Search results for: centrally located land
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4499

Search results for: centrally located land

299 Economic Impacts of Nitrogen Fertilizer Use into Tropical Pastures for Beef Cattle in Brazil

Authors: Elieder P. Romanzini, Lutti M. Delevatti, Rhaony G. Leite, Ricardo A. Reis, Euclides B. Malheiros

Abstract:

Brazilian beef cattle production systems are an important profitability source for the national gross domestic product. The main characteristic of these systems is forage utilization as the exclusive feed source. Forage utilization had been causing on owners the false feeling of low production costs. However, this low cost is followed to low profit causing a lot times worst animal index what can result in activities changes or until land sold. Aiming to evaluate economic impacts into Brazilian beef cattle systems were evaluated four nitrogen fertilizer (N) application levels (0, 90, 180 and 270 kg per hectare [kg.ha-1]). Research was developed during 2015 into Forage Crops and Grasslands section of São Paulo State University, “Júlio de Mesquita Filho” (Unesp) (Jaboticabal, São Paulo, Brazil). Pastures were seeded with Brachiaria brizantha Stapf. ‘Marandu’ (Palisade grass) handled using continuous grazing system, with variable stocking rate, sward height maintained at 25 cm. The economic evaluation was developed in rearing e finishing phases. We evaluated the cash flows inside each phase on different N levels. Economic valuations were considering: cost-effective operating (CEO), cost-total operating (CTO), gross revenue (GR), operating profit (OP) and net income (NI), every measured in US$. Complementary analyses were developed, profitability was calculated by [OP/GR]. Pay back (measured in years) was calculated considering average capital stocktaking pondered by area in use (ACS) divided by [GR-CEO]. And the internal rate of return (IRR) was calculated by 100/(pay back). Input prices were prices during 2015 and were obtained from Anuário Brasileiro da Pecuária, Centro de Estudos Avançados em Economia Aplicada and quotation in the same region of animal production (northeast São Paulo State) during the period above mentioned. Values were calculated in US$ according exchange rate US$1.00 equal R$3.34. The CEO, CTO, GR, OP and NI per hectare for each N level were respectively US$1,919.66; US$2,048.47; US$2,905.72; US$857.25 and US$986.06 to 0 kg.ha-1; US$2,403.20; US$2,551.80; US$3,530.19; US$978.39 and US$1,126.99 to 90 kg.ha-1; US$3,180.42; US$3,364.81; US$4,985.03; US$1,620.23 and US$1,804.62 to 180 kg.ha-1andUS$3,709.14; US$3,915.15; US$5,554.95; US$1,639.80 and US$1,845.81 to 270 kg.ha-1. Relationship to another economic indexes, profitability, pay back and IRR, the results were respectively 29.50%, 6.44 and 15.54% to 0 kg.ha-1; 27.72%, 6.88 and 14.54% to 90 kg.ha-1; 32.50%, 4.08 and 24.50% to 180 kg.ha-1 and 29.52%, 3.42 and 29.27% to 270 kg.ha-1. Values previously presented in this evaluation allowing to affirm that the best result was obtained to N level 270 kg.ha-1. These results among all N levels evaluated could be explained by improve occurred on stocking rate caused by increase on N level. However, a crucial information about high N level application into pastures is the efficiency of N utilization (associated to environmental impacts) that normally decrease with the increase on N level. Hence, considering all situations (efficiency of N utilization and economic results) into tropical pastures used to beef cattle production could be recommended N level equal to 180kg.ha-1, which had better profitability and cause lesser environmental impacts, proved by other studies developed in the same area.

Keywords: Brachiaria brizantha, cost-total operating, gross revenue, profitability

Procedia PDF Downloads 155
298 Greek Tragedy on the American Stage until the First Half of 20ᵗʰ: Identities and Intersections between Greek, Italian and Jewish Community Theatre

Authors: Papazafeiropoulou Olga

Abstract:

The purpose of this paper focuses on exploring the emergence of Greek tragedy on the American stage until the first half of the 20th century through the intellectual processes and contributions of Greek, Italian and Jewish community theatre. Drawing on a wide range of sources, we trace Greek tragedy on the American stage, exploring the intricate processes of community’s theatre identities. The announcement aims to analyze the distinct yet related efforts of first Americans to intersect with Greek tragedy, searching simultaneously for the identities of immigrants. Ultimately, ancient drama became a vehicle not only for great developments in the American theater. In 1903, the Greek actor Dionysios Taboularis arrived in America, while the immigrant stream from Greece to America brought his artistic heritage, presenting in “Hall House” of Chicago the play Return. In 1906, in New York, an amateur group presented the play The Alosi of Messolonghi, and the next year in Chicago, an attempt was noted with a dramatic romance. In the decade 1907-1917, Nikolaos Matsoukas founded and directed the “Arbe theater”, while Petros Kotopoulis formed a troupe. In 1930, one of the greatest Greek theatrical events was the arrival of Marika’s Kotopoulis. Also, members of Vrysoula’s Pantopoulos formed the “Athenian Operetta”, with a positive influence on Greek American theatre. Italian immigrant community, located in tenement “Little Italies” throughout the city, and soon amateur theatrical clubs evolved. The earliest was the “Circolo Filodrammatico Italo-Americano” in 1880. Fausto Malzone’s artistic direction paved the way for the professional Italian immigrant theatre. Immigrant audiences heard the plays of their homeland, representing a major transition for this ethnic theatre. In 1900, the community had produced the major forces that created the professional theatre. By l905, the Italian American theatre had become firmly rooted in its professional phase. Yiddish Theater was both an import and a home-grown phenomenon. In 1878, The Sorceress was brought to America by Boris Thomashefsky. Between 1890 and 1940, many Yiddish theater companies appeared in America, presenting adaptations of classical plays. Αmerica’s people's first encounter with ancient texts was mostly academic. The tracing of tragedy as a form and concept that follows the evolutionary course of domestic social, aesthetic, and political ferments according to the international trends and currents draws conclusions about the early Greek, Italian, and Jewish immigrant’s theatre in relationship to the American scene until the first half of 20th century. Presumably, community theater acquired identity by intersecting with the spiritual reception of tragedy in America.

Keywords: American, community, Greek, Italian, identities, intersection, Jewish, theatre, tragedy

Procedia PDF Downloads 57
297 Need for Elucidation of Palaeoclimatic Variability in the High Himalayan Mountains: A Multiproxy Approach

Authors: Sheikh Nawaz Ali, Pratima Pandey, P. Morthekai, Jyotsna Dubey, Md. Firoze Quamar

Abstract:

The high mountain glaciers are one of the most sensitive recorders of climate changes, because they have the tendency to respond to the combined effect of snow fall and temperature. The Himalayan glaciers have been studied with a good pace during the last decade. However, owing to its large ecological diversity and geographical vividness, major part of the Indian Himalaya is uninvestigated, and hence the palaeoclimatic patterns as well as the chronology of past glaciations in particular remain controversial for the entire Indian Himalayan transect. Although the Himalayan glaciers are nourished by two important climatic systems viz. the southwest summer monsoon and the mid-latitude westerlies, however, the influence of these systems is yet to be understood. Nevertheless, existing chronology (mostly exposure ages) indicate that irrespective of the geographical position, glaciers seem to grow during enhanced Indian summer monsoon (ISM). The Himalayan mountain glaciers are referred to the third pole or water tower of Asia as they form a huge reservoir of the fresh water supplies for the Asian countries. Mountain glaciers are sensitive probes of the local climate, and, thus, they present an opportunity and a challenge to interpret climates of the past as well as to predict future changes. The principle object of all the palaeoclimatic studies is to develop a futuristic models/scenario. However, it has been found that the glacial chronologies bracket the major phases of climatic events only, and other climatic proxies are sparse in Himalaya. This is the reason that compilation of data for rapid climatic change during the Holocene shows major gaps in this region. The sedimentation in proglacial lakes, conversely, is more continuous and, hence, can be used to reconstruct a more complete record of past climatic variability that is modulated by changing ice volume of the valley glacier. The Himalayan region has numerous proglacial lacustrine deposits formed during the late Quaternary period. However, there are only few such deposits which have been studied so far. Therefore, this is the high time when efforts have to be made to systematically map the moraines located in different climatic zones, reconstruct the local and regional moraine stratigraphy and use multiple dating techniques to bracket the events of glaciation. Besides this, emphasis must be given on carrying multiproxy studies on the lacustrine sediments that will provide a high resolution palaeoclimatic data from the alpine region of the Himalaya. Although the Himalayan glaciers fluctuated in accordance with the changing climatic conditions (natural forcing), however, it is too early to arrive at any conclusion. It is very crucial to generate multiproxy data sets covering wider geographical and ecological domains taking into consideration multiple parameters that directly or indirectly influence the glacier mass balance as well as the local climate of a region.

Keywords: glacial chronology, palaeoclimate, multiproxy, Himalaya

Procedia PDF Downloads 255
296 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach

Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh

Abstract:

Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.

Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling

Procedia PDF Downloads 27
295 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall

Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono

Abstract:

Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.

Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall

Procedia PDF Downloads 179
294 Trends in Conservation and Inheritance of Musical Culture of Ethnic Groups: A Case Study of the Akha Music in Chiang Rai Province, Thailand

Authors: Nutthan Inkhong, Sutthiphong Ruangchante

Abstract:

Chiang Rai province is located at the northern border of Thailand. Most of the geography there is the northern continental highlands, and the population has many types of inhabitants, including Thai people, immigrants and ethnic groups such as Akha, Lahu, Lisu, Yao, etc. Most of these ethnic groups migrated from neighbouring countries such as Myanmar, Laos, China, etc. and settled in the mountains. Each ethnic group has their unique traditions, culture, and ways of life, including the musical culture that the ancestors of each ethnic group brought with them. In the present, the Akha have the largest population in the region and still live together in numerous villages in many districts. Thus, Akha musical culture still appears in the community traditions and cultural events of Chiang Rai province regularly. This article presents the situations of Akha musical culture in the present and the predictions for the future. The study method involves the analysis of music information and the related social contexts, which were collected from the fieldwork of ethnomusicological methodology by in-depth interviews, observations, audio and visual recordings, and related documents. The results found that the important persons who are related with Akha musical culture include (1) a musical instrument maker (lives in Mae Chan district) who produces various Akha musical instruments, including gourd mouth organs, Akha drums, two-way flutes, three-hole flutes, Jew’s harps (the sound of teenage love), buffalo horns (the sound symbol of hunting) and bird call instruments (the imitation of bird sounds), (2) a folk philosopher (lives in Mae Pha Luang district) who can teach music to the new generation of Akha people as well as lecture and demonstrate music to academics and tourists, and (3) a community leader (lives in Mae Chan district) who conserves Akha performances, singing and music through various activities of the students in an informal school. Because of the changes to the social contexts and ways of life of the Akha people, such as the educational system, religion, social media, etc., including the popularity of both Thai and international popular music among the new generation of Akha people, changes to and the fading away of Akha musical culture in the future may likely occur. Therefore, the conservation and inheritance of Akha music is an issue that should be resolved quickly. This primary study leads to the next step of the ethnomusicological work and plays a part in preventing or reducing the problems impacting Akha musical culture survival by the recording of Akha music in all of its dimensions, such as producing musical instruments, playing musical instruments, analysis of tuning systems, recording Akha music as musical notation using symbols, researching related social contexts, etc. and the transcription of this information to create lessons that can be returned to the Akha community.

Keywords: Akha music, Chiang Rai, ethnic music in Thailand, ethnomusicology

Procedia PDF Downloads 145
293 Polar Bears in Antarctica: An Analysis of Treaty Barriers

Authors: Madison Hall

Abstract:

The Assisted Colonization of Polar Bears to Antarctica requires a careful analysis of treaties to understand existing legal barriers to Ursus maritimus transport and movement. An absence of land-based migration routes prevent polar bears from accessing southern polar regions on their own. This lack of access is compounded by current treaties which limit human intervention and assistance to ford these physical and legal barriers. In a time of massive planetary extinctions, Assisted Colonization posits that certain endangered species may be prime candidates for relocation to hospitable environments to which they have never previously had access. By analyzing existing treaties, this paper will examine how polar bears are limited in movement by humankind’s legal barriers. International treaties may be considered codified reflections of anthropocentric values of the best knowledge and understanding of an identified problem at a set point in time, as understood through the human lens. Even as human social values and scientific insights evolve, so too must treaties evolve which specify legal frameworks and structures impacting keystone species and related biomes. Due to costs and other myriad difficulties, only a very select number of species will be given this opportunity. While some species move into new regions and are then deemed invasive, Assisted Colonization considers that some assistance may be mandated due to the nature of humankind’s role in climate change. This moral question and ethical imperative against the backdrop of escalating climate impacts, drives the question forward; what is the potential for successfully relocating a select handful of charismatic and ecologically important life forms? Is it possible to reimagine a different, but balanced Antarctic ecosystem? Listed as a threatened species under the U.S. Endangered Species Act, a result of the ongoing loss of critical habitat by melting sea ice, polar bears have limited options for long term survival in the wild. Our current regime for safeguarding animals facing extinction frequently utilizes zoos and their breeding programs, to keep alive the genetic diversity of the species until some future time when reintroduction, somewhere, may be attempted. By exploring the potential for polar bears to be relocated to Antarctica, we must analyze the complex ethical, legal, political, financial, and biological realms, which are the backdrop to framing all questions in this arena. Can we do it? Should we do it? By utilizing an environmental ethics perspective, we propose that the Ecological Commons of the Arctic and Antarctic should not be viewed solely through the lens of human resource management needs. From this perspective, polar bears do not need our permission, they need our assistance. Antarctica therefore represents a second, if imperfect chance, to buy time for polar bears, in a world where polar regimes, not yet fully understood, are themselves quickly changing as a result of climate change.

Keywords: polar bear, climate change, environmental ethics, Arctic, Antarctica, assisted colonization, treaty

Procedia PDF Downloads 405
292 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 112
291 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 400
290 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks

Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo

Abstract:

In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.

Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm

Procedia PDF Downloads 217
289 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 371
288 A Comparative Study of the Impact of the Total Fertility Rate (TFR) on Trends in the Second Demographic Transition in Rwanda

Authors: Etienne Gatera

Abstract:

Many studies have been conducted on SDT. Most of them focus on developed countries because of influencing factors such as; education, health, labor force, female labor force participation, industrialization, urbanization and migration. However, this thesis project paper aims to assess the impact of the total fertility rate (TFR) on the trends of the SDR in Rwanda. We will mainly be based in Rwanda after the 1994 genocide. Rwanda is located in East Africa, with approximately 13 million inhabitants. Thus, after the 1994 Tutsi genocide. The population growth rate exploded out of control with 6.17 children per woman in 1995. However, it's declined to 4.2 in 2014-2015 and declining to 4.1% in 2019-2020. Respectively with 3.4 children per woman in urban areas and 4.3 in rural areas. According to the National Institute of Statistics of Rwanda. Rwanda's population is expected to continue to grow for the rest of the century and reach 33.35 million people in 2099, with 2.1 children per woman in 2050. However, this project document aims to demonstrate the impact of the TFR on SDT trends in Rwanda. Thus, the decline in the TFR in Rwanda began with the introduction of family planning practices, which now account for 47.5% in 2019. Childbearing with three children for rural women compared to two children in the city, the increase in Divorce and separation caused by the behavior called "Kuza n'ijoro" or "coming at night" similar to cohabitation in developed countries. The decline in remarriage is caused by single mothers behavior who prefer to raise their children rather than remarry. Therefore, the study used probability sampling with (Stratified random sampling) method with a survey questionnaire of 1067 respondents in the 5 Districts (3 in rural areas and two in urban areas), with the target group of women Age between 15-49. The study demonstrated that the age of marriage in rural areas is two years higher than in urban areas. Divorce is more common in urban is with 6.2% with 5.2% in rural areas. However, separation is more common in rural areas than in urban areas, with a lower rate of 3%, due to the higher system called "Kuza n'ijoro" or "come at night", similar to cohabitation in developed countries. The study revealed that more than 85% of divorced people prefer to remain single, which confirms the low remarriage rate. Childbearing has started to decrease, especially for young singles in urban areas, due to the economic situation, with national statistics showing that unemployment in the youth community is still 16% higher. Therefore, the study concluded by confirming the hypothesis based on the results of the TFR indicators such as marriage, remarriage, divorce, separation, divorce, Kuza n'ijoro, childbearing] and abortion. The study consists of four sections, an introduction and background, a review of the literature, a description of the data and methodology, an analysis of the data, discussion results and a conclusion.

Keywords: Kuza n'ijoro, Rwanda, second demographic transition (SDT), total fertility rate (TFR)

Procedia PDF Downloads 158
287 Molecular Identification of Camel Tick and Investigation of Its Natural Infection by Rickettsia and Borrelia in Saudi Arabia

Authors: Reem Alajmi, Hind Al Harbi, Tahany Ayaad, Zainab Al Musawi

Abstract:

Hard ticks Hyalomma spp. (family: Ixodidae) are obligate ectoparasite in their all life stages on some domestic animals mainly camels and cattle. Ticks may lead to many economic and public health problems because of their blood feeding behavior. Also, they act as vectors for many bacterial, viral and protozoan agents which may cause serious diseases such as tick-born encephalitis, Rocky-mountain spotted fever, Q-fever and Lyme disease which can affect human and/or animals. In the present study, molecular identification of ticks that attack camels in Riyadh region, Saudi Arabia based on the partial sequence of mitochondrial 16s rRNA gene was applied. Also, the present study aims to detect natural infections of collected camel ticks with Rickessia spp. and Borelia spp. using PCR/hybridization of Citrate synthase encoding gene present in bacterial cells. Hard ticks infesting camels were collected from different camels located in a farm in Riyadh region, Saudi Arabia. Results of the present study showed that the collected specimens belong to two species: Hyalomma dromedari represent 99% of the identified specimens and Hyalomma marginatum which account for 1 % of identified ticks. The molecular identification was made through blasting the obtained sequence of this study with sequences already present and identified in GeneBank. All obtained sequences of H. dromedarii specimens showed 97-100% identity with the same gene sequence of the same species (Accession # L34306.1) which was used as a reference. Meanwhile, no intraspecific variations of H. marginatum mesured because only one specimen was collected. Results also had shown that the intraspecific variability between individuals of H. dromedarii obtained in 92 % of samples ranging from 0.2- 6.6%, while the remaining 7 % of the total samples of H. dromedarii showed about 10.3 % individual differences. However, the interspecific variability between H. dromedarii and H. marginatum was approximately 18.3 %. On the other hand, by using the technique of PCR/hybridization, we could detect natural infection of camel ticks with Rickettsia spp. and Borrelia spp. Results revealed the natural presence of both bacteria in collected ticks. Rickettsial spp. infection present in 29% of collected ticks, while 35% of collected specimen were infected with Borrelia spp. The valuable results obtained from the present study are a new record for the molecular identification of camel ticks in Riyadh, Saudi Arabia and their natural infection with both Rickettsia spp. and Borrelia spp. These results may help scientists to provide a good and direct control strategy of ticks in order to protect one of the most important economic animals which are camels. Also results of this project spotlight on the disease that might be transmitted by ticks to put out a direct protective plan to prevent spreading of these dangerous agents. Further molecular studies are needed to confirm the results of the present study by using other mitochondrial and nuclear genes for tick identification.

Keywords: Camel ticks, Rickessia spp. , Borelia spp. , mitochondrial 16s rRNA gene

Procedia PDF Downloads 262
286 Development of DNDC Modelling Method for Evaluation of Carbon Dioxide Emission from Arable Soils in European Russia

Authors: Olga Sukhoveeva

Abstract:

Carbon dioxide (CO2) is the main component of carbon biogeochemical cycle and one of the most important greenhouse gases (GHG). Agriculture, particularly arable soils, are one the largest sources of GHG emission for the atmosphere including CO2.Models may be used for estimation of GHG emission from agriculture if they can be adapted for different countries conditions. The only model used in officially at national level in United Kingdom and China for this purpose is DNDC (DeNitrification-DeComposition). In our research, the model DNDC is offered for estimation of GHG emission from arable soils in Russia. The aim of our research was to create the method of DNDC using for evaluation of CO2 emission in Russia based on official statistical information. The target territory was European part of Russia where many field experiments are located. At the first step of research the database on climate, soil and cropping characteristics for the target region from governmental, statistical, and literature sources were created. All-Russia Research Institute of Hydrometeorological Information – World Data Centre provides open daily data about average meteorological and climatic conditions. It must be calculated spatial average values of maximum and minimum air temperature and precipitation over the region. Spatial average values of soil characteristics (soil texture, bulk density, pH, soil organic carbon content) can be determined on the base of Union state register of soil recourses of Russia. Cropping technologies are published by agricultural research institutes and departments. We offer to define cropping system parameters (annual information about crop yields, amount and types of fertilizers and manure) on the base of the Federal State Statistics Service data. Content of carbon in plant biomass may be calculated via formulas developed and published by Ministry of Natural Resources and Environment of the Russian Federation. At the second step CO2 emission from soil in this region were calculated by DNDC. Modelling data were compared with empirical and literature data and good results were obtained, modelled values were equivalent to the measured ones. It was revealed that the DNDC model may be used to evaluate and forecast the CO2 emission from arable soils in Russia based on the official statistical information. Also, it can be used for creation of the program for decreasing GHG emission from arable soils to the atmosphere. Financial Support: fundamental scientific researching theme 0148-2014-0005 No 01201352499 ‘Solution of fundamental problems of analysis and forecast of Earth climatic system condition’ for 2014-2020; fundamental research program of Presidium of RAS No 51 ‘Climate change: causes, risks, consequences, problems of adaptation and regulation’ for 2018-2020.

Keywords: arable soils, carbon dioxide emission, DNDC model, European Russia

Procedia PDF Downloads 180
285 Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand

Authors: Ajay Kumar Pandey

Abstract:

White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality).

Keywords: Lepidiota, profiling, Uttarakhand, whitegrub

Procedia PDF Downloads 211
284 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 163
283 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.

Keywords: earthquake, Nepal, reconstruction, settlement, transformation

Procedia PDF Downloads 103
282 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 113
281 Construction Port Requirements for Floating Wind Turbines

Authors: Alan Crowle, Philpp Thies

Abstract:

As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.

Keywords: floating wind, port, marine construction, offshore renewables

Procedia PDF Downloads 273
280 Introduction of Dams Impacts on Downstream Wetlands: Case Study in Ahwar Delta in Yemen

Authors: Afrah Saad Mohsen Al-Mahfadi

Abstract:

The construction of dams can provide various ecosystem services, but it can also lead to ecological changes such as habitat loss and coastal degradation. Yemen faces multiple risks, including water crises and inadequate environmental policies, which are particularly detrimental to coastal zones like the Ahwar Delta in Abyan. This study aims to examine the impacts of dam construction on downstream wetlands and propose sustainable management approaches. Research Aim: The main objective of this study is to assess the different impacts of dam construction on downstream wetlands, specifically focusing on the Ahwar Delta in Yemen. Methodology: The study utilizes a literature review approach to gather relevant information on dam impacts and adaptation measures. Interviews with decision-making stakeholders and local community members are conducted to gain insights into the specific challenges faced in the Ahwar Delta. Additionally, sensing data, such as Arc-GIS and precipitation data from 1981 to 2020, are analyzed to examine changes in hydrological dynamics. Questions Addressed: This study addresses the following questions: What are the impacts of dam construction on downstream wetlands in the Ahwar delta? How can environmental management planning activities be implemented to minimize these impacts? Findings: The results indicate several future issues arising from dam construction in the coastal areas, including land loss due to rising sea levels and increased salinity in drinking water wells. Climate change has led to a decrease in rainfall rates, impacting vegetation and increasing sedimentation and erosion. Downstream areas with dams exhibit lower sediment levels and slower flowing habitats compared to those without dams. Theoretical Importance: The findings of this study provide valuable insights into the ecological impacts of dam construction on downstream wetlands. Understanding these dynamics can inform decision-makers about the need for adaptation measures and their potential benefits in improving coastal biodiversity under dam impacts. Data Collection and Analysis Procedures: The study collects data through a literature review, interviews, and sensing technology. The literature review helps identify relevant studies on dam impacts and adaptation measures. Interviews with stakeholders and local community members provide firsthand information on the specific challenges faced in the Ahwar Delta. Sensing data, such as Arc-GIS and precipitation data, are analyzed to understand changes in hydrological dynamics over time. Conclusion: The study concludes that while the situation can worsen due to dam construction, practical adaptation measures can help mitigate the impacts. Recommendations include improving water management, developing integrated coastal zone planning, raising awareness among stakeholders, improving health and education, and implementing emergency projects to combat climate change.

Keywords: dam impact, delta wetland, hydrology, Yemen

Procedia PDF Downloads 55
279 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 80
278 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 167
277 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences, Individual, and Community Resilience of Residents From a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well. As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth

Procedia PDF Downloads 67
276 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 123
275 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences and Resilience of Local Residents from a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well.As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth (PTG)

Procedia PDF Downloads 61
274 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass

Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim

Abstract:

The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.

Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching

Procedia PDF Downloads 262
273 Examination of Indoor Air Quality of Naturally Ventilated Dwellings During Winters in Mega-City Kolkata

Authors: Tanya Kaur Bedi, Shankha Pratim Bhattacharya

Abstract:

The US Environmental Protection Agency defines indoor air quality as “The air quality within and around buildings, especially as it relates to the health and comfort of building occupants”. According to the 2021 report by the Energy Policy Institute at Chicago, Indian residents, a country which is home to the highest levels of air pollution in the world, lose about 5.9 years from life expectancy due to poor air quality and yet has numerous dwellings dependent on natural ventilation. Currently the urban population spends 90% of the time indoors, this scenario raises a concern for occupant health and well-being. The built environment can affect health directly and indirectly through immediate or long-term exposure to indoor air pollutants. Health effects associated with indoor air pollutants include eye/nose/throat irritation, respiratory diseases, heart disease, and even cancer. This study attempts to demonstrate the causal relationship between the indoor air quality and its determining aspects. Detailed indoor air quality audits were conducted in residential buildings located in Kolkata, India in the months of December and January 2021. According to the air pollution knowledge assessment city program in India, Kolkata is also the second most polluted mega-city after Delhi. Although the air pollution levels are alarming year-long, the winter months are most crucial due to the unfavorable environmental conditions. While emissions remain typically constant throughout the year, cold air is denser and moves slower than warm air, trapping the pollution in place for much longer and consequently is breathed in at a higher rate than the summers. The air pollution monitoring period was selected considering environmental factors and major pollution contributors like traffic and road dust. This study focuses on the relationship between the built environment and the spatial-temporal distribution of air pollutants in and around it. The measured parameters include, temperature, relative humidity, air velocity, particulate matter, volatile organic compounds, formaldehyde, and benzene. A total of 56 rooms were audited, selectively targeting the most dominant middle-income group. The data-collection was conducted using a set of instruments positioned in the human breathing-zone. The study assesses indoor air quality based on factors determining natural ventilation and air pollution dispersion such as surrounding environment, dominant wind, openable window to floor area ratio, windward or leeward side openings, and natural ventilation type in the room: single side or cross-ventilation, floor height, residents cleaning habits, etc.

Keywords: indoor air quality, occupant health, urban housing, air pollution, natural ventilation, architecture, urban issues

Procedia PDF Downloads 111
272 Shale Gas and Oil Resource Assessment in Middle and Lower Indus Basin of Pakistan

Authors: Amjad Ali Khan, Muhammad Ishaq Saqi, Kashif Ali

Abstract:

The focus of hydrocarbon exploration in Pakistan has been primarily on conventional hydrocarbon resources. Directorate General Petroleum Concessions (DGPC) has taken the lead on the assessment of indigenous unconventional oil and gas resources, which has resulted in a ‘Shale Oil/Gas Resource Assessment Study’ conducted with the help of USAID. This was critically required in the energy-starved Pakistan, where the gap between indigenous oil & gas production and demand continues to widen for a long time. Exploration & exploitation of indigenous unconventional resources of Pakistan have become vital to meet our energy demand and reduction of oil and gas import bill of the country. This study has attempted to bridge a critical gap in geological information about the potential of shale gas & oil in Pakistan in the four formations, i.e., Sembar, Lower Goru, Ranikot and Ghazij in the Middle and Lower Indus Basins, which were selected for the study as for resource assessment for shale gas & oil. The primary objective of the study was to estimate and establish shale oil/gas resource assessment of the study area by carrying out extensive geological analysis of exploration, appraisal and development wells drilled in the Middle and Lower Indus Basins, along with identification of fairway(s) and sweet spots in the study area. The Study covers the Lower parts of the Middle Indus basins located in Sindh, southern Punjab & eastern parts of the Baluchistan provinces, with a total sedimentary area of 271,795 km2. Initially, 1611 wells were reviewed, including 1324 wells drilled through different shale formations. Based on the availability of required technical data, a detailed petrophysical analysis of 124 wells (21 Confidential & 103 in the public domain) has been conducted for the shale gas/oil potential of the above-referred formations. The core & cuttings samples of 32 wells and 33 geochemical reports of prospective Shale Formations were available, which were analyzed to calibrate the results of petrophysical analysis with petrographic/ laboratory analyses to increase the credibility of the Shale Gas Resource assessment. This study has identified the most prospective intervals, mainly in Sembar and Lower Goru Formations, for shale gas/oil exploration in the Middle and Lower Indus Basins of Pakistan. The study recommends seven (07) sweet spots for undertaking pilot projects, which will enable to evaluate of the actual production capability and production sustainability of shale oil/gas reservoirs of Pakistan for formulating future strategies to explore and exploit shale/oil resources of Pakistan including fiscal incentives required for developing shale oil/gas resources of Pakistan. Some E&P Companies are being persuaded to make a consortium for undertaking pilot projects that have shown their willingness to participate in the pilot project at appropriate times. The location for undertaking the pilot project has been finalized as a result of a series of technical sessions by geoscientists of the potential consortium members after the review and evaluation of available studies.

Keywords: conventional resources, petrographic analysis, petrophysical analysis, unconventional resources, shale gas & oil, sweet spots

Procedia PDF Downloads 27
271 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 137
270 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece

Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis

Abstract:

Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).

Keywords: dairy cows, seropositivity, spatial analysis, temperature factors

Procedia PDF Downloads 185