Search results for: social learning
11462 Investigating Melodic Similarities and Instrumental Developments of Turkish and Celtic Bagpipes Based on Social Lives and Geography
Authors: Zeynep Balci
Abstract:
This article examines the historical points of connection between Celtic Bagpipes and ‘’Tulum’’, which is a type of bagpipes that is culturally played mostly in Eastern Black Sea Regions of Turkey and Georgia, and melodic similarities of the pieces composed for such instruments with respect to sociological and geographical factors. Although the cultural centers of Celtic Bagpipes and ‘’Tulum’’ are separated, they share common geographical conditions, which show similar effects on the development of the folk tunes for such instruments. Geographic living conditions and the social lives that people created under the influence of their surroundings stand out most in ethnic music, and it can be argued that separated groups of people living under similar conditions might have closeness in their social lives and, thus, their ethnic music. Hence, the aim of this research is to understand the musical deviations and unification of the two culturally separated social lives lived near similar mountains and plateaus in two different regions of the world by comparing two closely related ethnic aerophones.Keywords: bagpipes, Celts, Black Sea, Turkish people
Procedia PDF Downloads 4711461 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 17711460 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 13411459 'Systems' and Its Impact on Virtual Teams and Electronic Learning
Authors: Shavindrie Cooray
Abstract:
It is vital that students are supported in having balanced conversations about topics that might be controversial. This process is crucial to the development of critical thinking skills. This can be difficult to attain in e-learning environments, with some research finding students report a perceived loss in the quality of knowledge exchange and performance. This research investigated if Systems Theory could be applied to structure the discussion, improve information sharing, and reduce conflicts when students are working in online environments. This research involved 160 participants across four categories of student groups at a college in the Northeastern US. Each group was provided with a shared problem, and each group was expected to make a proposal for a solution. Two groups worked face-to-face; the first face to face group engaged with the problem and each other with no intervention from a facilitator; a second face to face group worked on the problem using Systems tools to facilitate problem structuring, group discussion, and decision-making. There were two types of virtual teams. The first virtual group also used Systems tools to facilitate problem structuring and group discussion. However, all interactions were conducted in a synchronous virtual environment. The second type of virtual team also met in real time but worked with no intervention. Findings from the study demonstrated that the teams (both virtual and face-to-face) using Systems tools shared more information with each other than the other teams; additionally, these teams reported an increased level of disagreement amongst their members, but also expressed more confidence and satisfaction with the experience and resulting decision compared to the other groups.Keywords: e-learning, virtual teams, systems approach, conflicts
Procedia PDF Downloads 14211458 Educational Justice as the Basis for Social Justice
Authors: Baratali Monfaredraz
Abstract:
The concept of justice has been able to occupy a lot of people’s minds and speeches for a long time. Justice has various dimensions such as economic justice, judicial justice, political justice, educational justice, ethnical justice and etc. Educational justice as one of the most basic dimensions of justice can alter our education in every field and it can flourish the talents and capabilities on macro level. One of the most efficient ways for social justice realization is to provide equal opportunities for all people in the society to be able to access equally to education as their human rights since today how progress occurs in education is regarded as the index of social development. On this basis, especially developing countries try to provide equal opportunities for all people in terms of access to education, specifically in higher education. At present, private education system violates the principles of conducting effort, meeting the needs and in part realizing the capabilities and so it cannot be justified to be a fair conductance. It seems that providing higher quality education in public schools and lowering role of teacher and educational facilities in educational achievement can be considered as a proper way to remove the discrimination in terms of unequal distribution of educational facilities. In addition, higher education development in deprived regions can initialize social activities among the inhabitants of these regions. Justice in educational field can result in access of all people to economic and social situations and job opportunities in future.Keywords: educational justice, deprivation, private schools, higher education, job opportunities
Procedia PDF Downloads 48911457 Approaching the Words Denoting Cognitive Activity in Vietnamese Language in Comparison with English Language
Authors: Thi Phuong Ly Tran
Abstract:
Being a basic and unique to human beings, cognitive activity possesses spiritualistic characteristics and is conveyed through languages. Words that represent rational cognition or processes related to rationality as follow: know, think, understand, doubt, be afraid, remember, forget, think (that), realize (that), find (that), etc. can reflect the process by which human beings have transformed cognitive activities into diversified and delicate manners through linguistic tasks. In this research article, applying the descriptive method and comparative method, we would like to utilize the application of the theoretical system of linguistic characteristics of cognitive verbs in Vietnamese language in comparison with English language. These achievements of this article will meaningfully contribute to highlight characteristics of Vietnamese language and identify the similarities and differences in the linguistic processes of Vietnamese and English people as well as supply more knowledge for social requirements such as foreign language learning, dictionary editing, language teaching in schools.Keywords: cognitive activity, cognitive perspective, Vietnamese language, English language
Procedia PDF Downloads 21711456 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 15511455 The Network Effect on Green Information on Taiwan Social Network Sites
Authors: Pi Hsia Liang
Abstract:
The rise of Facebook, Twitter, and other social networks significantly changes in interconnections between people, enhancing the process of information dissemination and amplify the influence of that information. Therefore, to develop informational efficiency or signaling equilibrium type of information environment among social networks, without adverse selection effects, becomes an important issue. Thus, someone may post a piece of intentional information in relation to personal interest for trying to create marginal influence. Therefore, economists are seeking to establish theories of informational efficiency under social network environment in order to resolve adverse selection issues. Reputation could be one of the important factors in the process of creating informational efficiency. Additionally, investors how to process green information, or information of corporate social responsibility is a very important study. This study essentially employs experimental study for examining how investors use stock relevant green information in Facebook and various Taiwan local networks. Facebook, and blogs of Money DJ, Technews and cnYES, respectively, are the primary sites for this examination that also allow to differentiate effects between Facebook and other local social networks. Questionnaire is developed for such an experimental testing. Note that questionnaire allows this study to group, for example, decision frequency and length of time duration focusing on social networks that are used for discriminating investor type and competence of informed investor. This study selects 500 investors that can be separated into two respective 250 samples as the control group and 250 samples in such an experimental. The quantity of sample investor sufficiently results in statistic significance of this experimental study. The empirical results of this study can be used for explaining how financial information in relation to corporate social responsibility would be disseminated in social websites. Therefore, we can lead to better interpretation of price/earnings relationship type of study and empirical studies of green information usefulness or informational efficiency Note that the above mentioned empirical studies did not exist any social network and annual report of corporate social responsibility. This study expects to find the results that both network degree and network cluster significantly affected green information dissemination frequency. In other words, investors with more connections and with high clustered connections might exert a greater influence on their green information dissemination process. The preferred users of financial social networks could make better stock decision that could amplify effects of green information. In addition, Facebook would be more influential than other local Taiwan financial social networks, although Facebook is not a specialized financial social network. In other words, the popularity and reputation effects of Facebook significantly contribute to usefulness of green information and influence of green information. Third, it has a better chance to find rumor or cheating information in local Taiwan financial social networks than Facebook. In other words, Facebook possesses reputation effect, or a better informational efficiency. Or, even though Taiwan local financial social networks have marginal informational effects on stock price, because of shortage of informational efficiency or monitoring system, information could be a tool for those whom owning superior information.Keywords: network effect on financial services, informational efficiency theory, social networks, social websites
Procedia PDF Downloads 25211454 Domains of Socialization Interview: Development and Psychometric Properties
Authors: Dilek Saritas Atalar, Cansu Alsancak Akbulut, İrem Metin Orta, Feyza Yön, Zeynep Yenen, Joan Grusec
Abstract:
Objective: The aim of this study was to develop semi-structured Domains of Socialization Interview and its coding manual and to test their psychometric properties. Domains of Socialization Interview was designed to assess maternal awareness regarding effective parenting in five socialization domains (protection, mutual reciprocity, control, guided learning, and group participation) within the framework of the domains-of-socialization approach. Method: A series of two studies were conducted to develop and validate the interview and its coding manual. The pilot study, sampled 13 mothers of preschool-aged children, was conducted to develop the assessment tools and to test their function and clarity. Participants of the main study were 82 Turkish mothers (Xage = 34.25, SD = 3.53) who have children aged between 35-76 months (Xage = 50.75, SD = 11.24). Mothers filled in a questionnaire package including Coping with Children’s Negative Emotions Questionnaire, Social Competence and Behavior Evaluation-30, Child Rearing Questionnaire, and Two Dimensional Social Desirability Questionnaire. Afterward, interviews were conducted online by a single interviewer. Interviews were rated independently by two graduate students based on the coding manual. Results: The relationships of the awareness of effective parenting scores to the other measures demonstrate convergent, discriminant, and predictive validity of the coding manual. Intra-class correlation coefficient estimates were ranged between 0.82 and 0.90, showing high interrater reliability of the coding manual. Conclusion: Taken as a whole, the results of these studies demonstrate the validity and reliability of a new and useful interview to measure maternal awareness regarding effective parenting within the framework of the domains-of-socialization approach.Keywords: domains of socialization, parenting, interview, assessment
Procedia PDF Downloads 19411453 Humor and Public Hygiene: A Critical Social Semiotic Analysis of Singapore’s National Campaigns
Authors: Kelsi Matwick, Keri Matwick
Abstract:
This presentation focuses on national campaigns as a government tactic of social behavior and order. Focusing on one of Singapore’s first national campaigns, Keep Singapore Clean (1968), particularly its iterations of public hygiene in recent years: Keep the Toilets Clean (2012-2019) and UnLittering with Mary Chongo (2019), the study examines how humor and the use of multimodality reflect contemporary practices in political practice. A critical social semiotic analysis involving the textual (linguistic and visual design) and material (print cartoons and videos) is undertaken to show how these messages are communicated. Incongruity and parody are humorous mechanisms used to project the government as likeable, effectively capture the public attention, and instill individual responsibility for the greater community. In focusing on public hygiene national campaigns, the study further illustrates how humor offers a polite way to address crude behavior while providing models of exemplary behavior.Keywords: communication strategies, critical social semiotics, humor, national campaigns
Procedia PDF Downloads 12211452 Mordechai Vanunu: “The Atomic Spy” as a Nuclear Threat to Discourse in Israeli Society
Authors: Ada Yurman
Abstract:
Using the case of Israeli Atomic Spy Mordechai Vanunu as an example, this study sought to examine social response to political deviance whereby social response can be mobilized in order to achieve social control. Mordechai Vanunu, a junior technician in the Dimona Atomic Research Center, played a normative role in the militaristic discourse while working in the “holy shrine” of the Israeli defense system for many years. At a certain stage, however, Vanunu decided to detach himself from this collective and launched an assault on this top-secret circle. Israeli society in general and the security establishment in particular found this attack intolerable and unforgivable. They presented Vanunu as a ticking time bomb, delegitimized him and portrayed him as “other”. In addition, Israeli enforcement authorities imposed myriad prohibitions and sanctions on Vanunu even after his release from prison – “as will be done to he who desecrates holiness.” Social response to Vanunu at the time of his capture and trial was studied by conducting a content analysis of six contemporary daily newspapers. The analysis focused on use of language and forms of expression. In contrast with traditional content analysis methodology, this study did not just look at frequency of expressions of ideas and terms in the text and covert content; rather, the text was analyzed as a structural whole, and included examination of style, tone and unusual use of imagery, and more, in order to uncover hidden messages within the text. The social response to this case was extraordinarily intense, not only because in this case of political deviance, involving espionage and treason, Vanunu’s actions comprised a real potential threat to the country, but also because of the threat his behavior posed to the symbolic universe of society. Therefore, the response to this instance of political deviance can be seen as being part of a mechanism of social control aiming to protect world view of society as a whole, as well as to punish the criminal.Keywords: militarism, political deviance, social construction, social control
Procedia PDF Downloads 11611451 Corporate Social Responsibility as a Determinant of Sustainability of SME: A Study of House of Tara, a Small Business Operating in Nigeria
Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun
Abstract:
In the pursuit of profit maximization as a major objective of business organizations, several firms forfeit their social and economic responsibility whilst focusing on activities that are deemed to solely profit the firm, without taking into cognizance the effect of their operations on the society in which they operate. Business analysts have, however, realized the determinant role of social responsibility in corporate performance, such that firms that are able to imbibe corporate social responsibility in their core business operations may be able to take advantage of the social reputation gained across their several stakeholders. Small and medium enterprises operating in highly competitive markets are also advised to leverage on this reputation gained from being socially responsible, if they seek ways to remain relevant in the same markets dominated by multinational corporations. Adapting a case study approach, this study highlights the advantages (such as employee and customer loyalty) gained by House of Tara, a small business operating in the beauty and make-up industry in Nigeria, resulting from the firm’s commitment to advancing the society in which it operates through several social responsibility activities. It is observed that although competing with major makeup brands such as MAC, Maybelline, Dior, Mary Kay and others, House of Tara has been able to not only thrive, but gain a sizeable market in the Nigerian makeup industry, because several consumers purchase their products not solely because of the quality or price of their product, but because they perceive themselves as buying into the firm’s CSR vision. This study, therefore, recommends that small and medium enterprises that may lack adequate resources (manpower, technology, capital) needed to successfully compete with multinationals, can harness the potentials in the reputation and loyalty gained from adequate investment in corporate social responsibility.Keywords: corporate social responsibility, small and medium enterprises, House of Tara, sustainability
Procedia PDF Downloads 27611450 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 7611449 Understanding the Selectional Preferences of the Twitter Mentions Network
Authors: R. Sudhesh Solomon, P. Y. K. L. Srinivas, Abhay Narayan, Amitava Das
Abstract:
Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.Keywords: information diffusion, personality and values, social network analysis, twitter mentions network
Procedia PDF Downloads 38111448 Social Data-Based Users Profiles' Enrichment
Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick
Abstract:
In this paper, we propose a generic model of user profile integrating several elements that may positively impact the research process. We exploit the classical behavior of users and integrate a delimitation process of their research activities into several research sessions enriched with contextual and temporal information, which allows reflecting the current interests of these users in every period of time and infer data freshness. We argue that the annotation of resources gives more transparency on users' needs. It also strengthens social links among resources and users, and can so increase the scope of the user profile. Based on this idea, we integrate the social tagging practice in order to exploit the social users' behavior to enrich their profiles. These profiles are then integrated into a recommendation system in order to predict the interesting personalized items of users allowing to assist them in their researches and further enrich their profiles. In this recommendation, we provide users new research experiences.Keywords: user profiles, topical ontology, contextual information, folksonomies, tags' clusters, data freshness, association rules, data recommendation
Procedia PDF Downloads 26811447 Risks and Values in Adult Safeguarding: An Examination of How Social Workers Screen Safeguarding Referrals from Residential Homes
Authors: Jeremy Dixon
Abstract:
Safeguarding adults forms a core part of social work practice. The Government in England and Wales has made efforts to standardise practices through The Care Act 2014. The Act states that local authorities have duties to make inquiries in cases where an adult with care or support needs is experiencing or at risk of abuse and is unable to protect themselves from abuse or neglect. Despite the importance given to safeguarding adults within law there remains little research about how social workers conduct such decisions on the ground. This presentation reports on findings from a pilot research study conducted within two social work teams in a Local Authority in England. The objective of the project was to find out how social workers interpreted safeguarding duties as laid out by The Care Act 2014 with a particular focus on how workers assessed and managed risk. Ethnographic research methods were used throughout the project. This paper focusses specifically on decisions made by workers in the assessment team. The paper reports on qualitative observation and interviews with five workers within this team. Drawing on governmentality theory, this paper analyses the techniques used by workers to manage risk from a distance. A high proportion of safeguarding referrals came from care workers or managers in residential care homes. Social workers conducting safeguarding assessments were aware that they had a duty to work in partnership with these agencies. However, their duty to safeguard adults also meant that they needed to view them as potential abusers. In making judgments about when it was proportionate to refer for a safeguarding assessment workers drew on a number of common beliefs about residential care workers which were then tested in conversations with them. Social workers held the belief that residential homes acted defensively, leading them to report any accident or danger. Social workers therefore encouraged residential workers to consider whether statutory criteria had been met and to use their own procedures to manage risk. In addition social workers carried out an assessment of the workers’ motives; specifically whether they were using safeguarding procedures as a shortcut for avoiding other assessments or as a means of accessing extra resources. Where potential abuse was identified social workers encouraged residential homes to use disciplinary policies as a means of isolating and managing risk. The study has implications for understanding risk within social work practice. It shows that whilst social workers use law to govern individuals, these laws are interpreted against cultural values. Additionally they also draw on assumptions about the culture of others.Keywords: adult safeguarding, governmentality, risk, risk assessment
Procedia PDF Downloads 29711446 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data
Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei
Abstract:
The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning
Procedia PDF Downloads 14811445 Using Customer Satisfaction to Help Achieve Sustainable Development Goals in the Islamic Economy: A Quantitative Case Study from Amman, Jordan
Authors: Sarah A. Tobin
Abstract:
Social justice outcomes, derived from customer satisfaction, serve as a main pathway and conduit for achieving Sustainable Development Goals (SDGs) because they prompt democratizing and socially-inclusive effects that are consistent with Islamic economic values. This paper argues that achieving higher levels of social justice and the SGDs is possible only through the realization of Islamic banking and finance customer satisfaction that aligns with Islamic values in the tradition of the Shari`a (or Islamic law). Through this key manifestation of Shari`a in the banks, social justice aims of achieving SDGs become possible. This paper utilizes a case study of a large-scale survey (N=127) comparing customer satisfaction between a conventional and an Islamic bank in Amman, Jordan. Based on a series of linear regressions, the statistically-significant findings suggest that when overall customer satisfaction is high, customers are more likely to become empowered citizens demanding inclusive, quality services and corruption-free management, as well as attribute their experiences to the Islamic nature of the financial endeavors. Social justice interests and expectations increase (and SDGs are more likely met) when a customer has high levels of satisfaction. The paper concludes with policy recommendations for Islamic financial institutions that enhance customer service experiences for better achieving the social justice aims of the Islamic economy and SDGs, including transparency in transactions, exemplary customer service and follow up, and attending to Islamic values in the aesthetics of bank.Keywords: customer satisfaction, Islamic economy, social justice, sustainable development goals
Procedia PDF Downloads 34611444 Unfolding the Social Clash between Online and Non-Online Transportation Providers in Bandung
Authors: Latifah Putti Tiananda, Sasti Khoirunnisa, Taniadiana Yapwito, Jessica Noviena
Abstract:
Innovations are often met with two responses, acceptance or rejection. In the past few years, Indonesia is experiencing a revolution of transportation service, which utilizes online platform for its operation. Such improvement is welcomed by consumers and challenged by conventional or ‘non-online’ transportation providers simultaneously. Conflicts arise as the existence of this online transportation mode results in declining income of non-online transportation workers. Physical confrontations and demonstrations demand policing from central authority. However, the obscurity of legal measures from the government persists the social instability. Bandung, a city in West Java with the highest rate of online transportation usage, has recently issued a recommendation withholding the operation of online transportation services to maintain peace and order. Thus, this paper seeks to elaborate the social unrest between the two contesting transportation actors in Bandung and explore community-based approaches to solve this problem. Using qualitative research method, this paper will also feature in-depth interviews with directly involved sources from Bandung.Keywords: Bandung, market competition, online transportation services, social unrest
Procedia PDF Downloads 28111443 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study
Authors: Chui Ka Shing
Abstract:
This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.Keywords: bar model method, curriculum development, mathematics education, problem solving
Procedia PDF Downloads 22511442 Drama, a Microcosm of Life Experiences: An Analysis of Symbolic Order and Social Relationships in Olu Obafemi’s Play
Authors: Victor Ademulegun Arijeniwa
Abstract:
This is a sociolinguistic study of Olu Obafemi’s Naira Has No Gender as a microcosm of life experiences. The paper assesses how Olu Obafemi’s use of language in the dramatic world serves as both social relationships and symbolic order of communicative roadmap that are capable of yielding well expressed and richly articulated sociolinguistic implications. Being the interface between language and social institutions, sociolinguistics and its application is highly utilitarian in linguistics analysis, especially where the language of a text appears to be deeply tensed, such as found in dramatic texts. The aim of this paper has been (i) to assess the symbolic orderly presentation of form in Olu Obafemi’Naira Has No Gender; (ii) to find out the linguistic elements and textual organization that represent social relationships in Olu Obafemi’s Naira Has No Gender. Using qualitative research design in data generation with insights from John Gumperz Interactional Sociolinguistics Theory with particular reference to contextualization cues and miscommunication, the paper identifies the implication of the dramatic discourse on society.Keywords: sociolinguistics, Microcosm, contextualisation, miscommunication variable, identity, symbolic order
Procedia PDF Downloads 20711441 Enhancing EFL Learners' Motivation and Classroom Interaction through Self-Disclosure in Moroccan Higher Education
Authors: Mohsine Jebbour
Abstract:
Motivation and classroom interaction are of prime significance for second/foreign language learning to take place effectively. Thus, a considerable amount of motivation and classroom interaction helps ensure students’ success in and continuation of learning the TL. One way to enhance students’ motivation and classroom interaction in the Moroccan EFL classroom then is through the use of self-disclosure. For the purposes of this study, self-disclosure has been defined as the verbal communication of positive personal information including opinions, feelings, experiences, family and friendship stories to classmates and teachers. This paper is meant to demonstrate that positive self-disclosure can serve as an effective tool for helping students develop favorable attitudes toward the EFL classroom (i.e., English courses, teacher of English, and classroom activities) and promoting their intrinsic motivation (IM to know and IM toward stimulation). A further objective is that since self-disclosure is reciprocal, when teachers of English reveal their personal information, students will uncover their personal matters in return. This will help ensure effective classroom participation, foster teacher-student communication, and encourage students to practice and hence improve their oral proficiency (i.e., the speaking skill). A questionnaire was used to collect data in this study. 164 undergraduate students (99 females and 65 males) from the department of English at the faculty of letters and humanities, Dher el Mehraz, Sidi Mohammed Ben Abd Allah University completed a questionnaire that assessed self-disclosure in relation to motivation (i.e., attitudes toward the learning situation and intrinsic motivation) and classroom interaction (i.e., teacher-student interaction, participation, and out-of-class communication) on a 1 to 5 scale with (1) Strongly Disagree and (5) Strongly Agree. The level of agreement on the positive dimension of self-disclosure was ranked first by the respondents. The hypothesis set at the very beginning of the study, which posited that positive self-disclosure is essential to enhancing motivation and classroom interaction in the EFL context, was confirmed. In this regard, the findings suggest that implementing self-disclosure in the Moroccan EFL classroom may serve as an effective tool to have positive affect of teacher, class and classroom activities. This in turn will encourage the learners to attend classes, enjoy the language learning activity, complete classroom assignments, participate in class discussions, and interact with their teachers and classmates. It is hoped that teachers benefit from the results of this study and hence encourage the use of positive self-disclosure to develop English language learning in the Moroccan context where opportunities of using English outside the classroom are limited.Keywords: EFL classroom, classroom interaction, motivation, self-disclosure
Procedia PDF Downloads 31811440 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 18911439 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation
Procedia PDF Downloads 13611438 The Role of Community Activism in Promoting Social Justice around Housing Issues: A Case Study of the Western Cape
Authors: Mapule Maema
Abstract:
The paper aims to highlight the role that community activism has played in promoting social justice around housing issues in the Western Cape. The Western Cape is one of the largest spatially segregated provinces in South Africa which continues to exhibit grave inequalities between cities, townships and farms. These inequalities cut across intersectional issues such as, race, class, gender, and politics. The main challenges facing marginalized communities in the Western Cape include access to housing, land and basic services. This is not peculiar to only the Western Cape, the entire country is facing similar challenges however the Western Cape is seen as a fasted urbanizing province in the country due to tourism. Various social movements have been formed across the country to counter these challenges, however, this paper focuses on the resilience communities have fostered despite the myriad housing and spatial crisis they are faced with. The paper focuses on the Legal Resource’s Centre’s clients from an informal settlement called Imizamo Yethu based in Hout Bay Valley area. The 18 hectare settlement houses approximately 33600 people. On the 21st July 2017, Hout Bay experienced violent protests following an eviction order passed by the City of Cape Town. The protest was characterized by tensions within the community regarding the super-blocking initiative which aims to establish roads in informal settlements to ensure basic services. Residents against the process argued that there were no proper consultations done to educate them on what this process entailed. Public participation is one of the objectives the municipalities aim to promote however it remains a great challenge. In order to highlight the experiences of the LRC clients in relation to what motivated their involvement in the movement, how it felt their participation, and aspirations, the paper will employ qualitative research methods. Qualitative research methods enable the researcher to get a deeper and nuanced understanding of the social world in the eyes of those who experienced it. It is a flexible methodology that enables one to also understand social processes and the significance they generate. Data will be collected through the use of the World Cafe as a focus group method. The World Café is a simple, effective and flexible format for hosting group dialogue. The steps taken when setting up a World Café includes the following: setting the context (why you are bringing people together and what you want to achieve), create hospitality space (make participants feel at home and free to discuss issues), explore questions that matter, connect diverse perspectives (the opportunity to actively contribute your thinking), listen together for patterns and insights, share collective discoveries and learnings. Secondary data will be used to augment the data collected. Stories of impact will be drawn from the exercises. This paper will contribute to the discourse of sustainable housing and urban development and the research outputs will be disseminated to the public for learning.Keywords: community activism, influence, social justice, development
Procedia PDF Downloads 14011437 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 13211436 Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt
Authors: Yomna Amr Ahmed Lotfi Koraim, Dalia Moati Rasmi Elkhateeb
Abstract:
Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt.Keywords: vertical landscape, green facades, vertical greening, social acceptance, sustainable urban development
Procedia PDF Downloads 35911435 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 21511434 Examining Professional Challenges for School Social Work in Swedish Elementary Schools: A Focus Group Study
Authors: Maria Kjellgren, Sara Lilliehorn, Urban Markström
Abstract:
Critical components that influence the role and performance of school social workers in Swedish elementary schools will be described and analysed, such as formal regulations, professional self-understanding, and the SSWs’ role in the interplay between professional domains involved in elementary school. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. The result reveals three main challenges for the School Social Worker (SSW): (1) To navigate in a pedagogic and medical arena within a multidisciplinary team, (2) To manage ambiguity without any formal regulations and unclear settings and leadership and finally, (3) To negotiate tasks at different levels, with a health promotional and preventive focus, where the SSW ends up, mainly in remedial work with individual children. The results also disclosed that SSWs hold a vague professional self-understanding position with a little formal mandate to perform their work.Keywords: school social worker, multidisciplinary team, counselling, professional self-understanding, formal regulations
Procedia PDF Downloads 7411433 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 54