Search results for: high-dimensional data analysis
55 An Analytic Cross-Sectional Study on the Association between Social Determinants of Health, Maternal and Child Health-Related Knowledge and Attitudes, and Utilization of Maternal, Newborn, Child Health and Nutrition Strategy-Prescribed Services for M
Authors: Rafael Carlos C. Aniceto, Bryce Abraham M. Anos, Don Christian A. Cornel, Marjerie Brianna S. Go, Samantha Nicole U. Roque, Earl Christian C. Te
Abstract:
Indigenous peoples (IPs) in the Philippines are a vulnerable, marginalized group in terms of health and overall well-being due to social inequities and cultural differences. National standards regarding maternal healthcare are geared towards facility-based delivery with modern medicine, health services, and skilled birth attendants. Standards and procedures of care for pregnant mothers do not take into account cultural differences between indigenous people and the majority of the population. There do exist, however, numerous other factors that cause relatively poorer health outcomes among indigenous peoples (IPs). This analytic cross-sectional study sought to determine the association between social determinants of health (SDH), focusing on status as indigenous peoples, and maternal health-related knowledge and attitudes (KA), and health behavior of the Dumagat-Agta indigenous people of Barangay Catablingan and Barangay San Marcelino, General Nakar, Quezon Province, and their utilization of health facilities for antenatal care, facility-based delivery and postpartum care, which would affect their health outcomes (that were not within the scope of this study). To quantitatively measure the primary/secondary exposures and outcomes, a total of 90 face-to-face interviews with IP and non-IP mothers were done. For qualitative information, participant observation among 6 communities (5 IP and 1 non-IP), 11 key informant interviews (traditional and modern health providers) and 4 focused group discussions among IP mothers were conducted. Primary quantitative analyses included chi-squared, T-test and binary logistic regression, while secondary qualitative analyses involved thematic analysis and triangulation. The researchers spent a total of 15 days in the community to learn the culture and participate in the practices of the Dumagat-Agta more intensively and deeply. Overall, utilization of all MNCHN services measured in the study was lower for IP mothers compared to their non-IP counterparts. After controlling for confounders measured in the study, IP status (primary exposure) was found to be significantly correlated with utilization of and adherence to two MNCHN-prescribed services: number of antenatal care check-ups and place of delivery (secondary outcomes). Findings show that being an indigenous mother leads to unfavorable social determinants of health, and if compounded by a difference in knowledge and attitudes, would then lead to poor levels of utilization of MNCHN-prescribed services. Key themes from qualitative analyses show that factors that affected utilization were: culture, land alienation, social discrimination, socioeconomic status, and relations between IPs and non-IPs, specifically with non-IP healthcare providers. The findings of this study aim to be used to help and guide in policy-making, to provide healthcare that is not only adequate and of quality, but more importantly, that addresses inequities stemming from various social determinants, and which is socio-culturally acceptable to indigenous communities. To address the root causes of health problems of IPs, there must be full recognition and exercise of their collective rights to communal assets, specifically land, and self-determination. This would improve maternal and child health outcomes to one of the most vulnerable and neglected sectors in society today.Keywords: child health, indigenous people, knowledge-attitudes-practices, maternal health, social determinants of health
Procedia PDF Downloads 19454 Translation, Cross-Cultural Adaption, and Validation of the Vividness of Movement Imagery Questionnaire 2 (VMIQ-2) to Classical Arabic Language
Authors: Majid Alenezi, Abdelbare Algamode, Amy Hayes, Gavin Lawrence, Nichola Callow
Abstract:
The purpose of this study was to translate and culturally adapt the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) from English to produce a new Arabic version (VMIQ-2A), and to evaluate the reliability and validity of the translated questionnaire. The questionnaire assesses how vividly and clearly individuals are able to imagine themselves performing everyday actions. Its purpose is to measure individuals’ ability to conduct movement imagery, which can be defined as “the cognitive rehearsal of a task in the absence of overt physical movement.” Movement imagery has been introduced in physiotherapy as a promising intervention technique, especially when physical exercise is not possible (e.g. pain, immobilisation.) Considerable evidence indicates movement imagery interventions improve physical function, but to maximize efficacy it is important to know the imagery abilities of the individuals being treated. Given the increase in the global sharing of knowledge it is desirable to use standard measures of imagery ability across language and cultures, thus motivating this project. The translation procedure followed guidelines from the Translation and Cultural Adaptation group of the International Society for Pharmacoeconomics and Outcomes Research and involved the following phases: Preparation; the original VMIQ-2 was adapted slightly to provide additional information and simplified grammar. Forward translation; three native speakers resident in Saudi Arabia translated the original VMIQ-2 from English to Arabic, following instruction to preserve meaning (not literal translation), and cultural relevance. Reconciliation; the project manager (first author), the primary translator and a physiotherapist reviewed the three independent translations to produce a reconciled first Arabic draft of VMIQ-2A. Backward translation; a fourth translator (native Arabic speaker fluent in English) translated literally the reconciled first Arabic draft to English. The project manager and two study authors compared the English back translation to the original VMIQ-2 and produced the second Arabic draft. Cognitive debriefing; to assess participants’ understanding of the second Arabic draft, 7 native Arabic speakers resident in the UK completed the questionnaire, and rated the clearness of the questions, specified difficult words or passages, and wrote in their own words their understanding of key terms. Following review of this feedback, a final Arabic version was created. 142 native Arabic speakers completed the questionnaire in community meeting places or at home; a subset of 44 participants completed the questionnaire a second time 1 week later. Results showed the translated questionnaire to be valid and reliable. Correlation coefficients indicated good test-retest reliability. Cronbach’s a indicated high internal consistency. Construct validity was tested in two ways. Imagery ability scores have been found to be invariant across gender; this result was replicated within the current study, assessed by independent-samples t-test. Additionally, experienced sports participants have higher imagery ability than those less experienced; this result was also replicated within the current study, assessed by analysis of variance, supporting construct validity. Results provide preliminary evidence that the VMIQ-2A is reliable and valid to be used with a general population who are native Arabic speakers. Future research will include validation of the VMIQ-2A in a larger sample, and testing validity in specific patient populations.Keywords: motor imagery, physiotherapy, translation and validation, imagery ability
Procedia PDF Downloads 33453 Biodegradation of Chlorophenol Derivatives Using Macroporous Material
Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina
Abstract:
Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation
Procedia PDF Downloads 21352 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects
Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali
Abstract:
The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia
Procedia PDF Downloads 2351 A Self-Heating Gas Sensor of SnO2-Based Nanoparticles Electrophoretic Deposited
Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Sonia M. Zanetti, Mario Cilense, Leinig Antônio Perazolli, Maria Aparecida Zaghete
Abstract:
The contamination of the environment has been one of the biggest problems of our time, mostly due to developments of many industries. SnO2 is an n-type semiconductor with band gap about 3.5 eV and has its electrical conductivity dependent of type and amount of modifiers agents added into matrix ceramic during synthesis process, allowing applications as sensing of gaseous pollutants on ambient. The chemical synthesis by polymeric precursor method consists in a complexation reaction between tin ion and citric acid at 90 °C/2 hours and subsequently addition of ethyleneglycol for polymerization at 130 °C/2 hours. It also prepared polymeric resin of zinc, cobalt and niobium ions. Stoichiometric amounts of the solutions were mixed to obtain the systems (Zn, Nb)-SnO2 and (Co, Nb) SnO2 . The metal immobilization reduces its segregation during the calcination resulting in a crystalline oxide with high chemical homogeneity. The resin was pre-calcined at 300 °C/1 hour, milled in Atritor Mill at 500 rpm/1 hour, and then calcined at 600 °C/2 hours. X-Ray Diffraction (XDR) indicated formation of SnO2 -rutile phase (JCPDS card nº 41-1445). The characterization by Scanning Electron Microscope of High Resolution showed spherical ceramic powder nanostructured with 10-20 nm of diameter. 20 mg of SnO2 -based powder was kept in 20 ml of isopropyl alcohol and then taken to an electrophoretic deposition (EPD) system. The EPD method allows control the thickness films through the voltage or current applied in the electrophoretic cell and by the time used for deposition of ceramics particles. This procedure obtains films in a short time with low costs, bringing prospects for a new generation of smaller size devices with easy integration technology. In this research, films were obtained in an alumina substrate with interdigital electrodes after applying 2 kV during 5 and 10 minutes in cells containing alcoholic suspension of (Zn, Nb)-SnO2 and (Co, Nb) SnO2 of powders, forming a sensing layer. The substrate has designed integrated micro hotplates that provide an instantaneous and precise temperature control capability when a voltage is applied. The films were sintered at 900 and 1000 °C in a microwave oven of 770 W, adapted by the research group itself with a temperature controller. This sintering is a fast process with homogeneous heating rate which promotes controlled growth of grain size and also the diffusion of modifiers agents, inducing the creation of intrinsic defects which will change the electrical characteristics of SnO2 -based powders. This study has successfully demonstrated a microfabricated system with an integrated micro-hotplate for detection of CO and NO2 gas at different concentrations and temperature, with self-heating SnO2 - based nanoparticles films, being suitable for both industrial process monitoring and detection of low concentrations in buildings/residences in order to safeguard human health. The results indicate the possibility for development of gas sensors devices with low power consumption for integration in portable electronic equipment with fast analysis. Acknowledgments The authors thanks to the LMA-IQ for providing the FEG-SEM images, and the financial support of this project by the Brazilian research funding agencies CNPq, FAPESP 2014/11314-9 and CEPID/CDMF- FAPESP 2013/07296-2.Keywords: chemical synthesis, electrophoretic deposition, self-heating, gas sensor
Procedia PDF Downloads 27550 Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis
Authors: Katarzyna Lubecka, Kirsty Flower, Megan Beetch, Lucinda Kurzava, Hannah Buvala, Samer Gawrieh, Suthat Liangpunsakul, Tracy Gonzalez, George McCabe, Naga Chalasani, James M. Flanagan, Barbara Stefanska
Abstract:
Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS.Keywords: biomarker, DNA methylation, early detection, hepatocellular carcinoma
Procedia PDF Downloads 30449 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 13148 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics
Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron
Abstract:
Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization
Procedia PDF Downloads 20747 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures
Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley
Abstract:
Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition
Procedia PDF Downloads 18246 MusicTherapy for Actors: An Exploratory Study Applied to Students from University Theatre Faculty
Authors: Adriana De Serio, Adrian Korek
Abstract:
Aims: This experiential research work presents a Group-MusicTherapy-Theatre-Plan (MusThePlan) the authors have carried out to support the actors. The MusicTherapy gives rise to individual psychophysical feedback and influences the emotional centres of the brain and the subconsciousness. Therefore, the authors underline the effectiveness of the preventive, educational, and training goals of the MusThePlan to lead theatre students and actors to deal with anxiety and to overcome psychophysical weaknesses, shyness, emotional stress in stage performances, to increase flexibility, awareness of one's identity and resources for a positive self-development and psychophysical health, to develop and strengthen social bonds, increasing a network of subjects working for social inclusion and reduction of stigma. Materials-Methods: Thirty students from the University Theatre Faculty participated in weekly music therapy sessions for two months; each session lasted 120 minutes. MusThePlan: Each session began with a free group rhythmic-sonorous-musical-production by body-percussion, voice-canto, instruments, to stimulate communication. Then, a synchronized-structured bodily-rhythmic-sonorous-musical production also involved acting, dances, movements of hands and arms, hearing, and more sensorial perceptions and speech to balance motor skills and the muscular tone. Each student could be the director-leader of the group indicating a story to inspire the group's musical production. The third step involved the students in rhythmic speech and singing drills and in vocal exercises focusing on the musical pitch to improve the intonation and on the diction to improve the articulation and lead up it to an increased intelligibility. At the end of each musictherapy session and of the two months, the Musictherapy Assessment Document was drawn up by analysis of observation protocols and two Indices by the authors: Patient-Environment-Music-Index (time to - tn) to estimate the behavior evolution, Somatic Pattern Index to monitor subject’s eye and mouth and limb motility, perspiration, before, during and after musictherapy sessions. Results: After the first month, the students (non musicians) learned to play percussion instruments and formed a musical band that played classical/modern music on the percussion instruments with the musictherapist/pianist/conductor in a public concert. At the end of the second month, the students performed a public musical theatre show, acting, dancing, singing, and playing percussion instruments. The students highlighted the importance of the playful aspects of the group musical production in order to achieve emotional contact and harmony within the group. The students said they had improved kinetic and vocal and all the skills useful for acting activity and the nourishment of the bodily and emotional balance. Conclusions: The MusThePlan makes use of some specific MusicTherapy methodological models, techniques, and strategies useful for the actors. The MusThePlan can destroy the individual "mask" and can be useful when the verbal language is unable to undermine the defense mechanisms of the subject. The MusThePlan improves actor’s psychophysical activation, motivation, gratification, knowledge of one's own possibilities, and the quality of life. Therefore, the MusThePlan could be useful to carry out targeted interventions for the actors with characteristics of repeatability, objectivity, and predictability of results. Furthermore, it would be useful to plan a University course/master in “MusicTherapy for the Theatre”.Keywords: musictherapy, sonorous-musical energy, quality of life, theatre
Procedia PDF Downloads 7645 Biological Soil Crust Effects on Dust Control Around the Urmia Lake
Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh
Abstract:
Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.Keywords: wind erosion, algae, cyanobacteria, carbohydrate
Procedia PDF Downloads 6344 Light Sensitive Plasmonic Nanostructures for Photonic Applications
Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi
Abstract:
In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures
Procedia PDF Downloads 30643 Molecular Signaling Involved in the 'Benzo(a)Pyrene' Induced Germ Cell DNA Damage and Apoptosis: Possible Protection by Natural Aryl Hydrocarbon Receptor Antagonist and Anti-Tumor Agent
Authors: Kuladip Jana
Abstract:
Benzo(a)pyrene [B(a)P] is an environmental toxicant present mostly in cigarette smoke and car exhaust, is an aryl hydrocarbon receptor (AhR) ligand that exerts its toxic effects on both male and female reproductive systems. In this study, the effect of B(a)P at different doses (0.1, 0.25, 0.5, 1 and 5 mg /kg body weight) was studied on male reproductive system of rat. A significant decrease in cauda epididymal sperm count and motility along with the presence of sperm head abnormalities and altered epididymal and testicular histology were documented following B(a)P treatment. B(a)P treatment resulted apoptotic sperm cells as observed by TUNEL and Annexin V-PI assay with increased ROS, altered sperm mitochondrial membrane potential (ΔΨm) with a simultaneous decrease in the activity of antioxidant enzymes and GSH status. TUNEL positive apoptotic cells also observed in testis as well as isolated germ and Leydig cells following B(a)P exposure. Western Blot analysis revealed the activation of p38MAPK, cytosolic translocation of cytochrome-c, up-regulation of Bax and inducible nitric oxide synthase (iNOS) with cleavage of PARP and down-regulation of BCl2 in testis upon B(a)P treatment. The protein and mRNA levels of testicular key steroidogenesis regulatory proteins like StAR, cytochrome P450 IIA1 (CYPIIA1), 3β HSD, 17β HSD showed a significant decrease in a dose dependent manner while an increase in the expression of cytochrome P450 1A1 (CYP1A1), Aryl hydrocarbon Receptor (AhR), active caspase- 9 and caspase- 3 following B(a)P exposure. We conclude that exposure of benzo(a)pyrene caused testicular gamatogenic and steroidogenic disorders by induction of oxidative stress, inhibition of StAR and other steroidogenic enzymes along with activation of p38MAPK and initiated caspase-3 mediated germ and Leydig cell apoptosis.The possible protective role of naturally occurring phytochemicals against B(a)P induced testicular toxicity needs immediate consideration. Curcumin and resveratrol separately were found to protect against B(a)P induced germ cell apoptosis, and their combinatorial effect was more significant. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted their synergistic protective effect against B(a)P induced germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3,8,9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, Apaf1.Curcumin-resveratrol co-treatment thus prevented B(a)P induced germ cell apoptosis. B(a)P induced testicular ROS generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 production. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ cells from B(a)P induced apoptosis.Keywords: benzo(a)pyrene, germ cell, apoptosis, oxidative stress, resveratrol, curcumin
Procedia PDF Downloads 26042 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers
Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek
Abstract:
Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations
Procedia PDF Downloads 13641 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams
Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension
Procedia PDF Downloads 22540 The Lytic Bacteriophage VbɸAB-1 Against Drug-Resistant Acinetobacter Baumannii Isolated from Hospitalized Pressure Ulcers Patients
Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi
Abstract:
Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of a variety of bacterial infections. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi-drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. The present study analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, the range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin. According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Podoviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients. The findings of our research indicated that isolated phages could be an effective antimicrobial and an appreciate candidate for prophylaxis against pressure ulcers.Keywords: acinetobacter baumannii, extremely drug-resistant, phage therapy, surgery wound
Procedia PDF Downloads 9039 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 12938 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy
Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko
Abstract:
Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver
Procedia PDF Downloads 7237 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 6536 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy
Authors: Anisa Suraya Ab Razak, Izza Hayat
Abstract:
Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia
Procedia PDF Downloads 12235 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System
Authors: K. Kamal
Abstract:
Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units
Procedia PDF Downloads 17134 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes
Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal
Abstract:
Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle
Procedia PDF Downloads 5133 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center
Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen
Abstract:
introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development
Procedia PDF Downloads 8232 Efficacy of Solanum anguivi Lam Fruits (African Bitter Berry) in Lowering Glucose Levels in Diabetes Mellitus and Increasing Survival
Authors: Aisha Musaazi Sebunya Nakitto, Anika E. Wagner, Yusuf B. Byaruhanga, John H. Muyonga
Abstract:
The prevalence and burden of diabetes are rapidly increasing globally, stemming from changes in lifestyle and dietary habits. Although several drugs are available to treat type 2 diabetes mellitus (T2DM), many are accompanied by several side effects and are often costly. Solanum anguivi Lam. fruits (SALF) are bitter berries that commonly grow in the wild and are traditionally cultivated by many globally as a remedy for T2DM. This effect is likely attributable to the presence of bioactive compounds such as phenolics, flavonoids, saponins, alkaloids, and vitamin C in SALF. In this study, we investigated the morphological characteristics of different SALF accessions and the effect of ripeness stages and thermal treatments on the bioactive compounds contents (BCC) and antioxidant activity (AA) of SALF accessions. Using the fruit fly Drosophila melanogaster (D. melanogaster) model, we explored the potential impact of dietary SALF in preventing and treating T2DM phenotypes. Morphological characterization was conducted based on descriptors of Solanum species. The BCC and AA of SALF at different ripeness stages (unripe, yellow, orange, and red) and after thermal treatments were determined using spectrophotometry, HPLC, and gravimetry. Male and female fruit flies were fed a high-sugar diet (HSD) to induce a T2DM-like phenotype, while control flies were fed on SY10 medium for up to 24 days. Experimental flies were exposed to HSD supplemented with 5 or 10 mg/ml SALF. The therapeutic and prevention effect of SALF in T2DM-like phenotype was investigated on weight, climbing activity, glucose and triglyceride contents, survival, and gene expression of PPARγ co-activator 1α fly homolog Srl and Drosophila insulin-like peptides. Methods in fly studies included Gustatory assay, Climbing assay, Glucose GOD-PAP assay, Triglyceride GPO-PAP assay, Roti-Quant®, and Real Time-PCR analysis. The ripeness stage significantly influenced SALF BCC and AA, and this was dependent on the accession. The unripe stage had the highest AA and total phenolics and flavonoids; the orange stage was rich in saponins, while the red stage had the highest alkaloid contents. Boiling and steaming increased the total phenolics and AA up to 4-fold and 3-fold, respectively. Drying at low temperatures resulted in higher phenolics and AA than the control. In the therapeutic model, the HSD-fed female flies exhibited elevated glucose levels, which exhibited a dose-dependent reduction upon exposure to a SALF-supplemented diet. Female flies fed on a SALF+ HSD exhibited a significant increase in survival compared to HSD-fed and control diet-fed flies. SALF supplementation did not alter the weights, fitness, and triglyceride levels of female flies in comparison with HSD-only-fed flies. The mRNA levels of Srl decreased in HSD-fed flies compared to the control-fed, with no effect observed in females exposed to HSD+SALF. Similarly, in the preventative model, the SALF diet resulted in higher survival of supplemented flies compared to controls. Consumption of boiled unripe SALF may result in the highest health benefits due to the high phenolic contents and antioxidant activity observed. Dietary intake of SALF significantly lowered glucose levels and increased survival of the D. melanogaster model. Additional studies in higher organisms are needed to explore the preventative and therapeutic potential of SALF in T2DM.Keywords: antioxidant activity, bioactive compounds, bitter berries, Drosophila melanogaster, Solanum anguivi, type 2 diabetes mellitus, survival
Procedia PDF Downloads 3031 Case Study Hyperbaric Oxygen Therapy for Idiopathic Sudden Sensorineural Hearing Loss
Authors: Magdy I. A. Alshourbagi
Abstract:
Background: The National Institute for Deafness and Communication Disorders defines idiopathic sudden sensorineural hearing loss as the idiopathic loss of hearing of at least 30 dB across 3 contiguous frequencies occurring within 3 days.The most common clinical presentation involves an individual experiencing a sudden unilateral hearing loss, tinnitus, a sensation of aural fullness and vertigo. The etiologies and pathologies of ISSNHL remain unclear. Several pathophysiological mechanisms have been described including: vascular occlusion, viral infections, labyrinthine membrane breaks, immune associated disease, abnormal cochlear stress response, trauma, abnormal tissue growth, toxins, ototoxic drugs and cochlear membrane damage. The rationale for the use of hyperbaric oxygen to treat ISSHL is supported by an understanding of the high metabolism and paucity of vascularity to the cochlea. The cochlea and the structures within it require a high oxygen supply. The direct vascular supply, particularly to the organ of Corti, is minimal. Tissue oxygenation to the structures within the cochlea occurs via oxygen diffusion from cochlear capillary networks into the perilymph and the cortilymph. . The perilymph is the primary oxygen source for these intracochlear structures. Unfortunately, perilymph oxygen tension is decreased significantly in patients with ISSHL. To achieve a consistent rise of perilymph oxygen content, the arterial-perilymphatic oxygen concentration difference must be extremely high. This can be restored with hyperbaric oxygen therapy. Subject and Methods: A 37 year old man was presented at the clinic with a five days history of muffled hearing and tinnitus of the right ear. Symptoms were sudden onset, with no associated pain, dizziness or otorrhea and no past history of hearing problems or medical illness. Family history was negative. Physical examination was normal. Otologic examination revealed normal tympanic membranes bilaterally, with no evidence of cerumen or middle ear effusion. Tuning fork examination showed positive Rinne test bilaterally but with lateralization of Weber test to the left side, indicating right ear sensorineural hearing loss. Audiometric analysis confirmed sensorineural hearing loss across all frequencies of about 70- dB in the right ear. Routine lab work were all within normal limits. Clinical diagnosis of idiopathic sudden sensorineural hearing loss of the right ear was made and the patient began a medical treatment (corticosteroid, vasodilator and HBO therapy). The recommended treatment profile consists of 100% O2 at 2.5 atmospheres absolute for 60 minutes daily (six days per week) for 40 treatments .The optimal number of HBOT treatments will vary, depending on the severity and duration of symptomatology and the response to treatment. Results: As HBOT is not yet a standard for idiopathic sudden sensorineural hearing loss, it was introduced to this patient as an adjuvant therapy. The HBOT program was scheduled for 40 sessions, we used a 12-seat multi place chamber for the HBOT, which was started at day seven after the hearing loss onset. After the tenth session of HBOT, improvement of both hearing (by audiogram) and tinnitus was obtained in the affected ear (right). Conclusions: In conclusion, HBOT may be used for idiopathic sudden sensorineural hearing loss as an adjuvant therapy. It may promote oxygenation to the inner ear apparatus and revive hearing ability. Patients who fail to respond to oral and intratympanic steroids may benefit from this treatment. Further investigation is warranted, including animal studies to understand the molecular and histopathological aspects of HBOT and randomized control clinical studies.Keywords: idiopathic sudden sensorineural hearing loss (issnhl), hyperbaric oxygen therapy (hbot), the decibel (db), oxygen (o2)
Procedia PDF Downloads 43130 Recrystallization Behavior and Microstructural Evolution of Nickel Base Superalloy AD730 Billet during Hot Forging at Subsolvus Temperatures
Authors: Marcos Perez, Christian Dumont, Olivier Nodin, Sebastien Nouveau
Abstract:
Nickel superalloys are used to manufacture high-temperature rotary engine parts such as high-pressure disks in gas turbine engines. High strength at high operating temperatures is required due to the levels of stress and heat the disk must withstand. Therefore it is necessary parts made from materials that can maintain mechanical strength at high temperatures whilst remain comparatively low in cost. A manufacturing process referred to as the triple melt process has made the production of cast and wrought (C&W) nickel superalloys possible. This means that the balance of cost and performance at high temperature may be optimized. AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with reported superior service properties around 700°C when compared to Inconel 718 and several other alloys. The cast ingot is converted into billet during either cogging process or open die forging. The semi-finished billet is then further processed into its final geometry by forging, heat treating, and machining. Conventional ingot-to-billet conversion is an expensive and complex operation, requiring a significant amount of steps to break up the coarse as-cast structure and interdendritic regions. Due to the size of conventional ingots, it is difficult to achieve a uniformly high level of strain for recrystallization, resulting in non-recrystallized regions that retain large unrecrystallized grains. Non-uniform grain distributions will also affect the ultrasonic inspectability response, which is used to find defects in the final component. The main aim is to analyze the recrystallization behavior and microstructural evolution of AD730 at subsolvus temperatures from a semi-finished product (billet) under conditions representative of both cogging and hot forging operations. Special attention to the presence of large unrecrystallized grains was paid. Double truncated cones (DTCs) were hot forged at subsolvus temperatures in hydraulic press, followed by air cooling. SEM and EBSD analysis were conducted in the as-received (billet) and the as-forged conditions. AD730 from billet alloy presents a complex microstructure characterized by a mixture of several constituents. Large unrecrystallized grains present a substructure characterized by large misorientation gradients with the formation of medium to high angle boundaries in their interior, especially close to the grain boundaries, denoting inhomogeneous strain distribution. A fine distribution of intragranular precipitates was found in their interior, playing a key role on strain distribution and subsequent recrystallization behaviour during hot forging. Continuous dynamic recrystallization (CDRX) mechanism was found to be operating in the large unrecrystallized grains, promoting the formation intragranular DRX grains and the gradual recrystallization of these grains. Evidences that hetero-epitaxial recrystallization mechanism is operating in AD730 billet material were found. Coherent γ-shells around primary γ’ precipitates were found. However, no significant contribution to the overall recrystallization during hot forging was found. By contrast, strain presents the strongest effect on the microstructural evolution of AD730, increasing the recrystallization fraction and refining the structure. Regions with low level of deformation (ε ≤ 0.6) were translated into large fractions of unrecrystallized structures (strain accumulation). The presence of undissolved secondary γ’ precipitates (pinning effect), prior to hot forging operations, could explain these results.Keywords: AD730 alloy, continuous dynamic recrystallization, hot forging, γ’ precipitates
Procedia PDF Downloads 19929 The Impact of Right to Repair Initiatives on Environmental and Financial Performance in European Consumer Electronics Firms: An Econometric Analysis
Authors: Daniel Stabler, Anne-Laure Mention, Henri Hakala, Ahmad Alaassar
Abstract:
In Europe, 2.2 billion tons of waste annually generate severe environmental damage and economic burdens, and negatively impact human health. A stark illustration of the problem is found within the consumer electronics industry, which reflects one of the most complex global waste streams. Of the 5.3 billion globally discarded mobile phones in 2022, only 17% were properly recycled. To address these pressing issues, Europe has made significant strides in developing waste management strategies, Circular Economy initiatives, and Right to Repair policies. These endeavors aim to make product repair and maintenance more accessible, extend product lifespans, reduce waste, and promote sustainable resource use. European countries have introduced Right to Repair policies, often in conjunction with extended producer responsibility legislation, repair subsidies, and consumer repair indices, to varying degrees of regulatory rigor. Changing societal trends emphasizing sustainability and environmental responsibility have driven consumer demand for more sustainable and repairable products, benefiting repair-focused consumer electronics businesses. In academic research, much of the literature in Management studies has examined the European Circular Economy and the Right to Repair from firm-level perspectives. These studies frequently employ a business-model lens, emphasizing innovation and strategy frameworks. However, this study takes an institutional perspective, aiming to understand the adoption of Circular Economy and repair-focused business models within the European consumer electronics market. The concepts of the Circular Economy and the Right to Repair align with institutionalism as they reflect evolving societal norms favoring sustainability and consumer empowerment. Regulatory institutions play a pivotal role in shaping and enforcing these concepts through legislation, influencing the behavior of businesses and individuals. Compliance and enforcement mechanisms are essential for their success, compelling actors to adopt sustainable practices and consider product life extension. Over time, these mechanisms create a path for more sustainable choices, underscoring the influence of institutions and societal values on behavior and decision-making. Institutionalism, particularly 'neo-institutionalism,' provides valuable insights into the factors driving the adoption of Circular and repair-focused business models. Neo-institutional pressures can manifest through coercive regulatory initiatives or normative standards shaped by socio-cultural trends. The Right to Repair movement has emerged as a prominent and influential idea within academic discourse and sustainable development initiatives. Therefore, understanding how macro-level societal shifts toward the Circular Economy and the Right to Repair trigger firm-level responses is imperative. This study aims to answer a crucial question about the impact of European Right to Repair initiatives had on the financial and environmental performance of European consumer electronics companies at the firm level. A quantitative and statistical research design will be employed. The study will encompass an extensive sample of consumer electronics firms in Northern and Western Europe, analyzing their financial and environmental performance in relation to the implementation of Right to Repair mechanisms. The study's findings are expected to provide valuable insights into the broader implications of the Right to Repair and Circular Economy initiatives on the European consumer electronics industry.Keywords: circular economy, right to repair, institutionalism, environmental management, european union
Procedia PDF Downloads 8228 Resveratrol Ameliorates Benzo(a)Pyrene Induced Testicular Dysfunction and Apoptosis: Involvement of p38 MAPK/ATF2/iNOS Signaling
Authors: Kuladip Jana, Bhaswati Banerjee, Parimal C. Sen
Abstract:
Benzo(a)pyrene [B(a)P] is an environmental toxicant present mostly in cigarette smoke and car exhaust, is an aryl hydrocarbon receptor (AhR) ligand that exerts its toxic effects on both male and female reproductive systems along with carcinogenesis in skin, prostate, ovary, lung and mammary glands. Our study was focused on elucidating the molecular mechanism of B(a)P induced male reproductive toxicity and its prevention with phytochemical like resveratrol. In this study, the effect of B(a)P at different doses (0.1, 0.25, 0.5, 1 and 5 mg /kg body weight) was studied on male reproductive system of Wistar rat. A significant decrease in cauda epididymal sperm count and motility along with the presence of sperm head abnormalities and altered epididymal and testicular histology were documented following B(a)P treatment. B(a)P treatment resulted apoptotic sperm cells as observed by TUNEL and Annexin V-PI assay with increased Reactive Oxygen Species (ROS), altered sperm mitochondrial membrane potential (ΔΨm) with a simultaneous decrease in the activity of antioxidant enzymes and GSH status. TUNEL positive apoptotic cells also observed in testis as well as isolated germ and Leydig cells following B(a)P exposure. Western Blot analysis revealed the activation of p38 mitogen activated protein kinase (p38MAPK), cytosolic translocation of cytochrome-c, upregulation of Bax and inducible nitric oxide synthase (iNOS) with cleavage of poly ADP ribose polymerase (PARP) and down regulation of BCl2 in testis upon B(a)P treatment. The protein and mRNA levels of testicular key steroidogenesis regulatory proteins like steroidogenic acute regulatory protein (StAR), cytochrome P450 IIA1 (CYPIIA1), 3β hydroxy steroid dehydrogenase (3β HSD), 17β hydroxy steroid dehydrogenase (17β HSD) showed a significant decrease in a dose dependent manner while an increase in the expression of cytochrome P450 1A1 (CYP1A1), Aryl hydrocarbon Receptor (AhR), active caspase- 9 and caspase- 3 following B(a)P exposure. We conclude that exposure of benzo(a)pyrene caused testicular gamatogenic and steroidogenic disorders by induction of oxidative stress, inhibition of StAR and other steroidogenic enzymes along with activation of p38MAPK and initiated caspase-3 mediated germ and Leydig cell apoptosis. Next we investigated the role of resveratrol on B(a)P induced male reproductive toxicity. Our study highlighted that resveratrol co-treatment with B(a)P maintained testicular redox potential, increased serum testosterone level and prevented steroidogenic dysfunction with enhanced expression of major testicular steroidogenic proteins (CYPIIA1, StAR, 3β HSD,17β HSD) relative to treatment with B(a)P only. Resveratrol suppressed B(a)P-induced testicular activation of p38 MAPK, ATF2, iNOS and ROS production; cytosolic translocation of Cytochome c and Caspase 3 activation thereby prevented oxidative stress of testis and inhibited apoptosis. Resveratrol co-treatment also decreased B(a)P-induced AhR protein level, its nuclear translocation and subsequent CYP1A1 promoter activation, thereby decreased protein and mRNA levels of testicular cytochrome P4501A1 (CYP1A1) and prevented BPDE-DNA adduct formation. Our findings cumulatively suggest that resveratrol prevents activation of B(a)P by modulating the transcriptional regulation of CYP1A1 and acting as an antioxidant thus prevents B(a)P-induced oxidative stress and testicular apoptosis.Keywords: benzo(a)pyrene, resveratrol, testis, apoptosis, cytochrome P450 1A1 (CYP1A1), aryl hydrocarbon receptor (AhR), p38 MAPK/ATF2/iNOS
Procedia PDF Downloads 23227 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms
Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal
Abstract:
A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating
Procedia PDF Downloads 15526 Improving Diagnostic Accuracy of Ankle Syndesmosis Injuries: A Comparison of Traditional Radiographic Measurements and Computed Tomography-Based Measurements
Authors: Yasar Samet Gokceoglu, Ayse Nur Incesu, Furkan Okatar, Berk Nimetoglu, Serkan Bayram, Turgut Akgul
Abstract:
Ankle syndesmosis injuries pose a significant challenge in orthopedic practice due to their potential for prolonged recovery and chronic ankle dysfunction. Accurate diagnosis and management of these injuries are essential for achieving optimal patient outcomes. The use of radiological methods, such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a vital role in the accurate diagnosis of syndesmosis injuries in the context of ankle fractures. Treatment options for ankle syndesmosis injuries vary, with surgical interventions such as screw fixation and suture-button implantation being commonly employed. The choice of treatment is influenced by the severity of the injury and the presence of associated fractures. Additionally, the mechanism of injury, such as pure syndesmosis injury or specific fracture types, can impact the stability and management of syndesmosis injuries. Ankle fractures with syndesmosis injury present a complex clinical scenario, requiring accurate diagnosis, appropriate reduction, and tailored management strategies. The interplay between the mechanism of injury, associated fractures, and treatment modalities significantly influences the outcomes of these challenging injuries. The long-term outcomes and patient satisfaction following ankle fractures with syndesmosis injury are crucial considerations in the field of orthopedics. Patient-reported outcome measures, such as the Foot and Ankle Outcome Score (FAOS), provide essential information about functional recovery and quality of life after these injuries. When diagnosing syndesmosis injuries, standard measurements, such as the medial clear space, tibiofibular overlap, tibiofibular clear space, anterior tibiofibular ratio (ATFR), and the anterior-posterior tibiofibular ratio (APTF), are assessed through radiographs and computed tomography (CT) scans. These parameters are critical in evaluating the presence and severity of syndesmosis injuries, enabling clinicians to choose the most appropriate treatment approach. Despite advancements in diagnostic imaging, challenges remain in accurately diagnosing and treating ankle syndesmosis injuries. Traditional diagnostic parameters, while beneficial, may not capture the full extent of the injury or provide sufficient information to guide therapeutic decisions. This gap highlights the need for exploring additional diagnostic parameters that could enhance the accuracy of syndesmosis injury diagnoses and inform treatment strategies more effectively. The primary goal of this research is to evaluate the usefulness of traditional radiographic measurements in comparison to new CT-based measurements for diagnosing ankle syndesmosis injuries. Specifically, this study aims to assess the accuracy of conventional parameters, including medial clear space, tibiofibular overlap, tibiofibular clear space, ATFR, and APTF, in contrast with the recently proposed CT-based measurements such as the delta and gamma angles. Moreover, the study intends to explore the relationship between these diagnostic parameters and functional outcomes, as measured by the Foot and Ankle Outcome Score (FAOS). Establishing a correlation between specific diagnostic measurements and FAOS scores will enable us to identify the most reliable predictors of functional recovery following syndesmosis injuries. This comparative analysis will provide valuable insights into the accuracy and dependability of CT-based measurements in diagnosing ankle syndesmosis injuries and their potential impact on predicting patient outcomes. The results of this study could greatly influence clinical practices by refining diagnostic criteria and optimizing treatment planning for patients with ankle syndesmosis injuries.Keywords: ankle syndesmosis injury, diagnostic accuracy, computed tomography, radiographic measurements, Tibiofibular syndesmosis distance
Procedia PDF Downloads 73