Search results for: mechanical modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7438

Search results for: mechanical modeling

3238 An Approach to Consumption of Exhaustible Resources Based on Islamic Justice and Hartwick Criteria

Authors: Hamed Najafi, Ghasem Nikjou

Abstract:

Nowadays, there is an increasing attention to the resources scarcity issues. Because of failure in present patterns in the field of the allocation of exhaustible resources between generations and the challenges related to economic justice supply, it is supposed, to present a pattern from the Islamic perspective in this essay. By using content analysis of religious texts, we conclude that governments should remove the gap which is exists between the per capita income of the poor and their minimum consumption (necessary consumption). In order to preserve the exhaustible resources for poor people) not for all), between all generations, government should invest exhaustible resources on endless resources according to Hartwick’s criteria and should spend these benefits for poor people. But, if benefits did not cover the gap between minimum consumption and per capita income of poor levels in one generation, in this case, the government is responsible for covering this gap through the direct consumption of exhaustible resources. For an exact answer to this question, ‘how much of exhaustible resources should expense to maintain justice between generations?’ The theoretical and mathematical modeling has been used and proper function has been provided. The consumption pattern is presented for economic policy makers in Muslim countries, and non-Muslim even, it can be useful.

Keywords: exhaustible resources, Islamic justice, intergenerational justice, distribution of resources, Hartwick criteria

Procedia PDF Downloads 189
3237 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System

Authors: Stephen A. Akinlabi, Esther T. Akinlabi

Abstract:

The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.

Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis

Procedia PDF Downloads 383
3236 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs

Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan

Abstract:

The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.

Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg

Procedia PDF Downloads 204
3235 Release of PVA from PVA/PA Compounds into Water Solutions

Authors: J. Klofac, P. Bazant, I. Kuritka

Abstract:

This work is focused on the preparation of polymeric blend composed of polyamide (PA) and polyvinyl alcohol (PVA) with the intention to explore its basic characteristics important for potential use in medicine, especially for drug delivery systems. PA brings brilliant mechanical properties to the blend while PVA is inevitable due to its water solubility. Blend with different PA/PVA ratios were prepared and the release study of PVA into the water was carried out in a time interval 0-48 hours via the gravimetric method. The weight decrease is caused by the leaching of PVA domains what can be also followed by the optical and scanning electron microscopy. In addition, the thermal properties and the miscibility of blend components were evaluated by the differential scanning calorimeter. On the bases of performed experiments, it was found that the kinetics, continuity development and micro structure features of PA/PVA blends is strongly dependent on the blend composition and miscibility of its components.

Keywords: releas study, polyvinyl alcohol, polyamide morphology, polymeric blend

Procedia PDF Downloads 397
3234 Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective

Authors: Temesgen Geremew Tefery

Abstract:

Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies.

Keywords: biosensing, nanomaterials, biotechnology, nanotechnology

Procedia PDF Downloads 27
3233 Sol-Gel Derived Yttria-Stabilized Zirconia Nanoparticles for Dental Applications: Synthesis and Characterization

Authors: Anastasia Beketova, Emmanouil-George C. Tzanakakis, Ioannis G. Tzoutzas, Eleana Kontonasaki

Abstract:

In restorative dentistry, yttria-stabilized zirconia (YSZ) nanoparticles can be applied as fillers to improve the mechanical properties of various resin-based materials. Using sol-gel based synthesis as simple and cost-effective method, nano-sized YSZ particles with high purity can be produced. The aim of this study was to synthesize YSZ nanoparticles by the Pechini sol-gel method at different temperatures and to investigate their composition, structure, and morphology. YSZ nanopowders were synthesized by the sol-gel method using zirconium oxychloride octahydrate (ZrOCl₂.8H₂O) and yttrium nitrate hexahydrate (Y(NO₃)₃.6H₂O) as precursors with the addition of acid chelating agents to control hydrolysis and gelation reactions. The obtained powders underwent TG_DTA analysis and were sintered at three different temperatures: 800, 1000, and 1200°C for 2 hours. Their composition and morphology were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction Analysis (XRD), Scanning Electron Microscopy with associated with Energy Dispersive X-ray analyzer (SEM-EDX), Transmission Electron Microscopy (TEM) methods, and Dynamic Light Scattering (DLS). FTIR and XRD analysis showed the presence of pure tetragonal phase in the composition of nanopowders. By increasing the calcination temperature, the crystallinity of materials increased, reaching 47.2 nm for the YSZ1200 specimens. SEM analysis at high magnifications and DLS analysis showed submicron-sized particles with good dispersion and low agglomeration, which increased in size as the sintering temperature was elevated. From the TEM images of the YSZ1000 specimen, it can be seen that zirconia nanoparticles are uniform in size and shape and attain an average particle size of about 50 nm. The electron diffraction patterns clearly revealed ring patterns of polycrystalline tetragonal zirconia phase. Pure YSZ nanopowders have been successfully synthesized by the sol-gel method at different temperatures. Their size is small, and uniform, allowing their incorporation of dental luting resin cements to improve their mechanical properties and possibly enhance the bond strength of demanding dental ceramics such as zirconia to the tooth structure. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme 'Human Resources Development, Education and Lifelong Learning 2014- 2020' in the context of the project 'Development of zirconia adhesion cements with stabilized zirconia nanoparticles: physicochemical properties and bond strength under aging conditions' (MIS 5047876).

Keywords: dental cements, nanoparticles, sol-gel, yttria-stabilized zirconia, YSZ

Procedia PDF Downloads 147
3232 Description of Geotechnical Properties of Jabal Omar

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Osama Abdelgadir El-Bushra

Abstract:

Geological and engineering characteristics of intact rock and the discontinuity surfaces was used to describe and classify rock mass into zones based on mechanical and physical properties. Many conditions terms that affect the rock mas; such as Rock strength, Rock Quality Designation (RQD) value, joint spacing, and condition of joint, water condition with block size, joint roughness, separation, joint hardness, friction angle and weathering were used to classify the rock mass into: Good quality (class II) (RMR values range between 75% and 56%), Good to fair quality (class II to III) (RMR values range between 70% and 55%), Fair quality (class III) (RMR values range between 60% and 50%) and Fair to poor quality (Class III to IV) (RMR values, range between (50% and 35%).

Keywords: rock strength, RQD, joints, weathering

Procedia PDF Downloads 416
3231 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
3230 Determination of the Optimum Size of Building Stone Blocks: Case Study of Delichai Travertine Mine

Authors: Hesam Sedaghat Nejad, Navid Hosseini, Arash Nikvar Hassani

Abstract:

Determination of the optimum block size with high profitability is one of the significant parameters in designation of the building stone mines. The aim of this study was to determine the optimum dimensions of building stone blocks in Delichai travertine mine of Damavand in Tehran province through combining the effective parameters proven in determination of the optimum dimensions in building stones such as the spacing of joints and gaps, extraction tools constraints with the help of modeling by Gemcom software. To this end, following simulation of the topography of the mine, the block model was prepared and then in order to use spacing joints and discontinuities as a limiting factor, the existing joints set was added to the model. Since only one almost horizontal joint set with a slope of 5 degrees was available, this factor was effective only in determining the optimum height of the block, and thus to determine the longitudinal and transverse optimum dimensions of the extracted block, the power of available loader in the mine was considered as the secondary limiting factor. According to the aforementioned factors, the optimal block size in this mine was measured as 3.4×4×7 meter.

Keywords: building stone, optimum block size, Delichay travertine mine, loader power

Procedia PDF Downloads 365
3229 The Impact of Sustainable Packaging on Customers’ Willingness to Buy: A Study Based in Rwanda

Authors: Nirere Martine

Abstract:

Purpose –The purpose of this study aims to understand the intention of customers to adopt sustainable packaging and the impact of sustainable packaging on customers’ willingness to buy a product using sustainable packaging. Design/methodology/approach – A new research model based on the technology acceptance model (TAM) and structural equation modeling are used to examine causality and test relationship based on the data collected from 251 Rwanda samples. Findings – The findings indicated that perceived ease of use positively affects perceived usefulness. However, perceived usefulness and perceived ease of use positively affect the intention to adopt sustainable packaging. However, perceived risk and perceived cost negatively affect the intention to adopt sustainable packaging. The intention to adopt sustainable packaging positively affects the willingness to buy a product using sustainable packaging. Originality/value – Many researchers have investigated the issue of a consumers’ behavior to purchase a product. In particular, they have examined whether customers are willing to pay extra for a packaging product. There has been no study that has examined the impact of sustainable packaging on customers’ willingness to buy. The results of this study can help manufacturers form a better understanding of customers’ willingness to purchase a product using sustainable packaging.

Keywords: consumers’ behavioral, sustainable packaging, TAM, Rwanda

Procedia PDF Downloads 196
3228 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea

Authors: Pavel Shcherban, Vlad Golovanov

Abstract:

Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.

Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields

Procedia PDF Downloads 166
3227 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 297
3226 Mathematical Modeling of Thin Layer Drying Behavior of Bhimkol (Musa balbisiana) Pulp

Authors: Ritesh Watharkar, Sourabh Chakraborty, Brijesh Srivastava

Abstract:

Reduction of water from the fruits and vegetables using different drying techniques is widely employed to prolong the shelf life of these food commodities. Heat transfer occurs inside the sample by conduction and mass transfer takes place by diffusion in accordance with temperature and moisture concentration gradient respectively during drying. This study was undertaken to study and model the thin layer drying behavior of Bhimkol pulp. The drying was conducted in a tray drier at 500c temperature with 5, 10 and 15 % concentrations of added maltodextrin. The drying experiments were performed at 5mm thickness of the thin layer and the constant air velocity of 0.5 m/s.Drying data were fitted to different thin layer drying models found in the literature. Comparison of fitted models was based on highest R2(0.9917), lowest RMSE (0.03201), and lowest SSE (0.01537) revealed Middle equation as the best-fitted model for thin layer drying with 10% concentration of maltodextrin. The effective diffusivity was estimated based on the solution of Fick’s law of diffusion which is found in the range of 3.0396 x10-09 to 5.0661 x 10-09. There was a reduction in drying time with the addition of maltodextrin as compare to the raw pulp.

Keywords: Bhimkol, diffusivity, maltodextrine, Midilli model

Procedia PDF Downloads 211
3225 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 36
3224 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 173
3223 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: disturbed state concept (DSC), hierarchical single surface (HISS) failure criterion, high performance concrete (HPC), high-strength concrete (HSC), nonlinear finite element analysis (NFEA), polymer concrete (PC), steel fibers, uniaxial compression test

Procedia PDF Downloads 311
3222 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained

Authors: Homa Ghave, Parmis Shahmaleki

Abstract:

This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.

Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function

Procedia PDF Downloads 264
3221 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements

Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang

Abstract:

Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.

Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation

Procedia PDF Downloads 144
3220 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 155
3219 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
3218 Cryogenic Separation of CO2 from Molten Carbonate Fuel Cell Anode Outlet—Experimental Guidelines

Authors: Jarosław Milewski, Rafał Bernat

Abstract:

This paper presents an analysis of using cryogenic separation unit for recovering fuel from anode off gas of molten carbonate fuel cells (MCFCs) in order to upgrade the efficiently of the unit. In the proposed solution, the CSU is used for condensing water and carbon dioxide from anode off gas, and re-cycling the rest of the stream to the anode, saving certain amount of fuel (at least 30%). The resulting system efficiency is increased considerably. CSU, virtually consumes power, thus this solution has energy penalty as well, on the other hand, MCFC generates large amount of heat at elevated temperature, thus part of the CSU can be based on absorption chiller. In all cases, a high amount of fuel is obtained after condensation of water and carbon dioxide and re-cycled to the anode inlet. Based on mathematical modeling done previously, the concept and guidelines for forthcoming experimental investigations are presented in this paper. During planned experiments, an existing single cell laboratory stand will be equipped with re-cycle device (a fan, a peristaltic pump, etc.). Parallel, a mixture of anode off gas will be cooled down for determining the proper temperature for the separation of water and carbon dioxide.

Keywords: cryogenic separation, experiments, fuel cells, molten carbonate fuel cells

Procedia PDF Downloads 247
3217 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations

Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee

Abstract:

Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.

Keywords: air pollution, carbon monoxide, finite element, street canyon

Procedia PDF Downloads 126
3216 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 448
3215 Applicability of Polyisobutylene-Based Polyurethane Structures in Biomedical Disciplines: Some Calcification and Protein Adsorption Studies

Authors: Nihan Nugay, Nur Cicek Kekec, Kalman Toth, Turgut Nugay, Joseph P. Kennedy

Abstract:

In recent years, polyurethane structures are paving the way for elastomer usage in biology, human medicine, and biomedical application areas. Polyurethanes having a combination of high oxidative and hydrolytic stability and excellent mechanical properties are focused due to enhancing the usage of PUs especially for implantable medical device application such as cardiac-assist. Currently, unique polyurethanes consisting of polyisobutylenes as soft segments and conventional hard segments, named as PIB-based PUs, are developed with precise NCO/OH stoichiometry (∽1.05) for obtaining PIB-based PUs with enhanced properties (i.e., tensile stress increased from ∽11 to ∽26 MPa and elongation from ∽350 to ∽500%). Static and dynamic mechanical properties were optimized by examining stress-strain graphs, self-organization and crystallinity (XRD) traces, rheological (DMA, creep) profiles and thermal (TGA, DSC) responses. Annealing procedure was applied for PIB-based PUs. Annealed PIB-based PU shows ∽26 MPa tensile strength, ∽500% elongation, and ∽77 Microshore hardness with excellent hydrolytic and oxidative stability. The surface characters of them were examined with AFM and contact angle measurements. Annealed PIB-based PU exhibits the higher segregation of individual segments and surface hydrophobicity thus annealing significantly enhances hydrolytic and oxidative stability by shielding carbamate bonds by inert PIB chains. According to improved surface and microstructure characters, greater efforts are focused on analyzing protein adsorption and calcification profiles. In biomedical applications especially for cardiological implantations, protein adsorption inclination on polymeric heart valves is undesirable hence protein adsorption from blood serum is followed by platelet adhesion and subsequent thrombus formation. The protein adsorption character of PIB-based PU examines by applying Bradford assay in fibrinogen and bovine serum albumin solutions. Like protein adsorption, calcium deposition on heart valves is very harmful because vascular calcification has been proposed activation of osteogenic mechanism in the vascular wall, loss of inhibitory factors, enhance bone turnover and irregularities in mineral metabolism. The calcium deposition on films are characterized by incubating samples in simulated body fluid solution and examining SEM images and XPS profiles. PIB-based PUs are significantly more resistant to hydrolytic-oxidative degradation, protein adsorption and calcium deposition than ElastEonTM E2A, a commercially available PDMS-based PU, widely used for biomedical applications.

Keywords: biomedical application, calcification, polyisobutylene, polyurethane, protein adsorption

Procedia PDF Downloads 257
3214 Regional Flood-Duration-Frequency Models for Norway

Authors: Danielle M. Barna, Kolbjørn Engeland, Thordis Thorarinsdottir, Chong-Yu Xu

Abstract:

Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway.

Keywords: design flood values, bayesian statistics, regression modeling of extremes, extreme value analysis, GEV

Procedia PDF Downloads 72
3213 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
3212 Safety Culture Implementation Based on Occupational Health and Safety Assessment

Authors: Nyambayar Davaadorj, Ichiro Koshijima

Abstract:

Safety or the state of being safe can be described as a condition of being not dangerous or not harmful. It is necessary for an individual to avoid dangerous situations every day. Also, an organization is subject to legal requirements for the health and safety of persons inside and around the immediate workplace, or who are exposed to the workplace activities. Although it might be difficult to keep a situation where complete safety is ensured, efforts must nonetheless be made to consider ways of removing any potential danger within an organization. In order to ensure a safe working environment, the capability of responding (i.e., resilience) to signals (i.e., information concerning events that could pose future problems that must be taken into account) that occur in and around corporations is necessary. The ability to evaluate this essential point is thus one way in which safety and security can be managed. This study focuses on OHSAS18001, an internationally applied standard for the construction and operation of occupational health and safety management systems, by using IDEF0 for Function Modeling (IDEF0) and the Resilience Matrix originally made by Bracco. Further, this study discusses a method for evaluating a manner in which Occupational Health and Safety Assessment Series (OHSAS) systematically functions within corporations. Based on the findings, this study clarifies the potential structural objection for corporations when implementing and operating the OHSAS standard.

Keywords: OHSAS18001, IDEF0, resilience engineering, safety culture

Procedia PDF Downloads 240
3211 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry

Authors: Kwok Tak Kit

Abstract:

The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.

Keywords: sustainability, sustainable engineering, BIM, LEED

Procedia PDF Downloads 150
3210 Evaluation of Ultrasonic Techniques for the Estimation of Air Voids in Asphalt Concrete

Authors: Majid Zargar, Frank Bullen, Ron Ayers

Abstract:

One of the important factors in the design of asphalt concrete mixes is the accurate measurement of air voids and their variable distribution. Both can have significant impact on long and short term fatigue and creep behaviour under traffic. While some simple methods exist for overall evaluation of air voids, measuring air void distribution in asphalt concrete is very complex, involving expensive techniques such as X-ray methodologies. The research reported in the paper investigated the use of non-destructive ultrasonic techniques as an alternative to estimate the amount of air voids and their distribution within asphalt samples. Seventy-four Standard AC–14 asphalt samples made with three types of bitumen; Multigrade, PMB and C320 were analysed using ultrasonic techniques. The results have illustrated that ultrasonic testing has the potential of being a rapid, accurate and cost-effective method of estimating air void distribution in asphalt.

Keywords: asphalt concrete, air voids, ultrasonic, mechanical behaviour

Procedia PDF Downloads 346
3209 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City

Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron

Abstract:

Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.

Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density

Procedia PDF Downloads 152