Search results for: structural uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5027

Search results for: structural uncertainty

767 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks

Authors: Bukunola K. Oguntade, Gareth M. Watkins

Abstract:

The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.

Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc

Procedia PDF Downloads 109
766 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 155
765 Facilitating Factors for the Success of Mobile Service Providers in Bangkok Metropolitan

Authors: Yananda Siraphatthada

Abstract:

The objectives of this research were to study the level of influencing factors, leadership, supply chain management, innovation, competitive advantages, business success, and affecting factors to the business success of the mobile phone system service providers in Bangkok Metropolitan. This research was done by the quantitative approach and the qualitative approach. The quantitative approach was used for questionnaires to collect data from the 331 mobile service shop managers franchised by AIS, Dtac and TrueMove. The mobile phone system service providers/shop managers were randomly stratified and proportionally allocated into subgroups exclusive to the number of the providers in each network. In terms of qualitative method, there were in-depth interviews of 6 mobile service providers/managers of Telewiz and Dtac and TrueMove shop to find the agreement or disagreement with the content analysis method. Descriptive Statistics, including Frequency, Percentage, Means and Standard Deviation were employed; also, the Structural Equation Model (SEM) was used as a tool for data analysis. The content analysis method was applied to identify key patterns emerging from the interview responses. The two data sets were brought together for comparing and contrasting to make the findings, providing triangulation to enrich result interpretation. It revealed that the level of the influencing factors – leadership, innovation management, supply chain management, and business competitiveness had an impact at a great level, but that the level of factors, innovation and the business, financial success and nonbusiness financial success of the mobile phone system service providers in Bangkok Metropolitan, is at the highest level. Moreover, the business influencing factors, competitive advantages in the business of mobile system service providers which were leadership, supply chain management, innovation management, business advantages, and business success, had statistical significance at .01 which corresponded to the data from the interviews.

Keywords: mobile service providers, facilitating factors, Bangkok Metropolitan, business success

Procedia PDF Downloads 326
764 Continuous-Time Convertible Lease Pricing and Firm Value

Authors: Ons Triki, Fathi Abid

Abstract:

Along with the increase in the use of leasing contracts in corporate finance, multiple studies aim to model the credit risk of the lease in order to cover the losses of the lessor of the asset if the lessee goes bankrupt. In the current research paper, a convertible lease contract is elaborated in a continuous time stochastic universe aiming to ensure the financial stability of the firm and quickly recover the losses of the counterparties to the lease in case of default. This work examines the term structure of the lease rates taking into account the credit default risk and the capital structure of the firm. The interaction between the lessee's capital structure and the equilibrium lease rate has been assessed by applying the competitive lease market argument developed by Grenadier (1996) and the endogenous structural default model set forward by Leland and Toft (1996). The cumulative probability of default was calculated by referring to Leland and Toft (1996) and Yildirim and Huan (2006). Additionally, the link between lessee credit risk and lease rate was addressed so as to explore the impact of convertible lease financing on the term structure of the lease rate, the optimal leverage ratio, the cumulative default probability, and the optimal firm value by applying an endogenous conversion threshold. The numerical analysis is suggestive that the duration structure of lease rates increases with the increase in the degree of the market price of risk. The maximal value of the firm decreases with the effect of the optimal leverage ratio. The results are indicative that the cumulative probability of default increases with the maturity of the lease contract if the volatility of the asset service flows is significant. Introducing the convertible lease contract will increase the optimal value of the firm as a function of asset volatility for a high initial service flow level and a conversion ratio close to 1.

Keywords: convertible lease contract, lease rate, credit-risk, capital structure, default probability

Procedia PDF Downloads 55
763 The Dead Alexandrian Historic Vein: The Revitalization of Mahmoudiyah Canal 'The Forgotten Environmental Asset'

Authors: Sara S. Fouad, Omneya Messallam

Abstract:

In 1818, a seventy-five kilometer long canal was dug (called the Mahmoudiyah canal) connecting between Alexandria city in Egypt and the western branch of the Nile. It was a productive resource and vital to its environment, context, transportation, and recreation. It played a significant role in people’s lives and Alexandria city’s shape. The canal, which was the main vein of goods’ transporting from Alexandria’s seaport to the different parts of Egypt, was still in use today as a major source of clear water in the city. But nowadays, Mahmoudiyah canal is converting into ‘dead waterway’. The canal became sources of pollution as a result of solid and industrial waste thus causing many diseases, destroying communities and biodiversity, with urban invasion, the loss of community aesthetic value and healthy environment. Therefore, this paper aims to propose an urban strategy, as a solution to revive the forgotten canal, through recreating a cultural promenade on its shore. The main aim of this research is to formulate decent quality of life, unpolluted space, an area gathering the city space for nature, tourism and investments. As a case study, this paper investigates Mahmoudiyah canal through urban and ecological analyses, aiming to design an urban strategy for reviving it by creating a cultural promenade enriched with public spaces and green areas, which can most probably enhance the quality of life, city re-living and development. Community participation is also considered as vital and intrinsic implementation stage. The empirical research involved using several data assembly methods such as interviews, mental mapping, structural observations and questionnaires. The paper ends with a set of conclusions leading to proposals for the Mahmoudiyah canal revitalization considering the complex challenges and processes of sustainable regeneration focusing on city’s rehabilitation and lost identity.

Keywords: Mahmoudiyah canal, community aesthetic value, city re-living, cultural promenade

Procedia PDF Downloads 99
762 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel

Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari

Abstract:

Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.

Keywords: flame retardant, flame regression, oil palm fibre, composite panel

Procedia PDF Downloads 108
761 Clinical and Structural Differences in Knee Osteoarthritis with/without Synovial Hypertrophy

Authors: Gi-Young Park, Dong Rak Kwon, Sung Cheol Cho

Abstract:

Objective: The synovium is known to be involved in many pathological characteristic processes. Also, synovitis is common in advanced osteoarthritis. We aimed to evaluate the clinical, radiographic, and ultrasound findings in patients with knee osteoarthritis and to compare the clinical and imaging findings between knee osteoarthritis with and without synovial hypertrophy confirmed by ultrasound. Methods: One hundred knees (54 left, 46 right) in 95 patients (64 women, 31 men; mean age, 65.9 years; range, 43-85 years) with knee osteoarthritis were recruited. The Visual Analogue Scale (VAS) was used to assess the intensity of knee pain. The severity of knee osteoarthritis was classified according to Kellgren and Lawrence's (K-L) grade on a radiograph. Ultrasound examination was performed by a physiatrist who had 24 years of experience in musculoskeletal ultrasound. Ultrasound findings, including the thickness of joint effusion in the suprapatellar pouch, synovial hypertrophy, infrapatellar tendinosis, meniscal tear or extrusion, and Baker cyst, were measured and detected. The thickness of knee joint effusion was measured at the maximal anterior-posterior diameter of fluid collection in the suprapatellar pouch. Synovial hypertrophy was identified as the soft tissue of variable echogenicity, which is poorly compressible and nondisplaceable by compression of an ultrasound transducer. The knees were divided into two groups according to the presence of synovial hypertrophy. The differences in clinical and imaging findings between the two groups were evaluated by independent t-test and chi-square test. Results: Synovial hypertrophy was detected in 48 knees of 100 knees on ultrasound. There were no significant differences in demographic parameters and VAS score except in sex between the two groups (P<0.05). Medial meniscal extrusion and tear were significantly more frequent in knees with synovial hypertrophy than those in knees without synovial hypertrophy. K-L grade and joint effusion thickness were greater in patients with synovial hypertrophy than those in patients without synovial hypertrophy (P<0.05). Conclusion: Synovial hypertrophy in knee osteoarthritis was associated with greater suprapatellar joint effusion and higher K-L grade and maybe a characteristic ultrasound feature of late knee osteoarthritis. These results suggest that synovial hypertrophy on ultrasound can be regarded as a predictor of rapid progression in patients with knee osteoarthritis.

Keywords: knee osteoarthritis, synovial hypertrophy, ultrasound, K-L grade

Procedia PDF Downloads 50
760 Structural Correlates of Reduced Malicious Pleasure in Huntington's Disease

Authors: Sandra Baez, Mariana Pino, Mildred Berrio, Hernando Santamaria-Garcia, Lucas Sedeno, Adolfo Garcia, Sol Fittipaldi, Agustin Ibanez

Abstract:

Schadenfreude refers to the perceiver’s experience of pleasure at another’s misfortune. This is a multidetermined emotion which can be evoked by hostile feelings and envy. The experience of Schadenfreude engages mechanisms implicated in diverse social cognitive processes. For instance, Schadenfreude involves heightened reward processing, accompanied by increased striatal engagement and it interacts with mentalizing and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of Schadenfreude experience, suggesting a role of striatal degeneration in such an impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced Schadenfreude. This study investigated whether gray matter (GM) atrophy in HD patients correlates with ratings of Schadenfreude. First, we compared the performance of 20 HD patients and 23 controls on an experimental task designed to trigger Schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. Results showed that while both groups showed similar ratings of envy, HD patients reported lower Schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalizing network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in Schadenfreude, while offering novel evidence about their neural correlates. In addition, our results open the door to future studies investigating social emotion processing in other clinical populations characterized by striatal or mentalizing network impairments (e.g., Parkinson’s disease, schizophrenia, autism spectrum disorders).

Keywords: envy, Gray matter atrophy, Huntigton's disease, Schadenfreude, social emotions

Procedia PDF Downloads 309
759 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics

Authors: Sleman Yahya Rasul

Abstract:

Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.

Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties

Procedia PDF Downloads 4
758 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 128
757 Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels

Authors: Armando A. Rodríguez, Emilio Salceda, Anoland Garateix, André J. Zaharenko, Steve Peigneur, Omar López, Tirso Pons, Michael Richardson, Maylín Díaz, Yasnay Hernández, Ludger Ständker, Jan Tytgat, Enrique Soto

Abstract:

Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function.

Keywords: animal toxin, inhibitor cystine knot, ion channel, sea anemone

Procedia PDF Downloads 274
756 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood

Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy

Abstract:

In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.

Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage

Procedia PDF Downloads 135
755 Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake

Authors: Jie Su, Zhenghua Zhou, Yushi Wang, Yongyi Li

Abstract:

The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect.

Keywords: hanging-wall and foot-wall effect, peak ground acceleration, rupture directivity effect, strong ground motion

Procedia PDF Downloads 326
754 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy

Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha

Abstract:

In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.

Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA

Procedia PDF Downloads 132
753 The Youth Employment Peculiarities in Post-Soviet Georgia

Authors: M. Lobzhanidze, N. Damenia

Abstract:

The article analyzes the current structural changes in the economy of Georgia, liberalization and integration processes of the economy. In accordance with this analysis, the peculiarities and the problems of youth employment are revealed. In the paper, the Georgian labor market and its contradictions are studied. Based on the analysis of materials, the socio-economic losses caused by the long-term and mass unemployment of young people are revealed, the objective and subjective circumstances of getting higher education are studied. The youth employment and unemployment rates are analyzed. Based on the research, the factors that increase unemployment are identified. According to the analysis of the youth employment, it has appeared that the unemployment share in the number of economically active population has increased in the younger age group. It demonstrates the high requirements of the labour market in terms of the quality of the workforce. Also, it is highlighted that young people are exposed to a highly paid job. The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend, etc.) and qualitative research (in-depth interview), as well as analysis, induction and comparison methods. The article presents the data by the National Statistics Office of Georgia and the Ministry of Agriculture of Georgia, policy documents of the Parliament of Georgia, scientific papers by Georgian and foreign scientists, analytical reports, publications and EU research materials on similar issues. The work estimates the students and graduates employment problems existing in the state development strategy and priorities. The measures to overcome the challenges are defined. The article describes the mechanisms of state regulation of youth employment and the ways of improving this regulatory base. As for major findings, it should be highlighted that the main problems are: lack of experience and incompatibility of youth qualification with the requirements of the labor market. Accordingly, it is concluded that the unemployment rate of young people in Georgia is increasing.

Keywords: migration of youth, youth employment, migration management, youth employment and unemployment

Procedia PDF Downloads 125
752 San Francisco Public Utilities Commission Headquarters "The Greenest Urban Building in the United States"

Authors: Charu Sharma

Abstract:

San Francisco Public Utilities Commission’s Headquarters was listed in the 2013-American Institute of Architects Committee of the Environment (AIA COTE) Top Ten Green Projects. This 13-story, 277,000-square-foot building, housing more than 900 of the agency’s employees was completed in June 2012. It was designed to achieve LEED Platinum Certification and boasts a plethora of green features to significantly reduce the use of energy and water consumption, and provide a healthy office work environment with high interior air quality and natural daylight. Key sustainability features include on-site clean energy generation through renewable photovoltaic and wind sources providing $118 million in energy cost savings over 75 years; 45 percent daylight harvesting; and the consumption of 55 percent less energy and a 32 percent less electricity demand from the main power grid. It uses 60 percent less water usage than an average 13-story office building as most of that water will be recycled for non-potable uses at the site, running through a system of underground tanks and artificial wetlands that cleans and clarifies whatever is flushed down toilets or washed down drains. This is one of the first buildings in the nation with treatment of gray and black water. The building utilizes an innovative structural system with post tensioned cores that will provide the highest asset preservation for the building. In addition, the building uses a “green” concrete mixture that releases less carbon gases. As a public utility commission this building has set a good example for resource conservation-the building is expected to be cheaper to operate and maintain as time goes on and will have saved rate-payers $500 million in energy and water savings. Within the anticipated 100-year lifespan of the building, our ratepayers will save approximately $3.7 billion through the combination of rental savings, energy efficiencies, and asset ownership.

Keywords: energy efficiency, sustainability, resource conservation, asset ownership, rental savings

Procedia PDF Downloads 411
751 Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue

Authors: Cahya Wimar Wicaksono, Reynara Davin Chen, Alvian Kristianto Santoso

Abstract:

Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating.

Keywords: combustible, corrosive, heavy sulphide zone, pyrite ± pyrrhotite

Procedia PDF Downloads 306
750 Evolutions of Structural Properties of Native Phospho Casein (NPC) Powder during Storage

Authors: Sarah Nasser, Anne Moreau, Alain Hedoux, Romain Jeantet, Guillaume Delaplace

Abstract:

Background: Spray dryed powders containing some caseins are commonly produced in dairy industry. It is widely admitted that the structure of casein evolves during powder storage, inducing a loss of solubility. However few studies evaluate accurately the destabilization mechanisms at molecular and mesoscopic level, in particular for Native Phospho Casein powder (NPC). Consequently, at the state of the art, it is very difficult to assess which secondary structure change or crosslinks initiate insolubility during storage. To address this issue, controlled ageing conditions have been applied to a NPC powder (which was obtained by spray drying a concentrate containing a higher content of casein (90%), whey protein (8%) and lactose (few %)). Evolution of structure and loss of solubility, with the effects of temperature and time of storage were systematically reported. Methods: FTIR spectroscopy, Raman and Circular Dichroism were used to monitor changes of secondary structure in dry powder and in solution after rehydration. Besides, proteomic tools and electrophoresis have been performed after varying storage conditions for evaluating aggregation and post translational modifications, like lactosylation or phosphorylation. Finally, Tof Sims and MEB were used to follow in parallel evolution of structure in surface and skin formation due to storage. Results + conclusion: These results highlight the important role of storage temperature in the stability of NPC. It is shown that this is not lactosylation at the heart of formation of aggregates, as advanced in others publications This is almost the rise of multitude post translational modifications (chemical cross link), added to disulphide bridges (physical cross link) wich contribute to the destabilisation of structure and aggregation of casein. A relative quantification of each kind of cross link, source of aggregates, is proposed. In addition, it has been proved that migration of lipids and formation of skin in surface during the ageing also explains the evolution of structure casein and thus the alterations of functional properties of NPC powder.

Keywords: casein, cross link, powder, storage

Procedia PDF Downloads 360
749 Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil

Authors: Asma Abdullah, Awais Khan, Reem Al-Ghumlasi, Pritam Kumari, Yasir Nawaz

Abstract:

Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight.

Keywords: biplane, oblique wing, sweep angle, supercritical airfoil

Procedia PDF Downloads 252
748 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation

Authors: Zeynep Yazicioglu

Abstract:

Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.

Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project

Procedia PDF Downloads 91
747 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.

Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)

Procedia PDF Downloads 296
746 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)

Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile

Abstract:

Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.

Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon

Procedia PDF Downloads 33
745 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 362
744 Women's Challenges in Access to Urban Spaces and Infrastructures: A Comparative Study of the Urban Infrastructures Conforming to Women's Needs in Tehran and Istanbul

Authors: Parastoo Kazemiyan

Abstract:

Over the past 80 years, in compliance with the advent of modernity in Iran and Turkey, the presence of women in economic and social arenas has creates serious challenges in the capacity of urban spaces to respond to their presence and transport because urban spaces up until then were based on masculine criteria and therefore, women could use such spaces in the company of their fathers or husbands. However, as modernity expanded by Reza Shah and Ataturk, women found the opportunity to work and be present in urban spaces alongside men and their presence in economic and social domains resulted in their presence in these spaces in the early and late hours of the day. Therefore, the city had to be transformed in structural, social, and environmental terms to accommodate women's activities and presence in various urban arenas, which was a huge step in transition from a masculine man-based culture to an all-inclusive human-based culture in these two countries. However, the optimization of urban space was subject to political changes in the two countries, leading to significant differences in designing urban spaces in Tehran and Istanbul. What shows the importance and novelty of the present study lie in the differences in urban planning and optimization in the two capital cities, which gave rise to different outcomes in desirability and quality of living in these two capital cities. Due to the importance of the topic, one of the most significant factors in desirability and acceptability of urban space for women was examined using a descriptive-analytic method based on qualitative methodology in Tehran and Istanbul. The results showed that the infrastructural factors in Istanbul, including safety of access, variety, and number of public transport modes, transparency, and supervision over public spaces have provided women with a safer and more constant presence compared to Tehran. It seems that challenges involved in providing access to urban spaces in Tehran in terms of infrastructure and function have made Tehran unable to respond to the most basic needs of its female citizens.

Keywords: gender differences, urban space security, access to transportation systems, women's challenges

Procedia PDF Downloads 99
743 Advanced Study on Hydrogen Evolution Reaction based on Nickel sulfide Catalyst

Authors: Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Assim Alajali, Godlaveeti Sreenivasa Kumar, Aboubakr M. Abdullah, Bijandra Kumar, Mithra Geetha

Abstract:

A potential pathway for efficient hydrogen production from water splitting electrolysis involves catalysis or electrocatalysis, which plays a crucial role in energy conversion and storage. Hydrogen generated by electrocatalytic water splitting requires active, stable, and low-cost catalysts or electrocatalysts to be developed for practical applications. In this study, we evaluated combination of 2D materials of NiS nanoparticle catalysts for hydrogen evolution reactions. The photocatalytic H₂ production rate of this nanoparticle is high and exceeds that obtained on components alone. Nanoparticles serve as electron collectors and transporters, which explains this improvement. Moreover, a current density was recorded at reduced working potential by 0.393 mA. Calculations based on density functional theory indicate that the nanoparticle's hydrogen evolution reaction catalytic activity is caused by strong interaction between its components at the interface. The samples were analyzed by XPS and morphologically by FESEM for the best outcome, depending on their structural shapes. Use XPS and morphologically by FESEM for the best results. This nanocomposite demonstrated higher electro-catalytic activity, and a low tafel slope of 60 mV/dec. Additionally, despite 1000 cycles into a durability test, the electrocatalyst still displays excellent stability with minimal current loss. The produced catalyst has shown considerable potential for use in the evolution of hydrogen due to its robust synthesis. According to these findings, the combination of 2D materials of nickel sulfide sample functions as good electocatalyst for H₂ evolution. Additionally, the research being done in this fascinating field will surely push nickel sulfide-based technology closer to becoming an industrial reality and revolutionize existing energy issues in a sustainable and clean manner.

Keywords: electrochemical hydrogenation, nickel sulfide, electrocatalysts, energy conversion, catalyst

Procedia PDF Downloads 96
742 Organizational Commitment in Islamic Boarding School: The Implementation of Organizational Behavior Integrative Model

Authors: Siswoyo Haryono

Abstract:

Purpose – The fundamental goal of this research is to see if the integrative organizational behavior model can be used effectively in Islamic boarding schools. This paper also seeks to assess the effect of Islamic organizational culture, leadership, and spiritual intelligence on teachers' organizational commitment to Islamic Boarding schools. The goal of the mediation analysis is to see if the Islamic work ethic has a more significant effect on the instructors' organizational commitment than the direct effects of Islamic organizational culture, leadership, and Islamic spiritual intelligence. Design/methodology/approach – A questionnaire survey was used to obtain data from teachers at Islamic Boarding Schools. This study used the AMOS technique for structural equation modeling to evaluate the expected direct effect. To test the hypothesized indirect effect, employed Sobel test. Findings – Islamic organizational culture, Islamic leadership, and Islamic spiritual intelligence significantly affect Islamic work ethic. When it comes to Islamic corporate culture, Islamic leadership, Islamic spiritual intelligence, and Islamic work ethics have a significant impact. The findings of the mediation study reveal that Islamic organizational culture, leadership, and spiritual intelligence influences organizational commitment through Islamic work ethic. The total effect analysis shows that the most effective path to increasing teachers’ organizational commitment is Islamic leadership - Islamic work ethic – organizational commitment. Originality/value – This study evaluates the Integrative Model of Organizational Behavior by Colquitt (2016) applied in Islamic Boarding School. The model consists of contemporary leadership and individual characteristic as the antecedent. The mediating variables of the model consist of individual mechanisms such as trust, justice, and ethic. Individual performance and organizational commitment are the model's outcomes. These variables, on the other hand, do not represent the Islamic viewpoint as a whole. As a result, this study aims to assess the role of Islamic principles in the model. The study employs reliability and validity tests to get reliable and valid measures. The findings revealed that the evaluation model is proven to improve organizational commitment at Islamic Boarding School.

Keywords: Islamic leadership, Islamic spiritual intelligence, Islamic work ethic, organizational commitment, Islamic boarding school

Procedia PDF Downloads 133
741 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 343
740 An Evaluation of a Student Peer Mentoring Program

Authors: Nazeema Ahmed

Abstract:

This paper reports on the development of a student peer mentoring programme at a higher education institution. The programme is dependent on volunteering senior undergraduate students who are trained to mentor first-year students studying towards an engineering degree. The evaluation of the programme took the form of first-year students completing a self-report paper questionnaire at the onset of a lecture and mentors completing their questionnaire electronically. The evaluation yielded mixed findings. Peer mentoring clearly benefited some students in their adjustment to the institution. Specific mentors’ personal attributes enabled the establishment of successful mentoring relationships, where encouragement, advice and academic assistance was provided. Gains were reciprocal with mentors reporting that the programme contributed towards their personal development. Confidence in the programme was expressed in mentors feeling that it was an initiative worth continuing and first-year students agreeing that it be recommended to future first-year students. This was despite many unfavourable experiences of mentors where their professionalism and commitment to the programme was suspect. It is evident that while mentors began with noble intentions they appear either to lose interest or become overwhelmed with their own workload as the academic year progresses. On the other hand, some mentors reported feeling challenged by the apathy of first-year students who failed to maximise the opportunity available to them. The different attitudes towards mentoring that manifested as a mentoring culture in some departments were particularly pertinent to its successful implementation. The findings point to the key role of academic staff in the mentoring programme who model the mentoring relationship in their interaction with student mentors. While their involvement in the programme may be perceived as a drain on resources in an already demanding academic teaching environment, it is imperative that structural changes be put in place for the programme to be both efficient and sustainable. A pervasive finding concerns the evolving institutional culture of student development in the faculty. Mentors and first-year students alike alluded to the potential of the mentoring programme provided it is seriously endorsed at both the departmental and faculty level. The findings provide a foundation from which to develop the programme further and to begin improving its capacity for maximizing student retention in South African higher education.

Keywords: engineering students, first-year students, peer mentoring

Procedia PDF Downloads 233
739 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings

Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol

Abstract:

After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.

Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation

Procedia PDF Downloads 212
738 Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies

Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev

Abstract:

Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.

Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds

Procedia PDF Downloads 332