHOTRAUMA SCREEN- GPS were used with kind permission from WHO and from the International Society for Traumatic Stress Studies in this study. Attitudes towards vaccination varied significantly related to aging, level of education, health status and consumer behavior. Health professionals’ attitudes also varied in relation to age, level of education, profession, health status and consumer needs. Vaccines have been the most common technological aid of human civilization so far in the fight against viruses. The results of this study can be used for health managers and digital marketers of pharmaceutical companies and also other staff involved in vaccination programs and for designing health policy immunization strategies during pandemics in order to achieve positive attitudes towards vaccination and larger populations being vaccinated in shorter periods of time after the break out of pandemic. Health staff needs to be trained, aided and supervised to go through with vaccination programs and to be protected through vaccination programs themselves. Feedback in each country’s vaccination program, short backs, deficiencies and delays should be addressed and worked out.Keywords: consumer behavior, cognitive models, vaccination policy, pandemic, Covid-19, Greece
Procedia PDF Downloads 1854067 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution
Authors: Muhammad Farooq, Ahtasham Gul
Abstract:
To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian
Procedia PDF Downloads 724066 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber
Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee
Abstract:
In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated numerically. The physical model is a square enclosure with insulated top and bottom horizontal walls while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60, and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in the different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.Keywords: nanofluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number
Procedia PDF Downloads 3954065 In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintain Within the Gut Microbiota and Its Potential Pathogenicity
Authors: Jordan Chamarande, Lisiane Cunat, Corentine Alauzet, Catherine Cailliez-Grimal
Abstract:
Gut microbiota (GM) is now considered a new organ mainly due to the microorganism’s specific biochemical interaction with its host. Although mechanisms underlying host-microbiota interactions are not fully described, it is now well-defined that cell surface molecules and structures of the GM play a key role in such relation. The study of surface structures of GM members is also fundamental for their role in the establishment of species in the versatile and competitive environment of the digestive tract and as a potential virulence factor. Among these structures are capsular polysaccharides (CPS), fimbriae, pili and lipopolysaccharides (LPS), all well-described for their central role in microorganism colonization and communication with host epithelium. The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and as a new potential biotherapeutic product. However, to the best of the authors’ knowledge, the cell surface molecules and structures of P. distasonis that allow its maintain within the GM are not identified. Moreover, although P. distasonis is strongly recognized as intestinal commensal species with benefits for its host, it has also been recognized as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of the capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-Typing classification in order to better understand and characterize the beneficial/pathogenic behaviour related to P. distasonis strains. In context, 2 different types of fimbriae, 3 of pilus and up to 14 capsular polysaccharide loci, have been identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-Type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed in P. distasonis adhesion capacities and its potential pathogenicity.Keywords: gut microbiota, Parabacteroides distasonis, capsular polysaccharide, fimbriae, pilus, O-antigen, pathogenicity, probiotic, comparative genomics
Procedia PDF Downloads 1034064 Enhancing Teaching of Engineering Mathematics
Authors: Tajinder Pal Singh
Abstract:
Teaching of mathematics to engineering students is an open ended problem in education. The main goal of mathematics learning for engineering students is the ability of applying a wide range of mathematical techniques and skills in their engineering classes and later in their professional work. Most of the undergraduate engineering students and faculties feels that no efforts and attempts are made to demonstrate the applicability of various topics of mathematics that are taught thus making mathematics unavoidable for some engineering faculty and their students. The lack of understanding of concepts in engineering mathematics may hinder the understanding of other concepts or even subjects. However, for most undergraduate engineering students, mathematics is one of the most difficult courses in their field of study. Most of the engineering students never understood mathematics or they never liked it because it was too abstract for them and they could never relate to it. A right balance of application and concept based teaching can only fulfill the objectives of teaching mathematics to engineering students. It will surely improve and enhance their problem solving and creative thinking skills. In this paper, some practical (informal) ways of making mathematics-teaching application based for the engineering students is discussed. An attempt is made to understand the present state of teaching mathematics in engineering colleges. The weaknesses and strengths of the current teaching approach are elaborated. Some of the causes of unpopularity of mathematics subject are analyzed and a few pragmatic suggestions have been made. Faculty in mathematics courses should spend more time discussing the applications as well as the conceptual underpinnings rather than focus solely on strategies and techniques to solve problems. They should also introduce more ‘word’ problems as these problems are commonly encountered in engineering courses. Overspecialization in engineering education should not occur at the expense of (or by diluting) mathematics and basic sciences. The role of engineering education is to provide the fundamental (basic) knowledge and to teach the students simple methodology of self-learning and self-development. All these issues would be better addressed if mathematics and engineering faculty join hands together to plan and design the learning experiences for the students who take their classes. When faculties stop competing against each other and start competing against the situation, they will perform better. Without creating any administrative hassles these suggestions can be used by any young inexperienced faculty of mathematics to inspire engineering students to learn engineering mathematics effectively.Keywords: application based learning, conceptual learning, engineering mathematics, word problem
Procedia PDF Downloads 2324063 Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device
Authors: Wen Liang Chang
Abstract:
In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples.Keywords: second-hand device, preventive maintenance, replacement time, device failure
Procedia PDF Downloads 4684062 Transient Response of Elastic Structures Subjected to a Fluid Medium
Authors: Helnaz Soltani, J. N. Reddy
Abstract:
Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response
Procedia PDF Downloads 5684061 Potential Impact of Climate Change on Suspended Sediment Changes in Mekong River Basin
Authors: Zuliziana Suif, Nordila Ahmad, Sengheng Hul
Abstract:
This paper evaluates the impact of climate change on suspended sediment changes in the Mekong River Basin. In this study, the distributed process-based sediment transport model is used to examine the potential impact of future climate on suspended sediment dynamic changes in the Mekong River Basin. To this end, climate scenarios from two General Circulation Model (GCMs) were considered in the scenario analysis. The simulation results show that the sediment load and concentration shows 0.64% to 69% increase in the near future (2041-2050) and 2.5% to 95% in the far future (2090- 2099). As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in sediment management. Overall, the changes in sediment load and concentration can have a great implication for related sediment management.Keywords: climate change, suspended sediment, Mekong River Basin, GCMs
Procedia PDF Downloads 4434060 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data
Authors: Rana Rimawi, Ayman Baklizi
Abstract:
Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation
Procedia PDF Downloads 1984059 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1774058 The Fragility of Sense: The Twofold Temporality of Embodiment and Its Role for Depression
Authors: Laura Bickel
Abstract:
This paper aims to investigate to what extent Merleau-Ponty’s philosophy of body memory serves as a viable resource for the enactive approach to cognitive science and its first-person experience-based research on ‘recurrent depressive disorder’ coded F33 in ICD-10. In pursuit of this goal, the analysis begins by revisiting the neuroreductive paradigm. This paradigm serves biological psychiatry to explain the condition of vital contact in terms of underlying neurophysiological mechanisms. It is demonstrated that the neuroreductive model cannot sufficiently account for the depressed person’s episodical withdrawal in causal terms. The analysis of the irregular loss of vital resonance requires integrating the body as the subject of experience and its phenomenological time. Then, it is shown that the enactive approach to depression as disordered sense-making is a promising alternative. The enactive model of perception implies that living beings do not register pre-existing meaning ‘out there’ but unfold ‘sense’ in their action-oriented response to the world. For the enactive approach, Husserl’s passive synthesis of inner time consciousness is fundamental for what becomes perceptually present for action. It seems intuitive to bring together the enactive approach to depression with the long-standing view in phenomenological psychopathology that explains the loss of vital contact by appealing to the disruption of the temporal structure of consciousness. However, this paper argues that the disruption of the temporal structure is not justified conceptually. Instead, one may integrate Merleau-Ponty’s concept of the past as the unconscious into the enactive approach to depression. From this perspective, the living being’s experiential and biological past inserts itself in the form of habit and bodily skills and ensures action-oriented responses to the environment. Finally, it is concluded that the depressed person’s withdrawal indicates the impairment of this application process. The person suffering from F33 cannot actualize sedimented meaning to respond to the valences and tasks of a given situation.Keywords: depression, enactivism, neuroreductionsim, phenomenology, temporality
Procedia PDF Downloads 1324057 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 2274056 Institutional Capacity and Corruption: Evidence from Brazil
Authors: Dalson Figueiredo, Enivaldo Rocha, Ranulfo Paranhos, José Alexandre
Abstract:
This paper analyzes the effects of institutional capacity on corruption. Methodologically, the research design combines both descriptive and multivariate statistics to examine two original datasets based on secondary data. In particular, we employ a principal component model to estimate an indicator of institutional capacity for both state audit institutions and subnational judiciary courts. Then, we estimate the effect of institutional capacity on two dependent variables: (1) incidence of administrative irregularities and (2) time elapsed to judge corruption cases. The preliminary results using ordinary least squares, negative binomial and Tobit models suggest the same conclusions: higher the institutional audit capacity, higher is the probability of detecting a corruption case. On the other hand, higher the institutional capacity of state judiciary, the lower is the time to judge corruption cases.Keywords: institutional capacity, corruption, state level institutions, evidence from Brazil
Procedia PDF Downloads 3724055 Experimental and CFD of Desgined Small Wind Turbine
Authors: Tarek A. Mekail, Walid M. A. Elmagid
Abstract:
Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good.Keywords: small wind turbine, CFD of wind turbine, CFD, performance of wind turbine, test of small wind turbine, wind turbine aerodynamic, 3D model
Procedia PDF Downloads 5434054 What Factors Contributed to the Adaptation Gap during School Transition in Japan?
Authors: Tadaaki Tomiie, Hiroki Shinkawa
Abstract:
The present study was aimed to examine the structure of children’s adaptation during school transition and to identify a commonality and dissimilarity at the elementary and junior high school. 1,983 students in the 6th grade and 2,051 students in the 7th grade were extracted by stratified two-stage random sampling and completed the ASSESS that evaluated the school adaptation from the view point of ‘general satisfaction’, ‘teachers’ support’, ‘friends’ support’, ‘anti-bullying relationship’, ‘prosocial skills’, and ‘academic adaptation’. The 7th graders tend to be worse adaptation than the 6th graders. A structural equation modeling showed the goodness of fit for each grades. Both models were very similar but the 7th graders’ model showed a lower coefficient at the pass from ‘teachers’ support’ to ‘friends’ support’. The role of ‘teachers’ support’ was decreased to keep a good relation in junior high school. We also discussed how we provide a continuous assistance for prevention of the 7th graders’ gap.Keywords: school transition, social support, psychological adaptation, K-12
Procedia PDF Downloads 3854053 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 2674052 Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites
Authors: V. K. Srivastava
Abstract:
Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers.Keywords: agglomeration, elastic modulus, epoxy resin, graphene nanoplatelet, loss modulus, nanohardness, storage modulus
Procedia PDF Downloads 2644051 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4794050 Seawater Changes' Estimation at Tidal Flat in Korean Peninsula Using Drone Stereo Images
Authors: Hyoseong Lee, Duk-jin Kim, Jaehong Oh, Jungil Shin
Abstract:
Tidal flat in Korean peninsula is one of the largest biodiversity tidal flats in the world. Therefore, digital elevation models (DEM) is continuously demanded to monitor of the tidal flat. In this study, DEM of tidal flat, according to different times, was produced by means of the Drone and commercial software in order to measure seawater change during high tide at water-channel in tidal flat. To correct the produced DEMs of the tidal flat where is inaccessible to collect control points, the DEM matching method was applied by using the reference DEM instead of the survey. After the ortho-image was made from the corrected DEM, the land cover classified image was produced. The changes of seawater amount according to the times were analyzed by using the classified images and DEMs. As a result, it was confirmed that the amount of water rapidly increased as the time passed during high tide.Keywords: tidal flat, drone, DEM, seawater change
Procedia PDF Downloads 2044049 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 4524048 Alternation of Executive Power and Democratic Governance in Nigeria: The Role of Independent National Electoral Commission, 1999-2014
Authors: J. Tochukwu Omenma
Abstract:
Buzzword in Nigeria is that democracy has “come to stay”. Politicians in their usual euphoria consider democracy as already consolidated in the country. Politicians linked this assumption to three fundamental indicators – (a) multiparty system; (b) regular elections and (c) absence of military coup after 15 years of democracy in Nigeria. Beyond this assumption, we intend to empirically verify these claims and assumptions, by relying on Huntington’s conceptualization of democratic consolidation. Though, Huntington asserts that multipartism, regular elections and absence of any major obstacle leading to reversal of democracy are significant indicators of democratic consolidation, but the presence of those indicators must result to alternation of executive power for democratic consolidation to occur. In other words, regular conduct of election and existence of multiple political parties are not enough for democratic consolidation, rather free and fair elections. Past elections were characterized of massive fraud and irregularities casting doubts on integrity of electoral management body (EMB) to conduct free and fair elections in Nigeria. There are three existing perspectives that have offered responses to the emasculation of independence of EMB. One is a more popular position indicating that the incumbent party, more than the opposition party, influence the EMB activities with the aim of rigging elections; the other is a more radical perspective that suggests that weakening of EMB power is more associated with the weakest party than with the incumbent; and the last, is that godfather(s) are in direct control of EMB members thereby controlling the process of electoral process to the advantage of the godfather(s). With empirical evidence sourced from the reports of independent election monitors, (European Union, Election Observation Mission in Nigeria) this paper shows at different electoral periods that, in terms of influencing election outcomes, the incumbent and godfather have been more associated with influencing election results than the opposition. The existing nature of executive power in Nigeria provides a plausible explanation for the incumbent’s overbearing influence thereby limiting opportunity for free and fair elections and by extension undermining the process of democratic consolidation in Nigeria.Keywords: political party, democracy, democratic consolidation, election, godfatherism
Procedia PDF Downloads 4924047 The Potential of Extending the Shelf Life of Meat by Encapsulation with Red Clay
Authors: Onuoha Ogbonnaya Gideon, Ishaq Hafsah Yusuf
Abstract:
Introduction: Meat is a perishable food of good nutrition. Meat ranks among the most significant, nutritious, and favored food items available to most locals. It is a good source of protein (17-19%), depending on sources, and contains appreciable amounts of fat and moisture. However, it has a very short shelf life due mainly to its high moisture, fat, and other nutrient contents. Meat spoilage can result from microbial proliferation as well as inherent enzymes in the meat tissues. Bacteria contamination and permeability to both oxygen and water vapor are major concerns associated with spoilage of meat and its storage. Packaging is fundamental in the preservation and presentation of food. Red clay is a very common substance; hydrous aluminum phyllosilicate, sometimes with varying amounts of iron, magnesium, alkali metals, alkaline earth, and cation formed from sedimentary rocks. Furthermore, red clay is an extremely absorbent material and develops plasticity when wet due to the molecular film of water surrounding the clay particles but can become hard, impervious, brittle, and non-brittle and non-plastic when dry. In developing countries, the high cost of refrigeration technologies and most other methods of preserving meat are exorbitant and thus can be substituted with the less expensive and readily available red clay for the preservation of meat. Methodology: 1000g of lean meat was diced into cubes of 10g each. The sample was then divided into four groups labelled raw meat (RMC); raw in 10% brine solution (RMB), boiled meat (BMC), and fried meat (FMC). It was then encapsulated with 2mm thick red clay and then heated in a muffle furnace at a temperature of 600OC for 30min. The samples were kept on a bench top for 30 days, and a storage study was carried out. Results: Our findings showed a decrease in value during storage for the physiochemical properties of all the sample; pH values decreased [RMC (7.05-7.6), RMB (8.46-7.0), BMC (6.0-5.0), FMC (4.08-3.9)]; free fatty acid content decreased with storage time [RMC (32.6%-31%), RMB (30.2%-28.6%), BMC (30.5%-27.4%), FMC (25.6%-23.8%)]; total soluble solid value decreased [RMC16.20-15.07, RMB (17.22-16.04), BMC (17.05-15.54), FMC (15.3-14.9)]. Conclusion: This result shows that encapsulation with red clay reduced all the values analyzed and thus has the potential to extend the shelf life of stored meat.Keywords: red clay, encapsulating, shelf life, physicochemical properties, lean meat
Procedia PDF Downloads 110