Search results for: re-sequencing applications
2150 Vermicomposting Amended With Microorganisms and Biochar: Phytopathogen Resistant Seedbeds for Vegetables and Heavy Metal Polluted Waste Treatment
Authors: Fuad Ameen, Ali A. Al-Homaidan
Abstract:
Biochar can be used in numerous biotechnological applications due to its properties to adsorb beneficial nutrients and harmful pollutants. Objectives: We aimed to treat heavy metal polluted organic wastes using vermicomposting process and produce a fertilizer that can be used in agriculture. We improved the process by adding biochar as well as microbial inoculum and biomass into household waste or sewage sludge before vermicomposting. The earthworm Eisenia fetida used in vermicomposting was included to accumulate heavy metals, biochar to adsorb heavy metals, and the microalga Navicula sp. or the mangrove fungus Acrophialophora sp. to promote plant growth in the final product used as a seedbed for Solanaceae vegetables. We carried out vermicomposting treatments to see the effect of different amendments. Final compost quality was analyzed for maturity. The earthworms were studied for their vitality, heavy metal accumulation, and metallothionein protein content to verify their role in the process. The compost was used as a seedbed for vegetables that were inoculated with a phytopathogen Pythium sp. known to cause root rot and destroy seeds. Compost as seedbed promoted plant growth and reduced disease symptoms in leaves. In the treatment where E. fetida, 6% biochar, and Navicula sp. had been added, 90% of the seeds germinated, while less than 20% germinated in the control treatment. The experimental plants had acquired resistance against Pythium sp. The metagenomic profile of microbial communities will be reported.Keywords: organic wastes, vermicomposting process, biochar, mangrove fungus
Procedia PDF Downloads 892149 Non-Burn Treatment of Health Care Risk Waste
Authors: Jefrey Pilusa, Tumisang Seodigeng
Abstract:
This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.Keywords: autoclave, disposal, fuel, incineration, medical waste
Procedia PDF Downloads 1772148 Functionalized Single Walled Carbon Nanotubes: Targeting, Cellular Uptake, and Applications in Photodynamic Therapy
Authors: Prabhavathi Sundaram, Heidi Abrahamse
Abstract:
In recent years, nanotechnology coupled with photodynamic therapy (PDT) has received considerable attention in terms of improving the effectiveness of drug delivery in cancer therapeutics. The development of functionalized single-walled carbon nanotubes (SWCNTs) has become revolutionary in targeted photosensitizers delivery since it improves the therapeutic index of drugs. The objective of this study was to prepare, characterize and evaluate the potential of functionalized SWCNTs using hyaluronic acid and loading it with photosensitizer and to effectively target colon cancer cells. The single-walled carbon nanotubes were covalently functionalized with hyaluronic acid and the loaded photosensitizer by non-covalent interaction. The photodynamic effect of SWCNTs is detected under laser irradiation in vitro. The hyaluronic acid-functionalized nanocomposites had a good affinity with CD44 receptors, and it avidly binds on to the surface of CACO-2 cells. The cellular uptake of nanocomposites was studied using fluorescence microscopy using lyso tracker. The anticancer activity of nanocomposites was analyzed in CACO-2 cells using different studies such as cell morphology, cell apoptosis, and nuclear morphology. The combined effect of nanocomposites and PDT improved the therapeutic effect of cancer treatment. The study suggested that the nanocomposites and PDT have great potential in the treatment of colon cancer.Keywords: colon cancer, hyaluronic acid, single walled carbon nanotubes, photosensitizers, photodynamic therapy
Procedia PDF Downloads 1162147 Work in the Industry of the Future-Investigations of Human-Machine Interactions
Authors: S. Schröder, P. Ennen, T. Langer, S. Müller, M. Shehadeh, M. Haberstroh, F. Hees
Abstract:
Since a bit over a year ago, Festo AG and Co. KG, Festo Didactic SE, robomotion GmbH, the researchers of the Cybernetics-Lab IMA/ZLW and IfU, as well as the Human-Computer Interaction Center at the RWTH Aachen University, have been working together in the focal point of assembly competences to realize different scenarios in the field of human-machine interaction (HMI). In the framework of project ARIZ, questions concerning the future of production within the fourth industrial revolution are dealt with. There are many perspectives of human-robot collaboration that consist Industry 4.0 on an individual, organization and enterprise level, and these will be addressed in ARIZ. The aim of the ARIZ projects is to link AI-Approaches to assembly problems and to implement them as prototypes in demonstrators. To do so, island and flow based production scenarios will be simulated and realized as prototypes. These prototypes will serve as applications of flexible robotics as well as AI-based planning and control of production process. Using the demonstrators, human interaction strategies will be examined with an information system on one hand, and a robotic system on the other. During the tests, prototypes of workspaces that illustrate prospective production work forms will be represented. The human being will remain a central element in future productions and will increasingly be in charge of managerial tasks. Questions thus arise within the overall perspective, primarily concerning the role of humans within these technological revolutions, as well as their ability to act and design respectively to the acceptance of such systems. Roles, such as the 'Trainer' of intelligent systems may become a possibility in such assembly scenarios.Keywords: human-machine interaction, information technology, island based production, assembly competences
Procedia PDF Downloads 2052146 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding
Procedia PDF Downloads 3052145 A Case Study on Effectiveness of Hijamah (Wet Cupping) on Numbness of Foot in Diabetic Patient
Authors: Nafdha Thajudeen
Abstract:
Hijamah therapy is one of the leading alternative & complementary modalities in the World. It is a kind of detoxification, rejuvenation, and blood purification method. It comes under Ilaj bil Tadbeer (Regimental therapy) in the Unani medical system. In diabetes, hands and foot care in people is very important because of slow blood circulation, where blood sometimes is not able to fully penetrate the capillaries. Hijamah therapy works upon the following two principles- Tanqiyae Mawad (Evacuation of morbid humor) and Imalae Mawad (Diversion of humor). The aim of this study was to find out the effectiveness of hijamah therapy on the numbness of legs in a diabetic patient. This case study was carried out in Ayurvedic Research Hospital (Non-Communicable Diseases), Ninthavur, Sri Lanka. A 63 years old female diabetic patient came to the clinic with the complain of numbness in both feet for one year. The treatment history of the patient revealed that she had taken western medicine for her complaints for 7 months. In her first visit, wet cupping was done on local and distal points. The patient said there was a remarkable improvement; internal medicines were given to keep the sugar level in normal with some external applications. Every week, wet cupping was done on the same points, with repeating the same medicines. Foot numbness was fully cured within one month. The finding of this study shows that the complaint of numbness in the diabetic patient was treated with hijamah therapy with internal & external medicine. This case study can be concluded as hijamah therapy is very effective in treating diabetic numbness. This single case study may be the entrance for future clinical studiesKeywords: Hijamah therapy, Ilaj bil thadbeer, diabetes, numbness
Procedia PDF Downloads 1382144 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics
Procedia PDF Downloads 5772143 Building an Absurdist Approach to the Philosophy of Science: Combining Camus and Feyerabend
Authors: Robert Herold
Abstract:
This project aims to begin building out a new approach within the philosophy of science that is based around a combination of insights from Albert Camus and Paul Feyerabend. This approach is one that will be labeled an absurdist approach as it uses, for its foundation, the philosophy of the absurd as discussed by Camus. While Camus didn’t directly discuss the philosophy of science, nor did he offer his own views on the subject in any substantial way, that doesn’t mean that his work doesn’t have applications within the philosophy of science. In fact, as is argued throughout the piece, much of the work done by Paul Feyerabend stems from a similar metaphysical and epistemological foundation as Camus. This foundation is the notion of the absurd and the inability of us as humans to reach some sort of objective truth. In modern times both Camus and Feyerabend have been largely pushed to the wayside, though Feyerabend has undoubtedly received the most unfair treatment of the two, and this is something that serves to act more as a hindrance than anything else. Much of the claims and arguments made by both Camus and Feyerabend have not been truly refuted and have simply been pushed aside by pointing to supposed contradictions or inconsistencies. However, while it would be a monumental task to attempt to discuss all of this past work, perhaps it might be better to move beyond both Camus and Feyerabend and chart a new path. This is the overall goal of this paper. This research will demonstrate that not only are the philosophies of Camus and Feyerabend surprisingly similar and able to mesh well together, they also are able to form into something that is truly more than the sum of its parts. While the task of actually building out an approach is a monumental undertaking, the plan is to use this project as a jumping-off point. As such, this paper will start by examining some of the main claims made by both Camus and Feyerabend. Once this is done, then begin weaving them together and demonstrating where the links between the philosophies of both are. Then this study will end by building out the very begging foundations of the absurdist approach to the philosophy of science.Keywords: philosophy, philosophy of science, albert camus, paul feyerabend
Procedia PDF Downloads 2512142 A Multi-Layer Based Architecture for the Development of an Open Source CAD/CAM Integration Virtual Platform
Authors: Alvaro Aguinaga, Carlos Avila, Edgar Cando
Abstract:
This article proposes a n-layer architecture, with a web client as a front-end, for the development of a virtual platform for process simulation on CNC machines. This Open-Source platform includes a CAD-CAM interface drawing primitives, and then used to furnish a CNC program that triggers a touch-screen virtual simulator. The objectives of this project are twofold. First one is an educational component that fosters new alternatives for the CAD-CAM/CNC learning process in undergrad and grade schools and technical and technological institutes emphasizing in the development of critical skills, discussion and collaborative work. The second objective puts together a research and technological component that will take the state of the art in CAD-CAM integration to a new level with the development of optimal algorithms and virtual platforms, on-line availability, that will pave the way for the long-term goal of this project, that is, to have a visible and active graduate school in Ecuador and a world wide Open-Innovation community in the area of CAD-CAM integration and operation of CNC machinery. The virtual platform, developed as a part of this study: (1) delivers improved training process of students, (2) creates a multidisciplinary team and a collaborative work space that will push the new generation of students to face future technological challenges, (3) implements industry standards for CAD/CAM, (4) presents a platform for the development of industrial applications. A protoype of this system was developed and implemented in a network of universities and technological institutes in Ecuador.Keywords: CAD-CAM integration, virtual platforms, CNC machines, multi-layer based architecture
Procedia PDF Downloads 4272141 Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B
Authors: Tzyy-Rong Jinn, Sheng-Kuo Hsieh, Yi-Ching Chung, Feng-Chia Hsieh
Abstract:
In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future.Keywords: artificial oil bodies, Escherichia coli, Oleosin-fusion protein, Mastoparan-B
Procedia PDF Downloads 4512140 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability
Procedia PDF Downloads 2382139 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization
Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi
Abstract:
This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities
Procedia PDF Downloads 5072138 The Relevance of Bioinspired Architecture and Programmable Materials for Development of 4D Printing
Authors: Daniela Ribeiro, Silvia Lenyra Meirelles Campos Titotto
Abstract:
Nature has long served as inspiration for humans, since various technologies present in society are a mirror of the natural world. This is due to the fact that nature has adapted for millions of years to possess the characteristics they have today. In this sense, man takes advantage of this situation and uses it to produce his own objects and solve his problems. This concept, which is known as biomimetics, is something relatively new, once it was only denominated in 1957. Nature, in turn, responds directly and consistently to environmental conditions. For example, plants that have touch sensitivity contract with this stimulus. Such a situation resembles a technology that has been gaining ground in the contemporary world of scientific innovation: 4D printing. 4D printing technology emerged in 2012 as a complement to 3D printing and presents numerous benefits since it provides a deficiency in the second kind of printing mentioned. This type of technology reaches several areas, since it is capable of producing materials that change over time, be it in its composition, form or properties and is such a characteristic that determines the additional dimension of the material. Precisely because of these factors, this type of impression resembles nature and is related to biomimetics. However, only certain types of ‘intelligent’ materials are generally employed in this type of impression, since only they will respond well to such stimuli, one of which is the hydrogel. The hydrogel is a biocompatible polymer that presents several applications, these in turn will be briefly mentioned in this article to exemplify its importance and the reason for choosing this material as object of study. In addition, aspects that configure 4D printing will be treated here, such as the importance of architecture, programming language and the reversibility of printed materials.Keywords: 4D printing, biomimetic, hydrogel, materials
Procedia PDF Downloads 1692137 In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites
Authors: Ki-Ho Nam, Haksoo Han
Abstract:
Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate.Keywords: polyimide (PI), tetrapod ZnO whisker (TZnO-W), transparent, dynamic stress behavior, water resistance
Procedia PDF Downloads 5252136 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 3692135 Utility of Optical Coherence Tomography (OCT) and Visual Field Assessment in Neurosurgical Patients
Authors: Ana Ferreira, Ines Costa, Patricia Polónia, Josué Pereira, Olinda Faria, Pedro Alberto Silva
Abstract:
Introduction: Optical coherence tomography (OCT) and visual field tools are pivotal in evaluating neurological deficits and predicting potential visual improvement following surgical decompression in neurosurgical patients. Despite their clinical significance, a comprehensive understanding of their utility in this context is lacking in the literature. This study aims to elucidate the applications of OCT and visual field assessment, delineating distinct patterns of visual deficit presentations within the studied cohort. Methods: This retrospective analysis considered all adult patients who underwent a single surgery for pituitary adenoma or anterior skull base meningioma with optic nerve involvement, coupled with neuro-ophthalmology evaluation, between July 2020 and January 2023. A minimum follow-up period of 6 months was deemed essential. Results: A total of 24 patients, with a median age of 61, were included in the analysis. Three primary patterns emerged: 1) Low visual field involvement with compromised OCT, 2) High visual field involvement with relatively unaffected OCT, and 3) Significant compromise observed in both OCT and visual fields. Conclusion: This study delineates various findings in OCT and visual field assessments with illustrative examples. Based on the current findings, a prospective cohort will be systematically collected to further investigate and validate these patterns and their prognostic significance, enhancing our understanding of the utility of OCT and visual fields in neurosurgical patients.Keywords: OCT, neurosurgery, visual field, optic nerve
Procedia PDF Downloads 782134 Physical, Morphological, and Rheological Properties of Polypropylene Modified Bitumen
Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili
Abstract:
The common method to improve the performance of asphalt binders is through modification. The utilization of recycled plastics for asphalt modification has been the subject of research studies due to their environmental and economic benefits over using commercial polymers. Polypropylene (PP) is one of the most available recycled plastics in Australia. Unlike other plastics, its contamination with other plastics during the recycling process is negligible. Therefore, the quality of recycled plastic is high, which makes it a good candidate for road construction applications. To assess its effectiveness for bitumen modification, three different grades of PP were selected. The PP grades were compared for blendability with bitumen, and the best suitable grade was chosen for further studies. The PP-modified bitumen and the base bitumen were then compared through physical and rheological properties. The stability of the PP-modified bitumen at elevated temperatures was measured, and the morphology of the samples before and after the storage stability was characterized by fluorescent microscopy. The results showed that PP had a significant influence on reducing the penetration and increasing the viscosity and the rutting resistance of the virgin bitumen. Storage stability test results indicated that the difference between the softening point of the top and bottom section of the tube sample is below the defined limit, which means the PP-modified bitumen is storage stable. However, the fluorescence microscopy results showed that the distribution of the PP particles in the bitumen matrix in the top and bottom sections of the tube are significantly different, which is an indicator of poor storage stability.Keywords: polypropylene, waste plastic, bitumen, road pavements, storage stability, fluorescent microscopy, morphology
Procedia PDF Downloads 782133 Valence and Arousal-Based Sentiment Analysis: A Comparative Study
Authors: Usama Shahid, Muhammad Zunnurain Hussain
Abstract:
This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining
Procedia PDF Downloads 1012132 Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison
Authors: Po-Fang Hsu, Chiching Wei
Abstract:
In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing the whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In the beginning, we apply a document layout analysis that combines traditional and modern technics to segment layouts in blocks of various types appropriately. Then we transform this issue into a problem of layout graph matching with textual awareness. Regarding graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our neural graph approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.Keywords: document comparison, graph matching, graph neural network, modification similarity, multi-modal
Procedia PDF Downloads 1792131 Formulation and in Vitro Evaluation of Cubosomes Containing CeO₂ Nanoparticles Loaded with Glatiramer Acetate Drug
Authors: Akbar Esmaeili, Zahra Salarieh
Abstract:
Cerium oxide nanoparticles (nano-series) are used as catalysts in industrial applications due to their free radical scavenging properties. Given that free radicals play an essential role in the pathology of many neurological diseases, we investigated the use of nanocrystals as a potential therapeutic agent for oxidative damage. This project synthesized nano-series from a new and environmentally friendly bio-pathway. Investigation of cerium nitrate in culture medium containing inoculated Lactobacillus acidophilus strain before incubation produces nano-series. Loaded with glatiramer acetate (GA) was formed by coating carboxymethylcellulose (CMC) and CeO2. FE-SEM analysis showed nano-series in the 9-11 nm range, spherical shape, and uniform particle size distribution. Cubic nanoparticles containing anti-multiple sclerosis (anti-Ms) treatment called GA were used. Glycerol monostearate (GMS) was used as a fat base, and evening primrose extract was used as an anti-inflammatory in cubosomes. Design-Expert® software was used to study the effects of different formulation factors on the properties of GAloaded cubic dispersions. Thirty GA-labeled cubic dispersions were prepared with GA-labeled carboxymethylcellulose and evaluated in vitro. The results showed an average nano-series size of 89.02 and a zeta potential of -49.9. Cubosomes containing GA-CMC/CeO2 showed a stable release profile for 180 min. The results showed that cubosomes containing GA-CMC/CeO2 could be a promising drug carrier with normal release behavior.Keywords: ciochemistry, biotechnology, molecular, biology
Procedia PDF Downloads 502130 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials
Authors: Gabi N. Nehme
Abstract:
Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.Keywords: patellar tendon, distal tibia, prosthetic socket relief areas, hole implementation
Procedia PDF Downloads 4142129 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform
Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic
Abstract:
The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms
Procedia PDF Downloads 2262128 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 1392127 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid
Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee
Abstract:
The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.Keywords: copper-CO2 nanofluid, molecular dynamics simulation, molecular interfacial layer, thermal conductivity
Procedia PDF Downloads 3372126 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 3042125 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock
Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,
Abstract:
Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure
Procedia PDF Downloads 4102124 Development and Characterization of a Film Based on Hydroxypropyl Methyl Cellulose Incorporated by a Phenolic Extract of Fennel and Reinforced by Magnesium Oxide: In Vivo - in Vitro
Authors: Mazouzi Nourdjihane, K. Boutemak, A. Haddad, Y. Chegreouche
Abstract:
In the last decades, biodegradable polymers have been considered as one of the most popular options for the delivery of drugs and various conventional doses. The film forming system (FFS) can be used in topical, transdermal, ophthalmic, oral and gastric applications. Recently this system has focused on improving drug delivery, which can promote drug release. In this context, the aim of this study is to create polymeric film-forming systems for the stomach and to evaluate and test their gastroprotective effects, comparing the effects of changes in composition on film characteristics. It uses a plant-derived polyphenol extract extracted from fennel to demonstrate anti-inflammatory activity in the film. The films are made from hydroxypropyl methylcellulose polymer and different types of plastic, glycerol and polyethylene glycol. The ffs properties show that MgO-glycerol-reinforced hydroxypropylmethylcellulose (HPMC-MgO-Gly) is better than that based on MgO-PEG-reinforced hydroxypropylmethylcellulose (HPMC-MgO-PEG). It is durable, has a faster drying time and allows for maximum recovery. Water vapor strength and blowing speed and other additions show another advantage of HPMC-MgO-Gly compared to HPMC-MgO-PEG, indicating good adhesion between the support (top) and film production. In this study, the gastroprotective effect of fennel phenol extract was found, showing that this plant material has a gastroprotective effect on ulcers and that the film can absorb the active substance.Keywords: film formin system, hydroxypropyl methylcellulose, magnesium oxide, in vivo
Procedia PDF Downloads 662123 Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles: Characterization and Applications
Authors: Surendra Kumar Gautam, Mahesh Dhungana
Abstract:
Magnesium oxide nanoparticles (MgO NPs) are less toxic to humans and the environment as compared to other metal oxide nanoparticles. Various conventional chemical and physical methods are used for synthesis whose toxicity level is high and highly expensive. As the best alternative, phyto-assisted synthesis has emerged, which uses extracts from plant parts for the synthesis of nanoparticles. Here, we report the synthesis of MgO nanoparticles with the assistance of beetroot extract and leaf extract of P. guajava and A. adenophora. The synthesized MgO NPs were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and UV-visible spectroscopy. X-ray analysis for the broadening of peaks was used to evaluate the crystallite size and lattice strain using Debye-Scherer and Williamson–Hall method. The results of crystallite size obtained by both methods are in close proximity. The crystallite size obtained by the Williamson-Hall method seems more accurate, with values being 8.1 nm and 13.2 nm for beetroot MgO NPs and P. guajava MgO NPs, respectively. The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. The UV-visible absorption spectra of MgO NPs were found to be 310 nm, 315 nm, and 315 nm for beetroot, P. guajava, and A. adenophora leaf extract, respectively. Among the three samples, beetroot-mediated MgO NPs were effective antibacterial against both gram-positive and Gram-negative bacteria. In addition, synthesized MgO NPs also show significant antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl radical. Further, beetroot MgO NPs showed the highest photocatalytic activity of about 91% in comparison with other samples.Keywords: MgO NPs, XRD, FTIR, antibacterial, antioxidant and photocatalytic activity
Procedia PDF Downloads 842122 Green Electrochemical Nitration of Bioactive Compounds: Biological Evaluation with Molecular Modelling
Authors: Sara Torabi, Sadegh Khazalpour, Mahdi Jamshidi
Abstract:
Nitro aromatic compounds are valuable materials because of their applications in the preparation of chemical intermediates for the synthesis of dyes, plastics, perfumes, energetic materials, and pharmaceuticals. Chemical and electrochemical procedures are reported for nitration of aromatic compounds. Flavonoid derivatives are present in many vegetables and fruits and are constituent of many common pharmaceuticals and dietary supplements. Electrochemistry provides very versatile means for the electrosynthesis, mechanistic and kinetic studies. To the best of our knowledge, and despite the importance of these compounds in numerous scientific fields, there are no reports on the electrochemical nitration of Quercetin derivatives. Herein, we describe a green electrochemical synthesis of a nitro compound. In this work, electrochemical oxidation of Quercetin has been studied in the presence of nitrite ion as a nucleophile in acetate buffer solution (c = 0.2 M, pH = 6.0), by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of produced o-benzoquinones in Michael reaction with nitrite ion (in the divided cell) to form the corresponding nitro diol (EC mechanism). The purity of product and characterization was done using ¹H NMR, ¹³C NMR, FTIR spectroscopic techniques. The presented strategies use a water/ethanol mixture as solvent. Ethanol as cosolvent was also used in the previous studies because of its low cost, safety, easy availability, recyclability, bioproductability, and biodegradability. These strategies represent a one-pot and facile process for the synthesis of nitro compound in high yield and purity under green conditions.Keywords: electrochemical synthesis, green chemistry, cyclic voltammetry, molecular docking
Procedia PDF Downloads 1442121 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting
Procedia PDF Downloads 83