Search results for: surface preparation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7890

Search results for: surface preparation

3720 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity

Procedia PDF Downloads 138
3719 Transforming Integrative Maker Education for STEM Learning

Authors: Virginia Chambers, Kamryn York, Mark Marnich

Abstract:

T.I.M.E. for STEM (Transforming Integrative Maker Education for STEM learning) focuses on improving the quality and effectiveness of STEM education for pre-service teachers through a focus on the integration of maker space pedagogy. This National Science Foundation-funded project primarily focuses on undergraduate pre-service teaching students majoring in elementary education. The study contributes to the knowledge about teaching and learning by developing, implementing, and assessing faculty development, interactive instruction, and STEM lesson plan development. This project offers a valuable opportunity to improve STEM thinking skills by formally integrating STEM concepts throughout the pre-service teacher curriculum using an interdisciplinary approach. T.I.M.E. for STEM utilizes a maker space laboratory at Point Park University in Pittsburgh, PA, USA. However, the project design is such that other institutions of higher education can replicate the program with or without a physical maker space lab as the project’s findings and “maker mindset” are employed. Utilizing qualitative research methodology, the project investigates the following research question: What do pre-service teachers (education students) and faculty members identify as areas of pedagogical growth in STEM learning and teaching in a makerspace environment? This research highlights the impact of makerspace pedagogy on improving STEM education learning outcomes through an interdisciplinary constructivist approach. The project is expected to have a multiplier effect as it impacts STEM disciplinary and higher education faculty, pre-service teachers, and teacher preparation programs at other universities that benefit from what is learned at Point Park University. Ultimately, the future elementary students of the well-prepared pre-service teachers steeped in maker pedagogy and STEM content will have the potential to develop higher-level thinking skills and improve their mathematics and scientific achievement, which are essential for the 21st century STEM workforce.

Keywords: maker education, STEM learning, teacher education, elementary education

Procedia PDF Downloads 111
3718 Dust and Soling Accumulation Effect on Photovoltaic Systems in MENA Region

Authors: I. Muslih, A. Alkhalailah, A. Merdji

Abstract:

Photovoltaic efficiency is highly affected by dust accumulation; the dust particles prevent direct solar radiation from reaching the panel surface; therefore a reduction in output power will occur. A study of dust and soiling accumulation effect on the output power of PV panels was conducted for different periods of time from May to October in three countries of the MENA region, Jordan, Egypt, and Algeria, under local weather conditions. This study leads to build a more realistic equation to estimate the power reduction as a function of time. This logarithmic function shows the high reduction in power in the first days with 10% reduction in output power compared to the reference system, where it reaches a steady state value after 60 days to reach a maximum value of 30%.

Keywords: dust effect, MENA, solar energy, PV system

Procedia PDF Downloads 219
3717 Investigation of Length Effect on Power Conversion Efficiency of Perovskite Solar Cells Composed of ZnO Nanowires

Authors: W. S. Li, S. T. Yang, H. C. Cheng

Abstract:

The power conversion efficiency (PCE) of the perovskite solar cells has been achieved by inserting vertically-aligned ZnO nanowires (NWs) between the cathode and the active layer and shows better solar cells performance. Perovskite solar cells have drawn significant attention due to the superb efficiency and low-cost fabrication process. In this experiment, ZnO nanowires are used as the electron transport layer (ETL) due to its low temperature process. The main idea of this thesis is utilizing the 3D structures of the hydrothermally-grown ZnO nanowires to increase the junction area to improve the photovoltaic performance of the perovskite solar cells. The infiltration and the surface coverage of the perovskite precursor solution changed as tuning the length of the ZnO nanowires. It is revealed that the devices with ZnO nanowires of 150 nm demonstrated the best PCE of 8.46 % under the AM 1.5G illumination (100 mW/cm2).

Keywords: hydrothermally-grown ZnO nanowires, perovskite solar cells, low temperature process, pinholes

Procedia PDF Downloads 329
3716 Obtaining Composite Cotton Fabric by Cyclodextrin Grafting

Authors: U. K. Sahin, N. Erdumlu, C. Saricam, I. Gocek, M. H. Arslan, H. Acikgoz-Tufan, B. Kalav

Abstract:

Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.

Keywords: cotton fabric, cyclodextrine, improved durability, multifunctional composite textile

Procedia PDF Downloads 296
3715 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
3714 I Don’t Know How I Got Here and I Don’t Know How to Get out of It: Understanding Male Pre-service Early Child Education Teachers’ Construction of Professional Identity

Authors: Sabika Khalid, Endale Fantahun Tadesse

Abstract:

Unlike other professional sectors, a great deal of studies has addressed the overwhelming gender disparity phenomena in the early childhood education (ECE) workforce, which is acknowledged for the dominance of women over men teachers. The irony of ECE being a gendered working environment is not only observed in societies that are ruled by gender roles but also in Western countries that claim to margin the gender gap in several professions. The participation of male teachers in ECE across most countries ranged from 1% to 3% of the total preschool or kindergarten teachers. When it comes to a dynamic Chinese society tempered with a deep-rooted tradition and cultural ideology, the ECE has no less place for males, and males have a low place for ECE. According to the Ministry of Education of China (2020), there are over 5 million kindergarten teachers and staff members, while only 2.3% are accounted for male teachers. The traditional gender-based discourse asserts that giving care and guidance for young children related to nurturing ‘mothering’ labels the profession in ECE as women’s work derived from originated from their ‘naturality.’ Although a large volume of evidence sheds light on the cause for low male teachers, the perception of parents, female teachers working with male teachers, and the experience of male teachers working in ECE, less is known and understood before being a teacher. Hence, this study argues that the promotion of the involvement of male teachers in light of their masculinity identity asset in the children's learning environment is comprehended to understand the construction of male student teachers' (preservice) professional identity during early childhood teacher training that allows obtaining substantial evidence that provides a feasible and robust implication in the preparation of competent and professional male preschool teachers that understand, cherish, and bring harmony in Chinese ECE through professionalism socialization with the stakeholders. This study intended to reveal male ECE preservice teachers’ knowledge of their professional identity, i.e., how they perceive themselves as a teacher and what factors agents these perceptions towards their professional identity.

Keywords: male teachers, Early Childhood Education (ECE), self-identity, perception of stakeholders

Procedia PDF Downloads 41
3713 Understanding Sixteen Basic Desires and Modern Approaches to Agile Team Motivation: Case Study

Authors: Anna Suvorova

Abstract:

Classical motivation theories hold that there are two kinds of motivation, intrinsic and extrinsic. Leaders are looking for effective motivation techniques, but frequently external influences do not work or, even worse, reduce team productivity. We see only the tip of the iceberg -human behavior. However, beneath the surface of the water are factors that directly affect our behavior -desires. Believing that employees need to be motivated, companies design a motivation system based on the principle: do it and get a reward. As a matter of fact, we all have basic desires. Everybody is motivated but to different extents. Following the principle "intrinsic motivation over extrinsic rewards", we need to create an environment that will support intrinsic motivation and potential of employees, and team, rather than individual work.

Keywords: motivation profile, motivation techniques, agile HR, basic desires, agile people, human behavior, people management

Procedia PDF Downloads 114
3712 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 242
3711 Oxidation Activity of Platinum-Ruthenium-Tin Ternary Alloy Catalyst on Bio-Alcohol

Authors: An-Ya Lo, Yi-Chen Chung, Yun-Chi Hsu, Chuan-Ming Tseng, Chiu-Yue Lin

Abstract:

In this study, the ternary alloy catalyst Pt20RuxSny (where 20, x, y represent mass fractions of Pt, Ru, and Sn, respectively) was optimized for the preliminary study of bio-ethanol fuel cells (BAFC). The morphology, microstructure, composition, phase-structures, and electrochemical properties of Pt20RuxSny catalyst were examined by SEM, TEM, EDS-mapping, XRD, and potentiostat. The effect of Sn content on electrochemical active surface (EAS) and oxidation activity were discussed. As a result, the additional Sn greatly improves the efficiency of Pt20RuxSny, either x=0 or 10. Through discussing the difference between ethanol and glycol oxidations, the mechanism of tolerance against poisoning has been proved. Overall speaking, the catalytic activity are in the order of Pt20RuxSny > Pt20Rux > Pt20Sny in both ethanol and glycol systems. Finally, Pt20Ru10Sn15 catalyst was successfully applied to demonstrate the feasibility of using bio-alcohol.

Keywords: Pt-Sn alloy catalyst, Pt-Ru-Sn alloy catalyst, fuel cell, ethanol, ethylene glycol

Procedia PDF Downloads 417
3710 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 161
3709 Clicking Based Graphical Password Scheme Resistant to Spyware

Authors: Bandar Alahmadi

Abstract:

The fact that people tend to remember pictures better than texts, motivates researchers to develop graphical passwords as an alternative to textual passwords. Graphical passwords as such were introduced as a possible alternative to traditional text passwords, in which users prove their identity by clicking on pictures rather than typing alphanumerical text. In this paper, we present a scheme for graphical passwords that are resistant to shoulder surfing attacks and spyware attacks. The proposed scheme introduces a clicking technique to chosen images. First, the users choose a set of images, the images are then included in a grid where users can click in the cells around each image, the location of the click and the number of clicks are saved. As a result, the proposed scheme can be safe from shoulder surface and spyware attacks.

Keywords: security, password, authentication, attack, applications

Procedia PDF Downloads 166
3708 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites

Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.

Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers

Procedia PDF Downloads 620
3707 Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions

Authors: Abdullah Khan, Per Redelius, Nicole Kringos

Abstract:

The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation.

Keywords: bitumen emulsions, breaking and coalescence, cold mix asphalt, emulsifiers, relaxation, salts

Procedia PDF Downloads 338
3706 Evaluation of Wound Healing Activity of Phlomis bovei De Noe in Wistar Albino Rats

Authors: W. Khitri, J. Zenaki, A. Abi, N. Lachgueur, A. Lardjem

Abstract:

Healing is a biological phenomenon that is automatically and immediately implemented by the body that is able to repair the physical damage of all tissues except nerve cells. Lot of medicinal plants is used for the treatment of a wound. Our ethnobotanical study has identified 19 species and 13 families of plants used in traditional medicine in Oran-Algeria for their healing activities. The Phlomis bovei De Noe was the species most recommended by herbalists. Its phytochemical study revealed different secondary metabolites such as terpenes, tannins, saponins and mucilage. The evaluation of the healing activity of Phlomis bovei in wistar albinos rats by excision wound model showed a significant amelioration with 5 % increase of the surface healing compared to the control group and a gain of three days of epithelialization time with a scar histologically better.

Keywords: Phlomis Bovei De Noe, ethnobanical study, wound healing, wistar albino rats

Procedia PDF Downloads 446
3705 Complications of Contact Lens-Associated Keratitis: A Refresher for Emergency Departments

Authors: S. Selman, T. Gout

Abstract:

Microbial keratitis is a serious complication of contact lens wear that can be vision and eye-threatening. Diverse presentations relating to contact lens wear include dry corneal surface, corneal infiltrate, ulceration, scarring, and complete corneal melt leading to perforation. Contact lens wear is a major risk factor and, as such, is an important consideration in any patient presenting with a red eye in the primary care setting. This paper aims to provide an overview of the risk factors, common organisms, and spectrum of contact lens-associated keratitis (CLAK) complications. It will highlight some of the salient points relevant to the assessment and workup of patients suspected of CLAK in the emergency department based on the recent literature and therapeutic guidelines. An overview of the management principles will also be provided.

Keywords: microbial keratitis, corneal pathology, contact lens-associated complications, painful vision loss

Procedia PDF Downloads 110
3704 Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities as well as the of fibrils. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.

Keywords: hydrolytic ageing, moisture membrane, water vapor permeability, morphology

Procedia PDF Downloads 315
3703 Jute Based Biocomposites: The Future of Automobiles

Authors: D. P. Ray, L. Ammayappan, S. Debnath, R. K. Ghosh, D. Mondal, S. Dasgupta, S. Islam, S. Chakroborty, P. K. Ganguly, D. Nag

Abstract:

Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method.

Keywords: jute, automobile industry, biodegradability, chemical compatibilizer

Procedia PDF Downloads 457
3702 Identification Social Impact of Tourism for Society in Batu, East Java, Indonesia Which Is Included the Transition of Their Main Job Caused by Tourism Development

Authors: Muhammad Denny Abdillah, Mochammad Rasyid Poedjijanto

Abstract:

Batu, East Java, Indonesia is located in highland about 680-1,200 meters above ocean surface and has temperature 15-19 degree Celsius. With this condition, so the main profession of people around is a farmer. But, along with era’s developing, now Batu is started to improve their development in tourism sector and show up them as an icon of tourism in Indonesia. Such as: playground, museum, and paralayang’s summit. That is made Batu in nowadays well known as the one of recommended city to visit. The change of the development from farming sector to tourism sector make people around prefer doing job in trade than engage in farming. That’s make authors want to observe about this social phenomenon which is happening in Batu, whereas from the beginning the primary profession is a farmer, now changed to be a trader around the tourism place.

Keywords: development, profession, tourism, Batu

Procedia PDF Downloads 423
3701 The Impact on the Network Deflectometry

Authors: Djamel–Eddine Yassine Boutiba

Abstract:

In this present memory, we present the various impacts deflectometer leading to the sizing by strengthening of existing roadways. It reminds that the road network in Algeria plays a major role with regard to drainage in major strategic areas and especially in the fringe northern Algeria. Heavy traffic passing through the northern fringe (between 25% and 30% heavy vehicles) causes substantial degradations at both the surface layer and base layer. The work on site by means within the laboratory CTTP such as deflectographe Lacroix, allowed us to record a large number of deflection localized bending on RN19A (Carrefour CW73-Ain- Merane), whose analysis of the results led us to opt for a building throughout the band's project . By the recorder against HWD (Heavy Weight déflectometer) allowed us to learn about the behavior of the pavement on the banks. In addition, the Software Alize III has been essential in the verification of the increase in the thickness dimensioned.

Keywords: capacity, deflection, deflectograph lacroix, degradation, hwd

Procedia PDF Downloads 285
3700 Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber

Authors: Anies Mutiari, Neha Bansal, Martin Artner, Veronika Mayer, Juergen Roth, Mathias Weil, Rachmat Adhi Wibowo

Abstract:

Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content.

Keywords: kesterite, solar ink, spin coating, photovoltaics

Procedia PDF Downloads 171
3699 Monitoring and Evaluation of the Water Quality of Taal Lake, Talisay, Batangas, Philippines

Authors: Felipe B. Martinez, Imelda C. Galera

Abstract:

This paper presents an update on the physico-chemical properties of the Taal Lake for local government officials and representatives of non-government organizations by monitoring and evaluating a total of nine (9) water quality parameters. The study further shows that the Taal Lakes surface temperature, pH, total dissolved solids, total suspended solids, color, and dissolved oxygen content conform to the standards set by the Department of Environment and Natural resources (DENR); while phosphate, chlorine, and 5-Day 20°C BOD are below the standard. Likewise, the T-test result shows no significant difference in the overall average of the two sites at the Taal Lake (P > 0.05). Based on the data, the Lake is safe for primary contact recreation such as bathing, swimming and skin diving, and can be used for aqua culture purposes.

Keywords: cool dry season, hot dry season, rainy season, Taal Lake, water quality

Procedia PDF Downloads 309
3698 Effect of Anion Variation on the CO2 Capture Performance of Pyridinium Containing Poly(ionic liquid)s

Authors: Sonia Zulfiqar, Daniele Mantione, Muhammad Ilyas Sarwar, Alexander Rothenberger, David Mecerreyes

Abstract:

Climate change due to escalating carbon dioxide concentration in the atmosphere is an issue of paramount importance that needs immediate attention. CO2 capture and sequestration (CCS) is a promising route to mitigate climate change and adsorption is the most widely recognized technology owing to possible energy savings relative to the conventional absorption techniques. In this conference, the potential of a new family of solid sorbents for CO2 capture and separation will be presented. Novel pyridinium containing poly(ionic liquid)s (PILs) were synthesized with varying anions i.e bis(trifluoromethylsulfonyl)imide and hexafluorophosphate. The resulting polymers were characterized using NMR, XRD, TGA, BET surface area and microscopic techniques. Furthermore, CO2 adsorption measurements at two different temperatures were also carried out and revealed great potential of these PILs as CO2 scavengers.

Keywords: climate change, CO2 capture, poly(ionic liquid)s, CO2/N2 selectivity

Procedia PDF Downloads 373
3697 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation

Authors: Alaa Hamed Salama, Rehab Nabil Shamma

Abstract:

Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.

Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization

Procedia PDF Downloads 449
3696 Fabrication of Cylindrical Silicon Nanowire-Embedded Field Effect Transistor Using Al2O3 Transfer Layer

Authors: Sang Hoon Lee, Tae Il Lee, Su Jeong Lee, Jae Min Myoung

Abstract:

In order to manufacture short gap single Si nanowire (NW) field effect transistor (FET) by imprinting and transferring method, we introduce the method using Al2O3 sacrificial layer. The diameters of cylindrical Si NW addressed between Au electrodes by dielectrophoretic (DEP) alignment method are controlled to 106, 128, and 148 nm. After imprinting and transfer process, cylindrical Si NW is embedded in PVP adhesive and dielectric layer. By curing transferred cylindrical Si NW and Au electrodes on PVP-coated p++ Si substrate with 200nm-thick SiO2, 3μm gap Si NW FET fabrication was completed. As the diameter of embedded Si NW increases, the mobility of FET increases from 80.51 to 121.24 cm2/V•s and the threshold voltage moves from –7.17 to –2.44 V because the ratio of surface to volume gets reduced.

Keywords: Al2O3 sacrificial transfer layer, cylindrical silicon nanowires, dielectrophorestic alignment, field effect transistor

Procedia PDF Downloads 457
3695 Pollutant Dispersion in Coastal Waters

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec

Abstract:

This paper spots light on the effect of a point source pollution on streams, stemming out from intentional release caused by unconscious facts. The consequences of such contamination on ecosystems are very serious. Accordingly, effective tools are highly demanded in this respect, which enable us to come across an accurate progress of pollutant and anticipate different measures to be applied in order to limit the degradation of the environmental surrounding. In this context, we are eager to model a pollutant dispersion of a free surface flow which is ejected by an outfall sewer of an urban sewerage network in coastal water taking into account the influence of climatic parameters on the spread of pollutant. Numerical results showed that pollutant dispersion is merely due to the presence of vortices and turbulence. Hence, it was realized that the pollutant spread in seawater is strongly correlated with climatic conditions in this region.

Keywords: coastal waters, numerical simulation, pollutant dispersion, turbulent flows

Procedia PDF Downloads 514
3694 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 114
3693 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 175
3692 Structural Analysis and Evolution of 18th Century Ottoman Imperial Mosques (1750-1799) in Comparison with the Classical Period Examples

Authors: U. Demir

Abstract:

18th century which is the period of 'change' in the Ottoman Empire, affects the architecture as well, where the Classical period is left behind, architecture is differentiated in the form language. This change is especially noticeable in monumental buildings and thus manifested itself in the mosques. But, is it possible to talk about the structural context of the 'change' which has been occurred in decoration? The aim of this study is to investigate the changes and classical relations of the 18th century mosques through plan schedules and structure systems. This study focuses on the monumental mosques constructed during the reign of the three sultans who ruled in the second half of the century (Mustafa the 3rd 1757-1774, Abdülhamid the 1st 1774-1789 and Selim the 3rd). According to their construction years these are 'Ayazma, Laleli, Zeyneb Sultan, Fatih, Beylerbeyi, Şebsefa Kadın, Eyüb Sultan, Mihrişah Valide Sultan and Üsküdar-Selimiye' mosques. As a plan scheme, four mosques have a square or close to a rectangular square scheme, while the others have a rectangle scheme and showing the longitudinal development of the mihrab axis. This situation is widespread throughout the period. In addition to the longitudinal development plan, which is the general characteristic of the 18th century mosques, the use of the classical plan schemes continued in the same direction. Spatialization of the mihrab area was applied to the five mosques while other mosques were applied as niches on the wall surface. This situation is widespread in the period of the second half of the century. In the classical period, the lodges may be located at the back of the mosques interior, not interfering with the main worship area. In the period, the lodges were withdrawn from the main worship area. They are separated from the main interior with their own structural and covering systems. The plans seem to be formed as a result of the addition of lodge parts to the northern part of the Classical period mosques. The 18th century mosques are the constructions where the change of the architectural language and style can be observed easily. This change and the break from the classical period manifest themselves quickly in the structural elements, wall surface decorations, pencil work designs, small scale decor elements, motifs. The speed and intensity of change in the decor does not occur the same as in structural context. The mosque construction rules from the traditional and classical era still continues in the century. While some mosque structures have a plan which is inherited from the classical successor, some of were constructed with the same classical period rules. Nonetheless, the location and transformation of the lodges, which are affecting the interior design, are noteworthy. They provide a significant transition on the way to the new language of the mosque design that will be experienced in the next century. It is intended to draw attention to the structural evolution of the 18th century Ottoman architecture through the royal mosques within the scope of this conference.

Keywords: mosque structure, Ottoman architecture, structural evolution, 18th century architecture

Procedia PDF Downloads 201
3691 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity

Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee

Abstract:

Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.

Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant

Procedia PDF Downloads 404