Search results for: computational neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5555

Search results for: computational neural networks

1265 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 394
1264 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study

Authors: Tolga Arda Eraslan

Abstract:

The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.

Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort

Procedia PDF Downloads 118
1263 Developing Performance Model for Road Side Elements Receiving Periodic Maintenance

Authors: Ayman M. Othman, Hassan Y. Ahmed, Tallat A. Ali

Abstract:

Inadequate maintenance programs and funds allocated for highway networks in the developed countries have led to fast deterioration of road side elements. Therefore, this research focuses on developing a performance model for road side elements periodic maintenance activities. Road side elements that receive periodic maintenance include; earthen shoulder, road signs and traffic markings. Using the level of service concept, the developed model can determine the optimal periodic maintenance intervals for those elements based on a selected level of service suitable with the available periodic maintenance budget. Data related to time periods for progressive deterioration stages for the chosen elements were collected. Ten maintenance experts in Aswan, Sohag and Assiut cities were interviewed for that purpose. Time in months related to 10%, 25%, 40%, 50%, 75%, 90% and 100% deterioration of each road side element was estimated based on the experts opinion. Least square regression analysis has shown that a power function represents the best fit for earthen shoulders edge drop-off and damage of road signs with time. It was also evident that, the progressive dirtiness of road signs could be represented by a quadratic function an a linear function could represent the paint degradation nature of both traffic markings and road signs. Actual measurements of earthen shoulder edge drop-off agree considerably with the developed model.

Keywords: deterioration, level of service, periodic maintenance, performance model, road side element

Procedia PDF Downloads 570
1262 Resiliency in Fostering: A Qualitative Study of Highly Experienced Foster Parents

Authors: Ande Nesmith

Abstract:

There is an ongoing shortage of foster parents worldwide to take on a growing population of children in need of out-of-home care. Currently, resources are primarily aimed at recruitment rather than retention. Retention rates are extraordinarily low, especially in the first two years of fostering. Qualitative interviews with 19 foster parents averaging 20 years of service provided insight into the challenges they faced and how they overcame them. Thematic analysis of interview transcripts identified sources of stress and resiliency. Key stressors included lack of support and responsiveness from the children’s social workers, false maltreatment allegations, and secondary trauma from children’s destructive behaviors and emotional dysregulation. Resilient parents connected with other foster parents for support, engaged in creative problem-solving, recognized that positive feedback from children usually arrives years later, and through training, understood the neurobiological impact of trauma on child behavior. Recommendations include coordinating communication between the foster parent licensing agency social workers and the children’s social workers, creating foster parent support networks and mentoring, and continuous training on trauma including effective parenting strategies. Research is needed to determine whether these resilience indicators in fact lead to long-term retention. Policies should include a mechanism to develop a cohesive line of communication and connection between foster parents and the children’s social workers as well as their respective agencies.

Keywords: foster care stability, foster parent burnout, foster parent resiliency, foster parent retention, trauma-informed fostering

Procedia PDF Downloads 348
1261 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 86
1260 Investigating the Role of Dystrophin in Neuronal Homeostasis

Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh

Abstract:

Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.

Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport

Procedia PDF Downloads 93
1259 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 119
1258 Irrigation Potential Assessment for Eastern Ganga Canal, India Using Geographic Information System

Authors: Deepak Khare, Radha Krishan, Bhaskar Nikam

Abstract:

The present study deals with the results of the Ortho-rectified Cartosat-1 PAN (2.5 m resolution) satellite data analysis for the extraction of canal networks under the Eastern Ganga Canal (EGC) command. Based on the information derived through the remote sensing data, in terms of the number of canals, their physical status and hydraulic connectivity from the source, irrigation potential (IP) created in the command was assessed by comparing with planned/design canal-wise irrigation potentials. All the geospatial information generated in the study is organized in a geodatabase. The EGC project irrigates the command through one main canal, five branch canals, 36 distributaries and 186 minors. The study was conducted with the main objectives of inventory and mapping of irrigation infrastructure using geographic information system (GIS), remote sensing and field data. Likewise, the assessment of irrigation potential created using the mapped infrastructure was performed as on March 2017. Results revealed that the canals were not only pending but were also having gap/s, and hydraulically disconnected in each branch canal and also in minors of EGC. A total of 16622.3 ha of commands were left untouched with canal water just due to the presence of gaps in the EGC project. The sum of all the gaps present in minor canals was 11.92 km, while in distributary, it was 2.63 km. This is a very good scenario that balances IP can be achieved by working on the gaps present in minor canals. Filling the gaps in minor canals can bring most of the area under irrigation, especially the tail reaches command.

Keywords: canal command, GIS, hydraulic connectivity, irrigation potential

Procedia PDF Downloads 145
1257 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 122
1256 The Role of Hypothalamus Mediators in Energy Imbalance

Authors: Maftunakhon Latipova, Feruza Khaydarova

Abstract:

Obesity is considered a chronic metabolic disease that occurs at any age. Regulation of body weight in the body is carried out through complex interaction of a complex of interrelated systems that control the body's energy system. Energy imbalance is the cause of obesity and overweight, in which the supply of energy from food exceeds the energy needs of the body. Obesity is closely related to impaired appetite regulation, and a hypothalamus is a key place for neural regulation of food consumption. The nucleus of the hypothalamus is connected and interdependent on receiving, integrating and sending hunger signals to regulate appetite. Purpose of the study: to identify markers of food behavior. Materials and methods: The screening was carried out to identify eating disorders in 200 men and women aged 18 to 35 years with overweight and obesity and to check the effects of Orexin A and Neuropeptide Y markers. A questionnaire and questionnaires were conducted with over 200 people aged 18 to 35 years. Questionnaires were for eating disorders and hidden depression (on the Zang scale). Anthropometry is measured by OT, OB, BMI, Weight, and Height. Based on the results of the collected data, 3 groups were divided: People with obesity, People with overweight, Control Group of Healthy People. Results: Of the 200 analysed persons, 86% had eating disorders. Of these, 60% of eating disorders were associated with childhood. According to the Zang test result: Normal condition was about 37%, mild depressive disorder 20%, moderate depressive disorder 25% and 18% of people suffered from severe depressive disorder without knowing it. One group of people with obesity had eating disorders and moderate and severe depressive disorder, and group 2 was overweight with mild depressive disorder. According to laboratory data, the first group had the lowest concentration of Orexin A and Neuropeptide U in blood serum. Conclusions: Being overweight and obese are the first signal of many diseases, and prevention and detection of these disorders will prevent various diseases, including type 2 diabetes. Obesity etiology is associated with eating disorders and signal transmission of the orexinorghetic system of the hypothalamus.

Keywords: obesity, endocrinology, hypothalamus, overweight

Procedia PDF Downloads 74
1255 Towards Green(er) Cities: The Role of Spatial Planning in Realising the Green Agenda

Authors: Elizelle Juaneé Cilliers

Abstract:

The green hype is becoming stronger within various disciplines, modern practices and academic thinking, enforced by concepts such as eco-health, eco-tourism, eco-cities, and eco-engineering. There is currently also an expanded scientific understanding regarding the value and benefits relating to green infrastructure, for both communities and their host cities, linked to broader sustainability and resilience thinking. The integration and implementation of green infrastructure as part of spatial planning approaches and municipal planning, are, however, more complex, especially in South Africa, inflated by limitations of budgets and human resources, development pressures, inequities in terms of green space availability and political legacies of the past. The prevailing approach to spatial planning is further contributing to complexity, linked to misguided perceptions of the function and value of green infrastructure. As such, green spaces are often considered a luxury, and green infrastructure a costly alternative, resulting in green networks being susceptible to land-use changes and under-prioritized in local authority decision-making. Spatial planning, in this sense, may well be a valuable tool to realise the green agenda, encapsulating various initiatives of sustainability as provided by a range of disciplines. This paper aims to clarify the importance and value of green infrastructure planning as a component of spatial planning approaches, in order to inform and encourage local authorities to embed sustainability thinking into city planning and decision-making approaches. It reflects on the decisive role of land-use management to guide the green agenda and refers to some recent planning initiatives. Lastly, it calls for trans-disciplinary planning approaches to build a case towards green(er) cities.

Keywords: green infrastructure, spatial planning, transdisciplinary, integrative

Procedia PDF Downloads 251
1254 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 215
1253 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 426
1252 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 265
1251 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence

Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi

Abstract:

Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.

Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements

Procedia PDF Downloads 308
1250 Determination of Medians of Biochemical Maternal Serum Markers in Healthy Women Giving Birth to Normal Babies

Authors: Noreen Noreen, Aamir Ijaz, Hamza Akhtar

Abstract:

Background: Screening plays a major role to detect chromosomal abnormalities, Down syndrome, neural tube defects and other inborn diseases of the newborn. Serum biomarkers in the second trimester are useful in determining risk of most common chromosomal anomalies; these test include Alpha-fetoprotein (AFP), Human chorionic gonadotropin (hCG), Unconjugated Oestriol (UEȝ)and inhibin-A. Quadruple biomarkers are worth test in diagnosing the congenital pathology during pregnancy, these procedures does not form a part of routine health care of pregnant women in Pakistan, so the median value is lacking for population in Pakistan. Objective: To determine median values of biochemical maternal serum markers in local population during second trimester maternal screening. Study settings: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP) Rawalpindi. Methods: Cross-Sectional study for estimation of reference values. Non-probability consecutive sampling, 155 healthy pregnant women, of 30-40 years of age, will be included. As non-parametric statistics will be used, the minimum sample size is 120. Result: Total 155 women were enrolled into this study. The age of all women enrolled ranged from 30 to39 yrs. Among them, 39 per cent of women were less than 34 years. Mean maternal age 33.46±2.35 SD and maternal body weight were 54.98±2.88. Median value of quadruple markers calculated from 15-18th week of gestation that will be used for calculation of MOM for screening of trisomy21 in this gestational age. Median value at 15 week of gestation were observed hCG 36650 mIU/ml, AFP 23.3 IU/ml, UEȝ 3.5 nmol/L, InhibinA 198 ng/L, at 16 week of gestation hCG 29050 mIU/ml, AFP 35.4 IU/ml, UEȝ 4.1 nmol/L, InhibinA 179 ng/L, at 17 week of gestation hCG 28450 mIU/ml, AFP 36.0 IU/ml, UEȝ 6.7 nmol/L, InhibinA 176 ng/L and at 18 week of gestation hCG 25200 mIU/ml, AFP 38.2 IU/ml, UEȝ 8.2 nmol/L, InhibinA 190 ng/L respectively.All the comparisons were significant (p-Value <0.005) with 95% confidence Interval (CI) and level of significance of study set by going through literature and set at 5%. Conclusion: The median values for these four biomarkers in Pakistani pregnant women can be used to calculate MoM.

Keywords: screening, down syndrome, quadruple test, second trimester, serum biomarkers

Procedia PDF Downloads 179
1249 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 55
1248 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation

Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez

Abstract:

With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).

Keywords: component carrier, carrier aggregation, LTE-advanced, scheduling

Procedia PDF Downloads 198
1247 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 291
1246 Computational Agent-Based Approach for Addressing the Consequences of Releasing Gene Drive Mosquito to Control Malaria

Authors: Imran Hashmi, Sipkaduwa Arachchige Sashika Sureni Wickramasooriya

Abstract:

Gene-drive technology has emerged as a promising tool for disease control by influencing the population dynamics of disease-carrying organisms. Various gene drive mechanisms, derived from global laboratory experiments, aim to strategically manage and prevent the spread of targeted diseases. One prominent strategy involves population replacement, wherein genetically modified mosquitoes are introduced to replace the existing local wild population. To enhance our understanding and aid in the design of effective release strategies, we employ a comprehensive mathematical model. The utilized approach employs agent-based modeling, enabling the consideration of individual mosquito attributes and flexibility in parameter manipulation. Through the integration of an agent-based model and a meta-population spatial approach, the dynamics of gene drive mosquito spreading in a released site are simulated. The model's outcomes offer valuable insights into future population dynamics, providing guidance for the development of informed release strategies. This research significantly contributes to the ongoing discourse on the responsible and effective implementation of gene drive technology for disease vector control.

Keywords: gene drive, agent-based modeling, disease-carrying organisms, malaria

Procedia PDF Downloads 63
1245 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 113
1244 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 73
1243 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 257
1242 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.

Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity

Procedia PDF Downloads 41
1241 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 202
1240 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 308
1239 Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System

Authors: Leo Latasch, Mario Di Gennaro

Abstract:

Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.

Keywords: coordination, disaster, resilience, volunteers

Procedia PDF Downloads 142
1238 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem

Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab

Abstract:

The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.

Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover

Procedia PDF Downloads 137
1237 Ground Effect on Marine Midge Water Surface Locomotion

Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong

Abstract:

Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.

Keywords: ground effect, water locomotion, CFD, aerodynamic lift

Procedia PDF Downloads 79
1236 Group Consensus of Hesitant Fuzzy Linguistic Variables for Decision-Making Problem

Authors: Chen T. Chen, Hui L. Cheng

Abstract:

Due to the different knowledge, experience and expertise of experts, they usually provide the different opinions in the group decision-making process. Therefore, it is an important issue to reach the group consensus of opinions of experts in group multiple-criteria decision-making (GMCDM) process. Because the subjective opinions of experts always are fuzziness and uncertainties, it is difficult to use crisp values to describe the real opinions of experts or decision-makers. It is reasonable for experts to use the linguistic variables to express their opinions. The hesitant fuzzy set are extended from the concept of fuzzy sets. Experts use the hesitant fuzzy sets can be flexible to describe their subjective opinions. In order to aggregate the hesitant fuzzy linguistic variables of all experts effectively, an adjustment method based on distance function will be presented in this paper. Based on the opinions adjustment method, this paper will present an effective approach to adjust the hesitant fuzzy linguistic variables of all experts to reach the group consensus. Then, a new hesitant linguistic GMCDM method will be presented based on the group consensus of hesitant fuzzy linguistic variables. Finally, an example will be implemented to illustrate the computational process to enhance the practical value of the proposed model.

Keywords: group multi-criteria decision-making, linguistic variables, hesitant fuzzy linguistic variables, distance function, group consensus

Procedia PDF Downloads 154