Search results for: language learning
5565 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 1115564 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach
Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato
Abstract:
In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.Keywords: constraint programming, factors considered in scheduling, machine learning, scheduling system
Procedia PDF Downloads 3295563 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches
Authors: Mariam Matiashvili
Abstract:
Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon
Procedia PDF Downloads 765562 Physical Action Meets Linguistic Expression: Investigating the Co-construction of Metaphors in Task-based Conversation by Multiple ELF Speakers
Authors: Midori Tanimura, Ike Saya, Etsuko Yoshida
Abstract:
Since the work of Lakoff and Johnson (1980), metaphor has been recognized not merely as a rhetorical device but as a crucial component of human thought and conceptual formation. However, many studies have concentrated on verbal metaphors, leaving relatively little research on figurative expressions that draw on additional modes, such as visual forms, auditory information, or gesture (Forceville & Urios-Aparisi, 2009, Littlemore, 2009). This paper addresses that gap by examining multimodal metaphors, which emerge through the integration of multiple modes (e.g., language and visual forms). For example, an advertisement conveying “passion is fire” by pairing the phrase “Feel the fire” with a visual depiction of flames illustrates how metaphor can be expressed in both linguistic and visual modes (Forceville, 2006). In this study, we analyze data from task-based conversation among multiple ELF (English as a Lingua Franca) speakers. Our focus is on LEGO block-creation conversations, exploring how physical operations (arranging or assembling blocks) and linguistic expressions interact to construct figurative or abstract concepts. Specifically, we investigate the types of linguistic metaphors (e.g., the expression “Let’s build a scale here” based on the conceptual metaphorKeywords: co-construction, interaction, multimodal metaphor, physical action
Procedia PDF Downloads 05561 Factors Afecting the Academic Performance of In-Service Students in Science Educaction
Authors: Foster Chilufya
Abstract:
This study sought to determine factors that affect academic performance of mature age students in Science Education at University of Zambia. It was guided by Maslow’s Hierarchy of Needs. The theory provided relationship between achievement motivation and academic performance. A descriptive research design was used. Both Qualitative and Quantitative research methods were used to collect data from 88 respondents. Simple random and purposive sampling procedures were used to collect from the respondents. Concerning factors that motivate mature-age students to choose Science Education Programs, the following were cited: need for self-actualization, acquisition of new knowledge, encouragement from friends and family members, good performance at high school and diploma level, love for the sciences, prestige and desire to be promoted at places of work. As regards factors that affected the academic performance of mature-age students, both negative and positive factors were identified. These included: demographic factors such as age and gender, psychological characteristics such as motivation and preparedness to learn, self-set goals, self esteem, ability, confidence and persistence, student prior academic performance at high school and college level, social factors, institutional factors and the outcomes of the learning process. In order to address the factors that negatively affect academic performance of mature-age students, the following measures were identified: encouraging group discussions, encouraging interactive learning process, providing a conducive learning environment, reviewing Science Education curriculum and providing adequate learning materials. Based on these factors, it is recommended that, the School of Education introduces a program in Science Education specifically for students training to be teachers of science. Additionally, introduce majors in Physics Education, Biology Education, Chemistry Education and Mathematics Education relevant to what is taught in high schools.Keywords: academic, performance, in-service, science
Procedia PDF Downloads 3145560 The Battle between French and English in the Algerian University: Ideological and Pedagogical Stakes
Authors: Taoufik Djennane
Abstract:
Algeria is characterized by a fragmented language education policy. While pre-university education is entirely conducted in Arabic, higher education remains linguistically divided, with some fields offered in Arabic and others exclusively based on French. Within this linguistic policy, English remains far behind French. However, there has been a significant shift in the state’s linguistic orientation since the social riot of March 2019, known as El-Hirak, which ousted away the ex-president. Since then, social calls were voiced to get rid of French, and English started to receive an unprecedented political push. The historical decision only came at the beginning of the academic year 2023-2024 when the ministry of higher education imposed English as medium of instruction (hereafter EMI), especially in scientific and technological fields. As such, this paper considered this abrupt switch in the medium of instruction and its effects on the community of teachers. Building on a socio-psychological approach, teachers’ attitudes towards EMI were measured. Data were collected using classroom observation, semi-structured interviews and a survey. The results showed that a clear majority of teachers hold negative attitudes towards EMI. The point is that they are linguistically incompetent, and they are not ready yet to deliver content subjects in a language they have no, or little, command of. The study showed the importance of considering attitudes in the ‘policy-formation’ stage before the ‘implementation’ stage. The findings also proved that teachers are not passive bystanders; they can rather be the final arbiters imposing themselves as policy-makers resisting ministerial instructions through their linguistic practices inside the classroom which only acknowledge French. The study showed the necessity to avoid sudden switch and opt for gradual change, without putting aside those who are directly concerned with political/pedagogical measures (teachers, learners, etc).Keywords: micro planning, EMI, language education policy, agency
Procedia PDF Downloads 795559 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 2095558 Comprehensive Review of Adversarial Machine Learning in PDF Malware
Authors: Preston Nabors, Nasseh Tabrizi
Abstract:
Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion
Procedia PDF Downloads 455557 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success
Authors: Thomas Roche, Erica Wilson, Elizabeth Goode
Abstract:
Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy
Procedia PDF Downloads 795556 On the Use of Machine Learning for Tamper Detection
Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode
Abstract:
The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT
Procedia PDF Downloads 1585555 Emotional Intelligence Training: Helping Non-Native Pre-Service EFL Teachers to Overcome Speaking Anxiety: The Case of Pre-Service Teachers of English, Algeria
Authors: Khiari Nor El Houda, Hiouani Amira Sarra
Abstract:
Many EFL students with high capacities are hidden because they suffer from speaking anxiety (SA). Most of them find public speaking much demanding. They feel unable to communicate, they fear to make mistakes and they fear negative evaluation or being called on. With the growing number of the learners who suffer from foreign language speaking anxiety (FLSA), it is becoming increasingly difficult to ignore its harmful outcomes on their performance and success, especially during their first contact with the pupils, as they will be teaching in the near future. Different researchers suggested different ways to minimize the negative effects of FLSA. The present study sheds light on emotional intelligence skills training as an effective strategy not only to influence public speaking success but also to help pre-service EFL teachers lessen their speaking anxiety and eventually to prepare them for their professional career. A quasi-experiment was used in order to examine the research hypothesis. We worked with two groups of third-year EFL students at Oum El Bouaghi University. The Foreign Language Classroom Anxiety Scale (FLCAS) and the Emotional Quotient Inventory (EQ-i) were used to collect data about the participants’ FLSA and EI levels. The analysis of the data has yielded that the assumption that there is a negative correlation between EI and FLSA was statistically validated by the Pearson Correlation Test, concluding that, the more emotionally intelligent the individual is the less anxious s/he will be. In addition, the lack of amelioration in the results of the control group and the noteworthy improvement in the experimental group results led us to conclude that EI skills training was an effective strategy in minimizing the FLSA level and therefore, we confirmed our research hypothesis.Keywords: emotional intelligence, emotional intelligence skills training, EQ-I, FLCAS, foreign language speaking anxiety, pre-service EFL teachers
Procedia PDF Downloads 1455554 Developing Digital Skills in Museum Professionals through Digital Education: International Good Practices and Effective Learning Experiences
Authors: Antonella Poce, Deborah Seid Howes, Maria Rosaria Re, Mara Valente
Abstract:
The Creative Industries education contexts, Museum Education in particular, generally presents a low emphasis on the use of new digital technologies, digital abilities and transversal skills development. The spread of the Covid-19 pandemic has underlined the importance of these abilities and skills in cultural heritage education contexts: gaining digital skills, museum professionals will improve their career opportunities with access to new distribution markets through internet access and e-commerce, new entrepreneurial tools, or adding new forms of digital expression to their work. However, the use of web, mobile, social, and analytical tools is becoming more and more essential in the Heritage field, and museums, in particular, to face the challenges posed by the current worldwide health emergency. Recent studies highlight the need for stronger partnerships between the cultural and creative sectors, social partners and education and training providers in order to provide these sectors with the combination of skills needed for creative entrepreneurship in a rapidly changing environment. Considering the above conditions, the paper presents different examples of digital learning experiences carried out in Italian and USA contexts with the aim of promoting digital skills in museum professionals. In particular, a quali-quantitative research study has been conducted on two international Postgraduate courses, “Advanced Studies in Museum Education” (2 years) and “Museum Education” (1 year), in order to identify the educational effectiveness of the online learning strategies used (e.g., OBL, Digital Storytelling, peer evaluation) for the development of digital skills and the acquisition of specific content. More than 50 museum professionals participating in the mentioned educational pathways took part in the learning activity, providing evaluation data useful for research purposes.Keywords: digital skills, museum professionals, technology, education
Procedia PDF Downloads 1805553 Performance of the Kindergarten Teachers and Its Relation to Pupils Achievement in Different Learning Areas
Authors: Mary Luna Mancao Ninal
Abstract:
This study aimed to determine the performance of the kindergarten teachers and its relation to pupils’ achievement in different learning areas in the Division of Kabankalan City. Using the standardized assessment and evaluation of the Department of Education secondary data, 100 kinder teachers and 2901 kinder pupils were investigated to determine the performance of the kindergarten teachers based on their Competency–Based Performance Appraisal System for Teachers and the periodic assessment of kinder pupils collected as secondary data. Weighted mean, Pearson–r, chi-square, Analysis of Variance were used in the study. Findings revealed that the kindergarten teacher respondents were 26-31 years old and most of them were female and married; they spent teaching for two years and less and passed the Licensure Examination for Teachers. They were very satisfactory as to instructional competences, school, and home and community involvement, personal, social, and professional characteristics. It also revealed that performance of the kindergarten pupils on their period of assessment shows that they were slightly advanced in their development. It also shows that domain as to performance of the kindergarten pupils were average overall development. Based on the results, it is recommended that Kindergarten teacher must augment their educational qualification and pursue their graduate studies and must develop the total personality of the children for them to achieve high advanced development to become productive individual.Keywords: performance, kindergarten teacher, learning areas, professional, pupil
Procedia PDF Downloads 3615552 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment
Authors: Leon Pan
Abstract:
The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.Keywords: extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning
Procedia PDF Downloads 645551 Continuous Improvement of Teaching Quality through Course Evaluation by the Students
Authors: Valerie Follonier, Henrike Hamelmann, Jean-Michel Jullien
Abstract:
The Distance Learning University in Switzerland (UniDistance) is offering bachelor and master courses as well as further education programs. The professors and their assistants work at traditional Swiss universities and are giving their courses at UniDistance following a blended learning and flipped classroom approach. A standardized course evaluation by the students has been established as a component of a quality improvement process. The students’ feedback enables the stakeholders to identify areas of improvement, initiate professional development for the teaching teams and thus continuously augment the quality of instruction. This paper describes the evaluation process, the tools involved and how the approach involving all stakeholders helps forming a culture of quality in teaching. Additionally, it will present the first evaluation results following the new process. Two software tools have been developed to support all stakeholders in the process of the semi-annual formative evaluation. The first tool allows to create the survey and to assign it to the relevant courses and students. The second tool presents the results of the evaluation to the stakeholders, providing specific features for the teaching teams, the dean, the directorate and EDUDL+ (Educational development unit distance learning). The survey items were selected in accordance with the e-learning strategy of the institution and are formulated to support the professional development of the teaching teams. By reviewing the results the teaching teams become aware of the opinion of the students and are asked to write a feedback for the attention of their dean. The dean reviews the results of the faculty and writes a general report about the situation of the faculty and the possible improvements intended. Finally, EDUDL+ writes a final report summarising the evaluation results. A mechanism of adjustable warnings allows it to generate quality indicators for each module. These are summarised for each faculty and globally for the whole institution in order to increase the vigilance of the responsible. The quality process involves changing the indicators regularly to focus on different areas each semester, to facilitate the professional development of the teaching teams and to progressively augment the overall teaching quality of the institution.Keywords: continuous improvement process, course evaluation, distance learning, software tools, teaching quality
Procedia PDF Downloads 2615550 The Impact of Nonverbal Communication Between Restaurant Staff and Customers on Customer Attraction in Restaurants: A Case Study of Food Courts in Tehran City
Authors: Mahshid Asadollahi, Mohammad Akbari Asl
Abstract:
The restaurant industry is highly competitive, and restaurants are constantly looking for ways to attract new customers and retain their existing ones. Nonverbal communication is an important factor in creating a positive customer experience and can play a significant role in attracting customers to restaurants. Nonverbal communication can include body language, facial expressions, tone of voice, and physical proximity, among other things. The present study aimed to investigate the impact of nonverbal communication between restaurant employees and customers on attracting customers in food courts in Tehran. The research method was descriptive-correlational, and the statistical population of this study included all customers of food court restaurants in Tehran, which was about 30 restaurants. The research sample was selected through probability sampling, and 440 customers completed emotional response, customer satisfaction, and nonverbal communication questionnaires in person. The data obtained were analyzed using multiple regression analysis. The results showed that vocal language, employee proximity, physical appearance, and speech movements, as components of nonverbal communication of restaurant employees, had an impact on attracting customers. Additionally, positive and negative emotions of customers have a significant relationship with customer attraction in Food Court restaurants. The study shows that various nonverbal communication factors can play a significant role in attracting customers, and that positive and negative customer emotions can affect customer satisfaction. Therefore, restaurant owners and managers should pay attention to nonverbal communication and train their employees accordingly to create a positive and welcoming atmosphere for customers.Keywords: verbal language, proximity of employees, physical appearance, speech gestures, nonverbal communication, customer emotions, customer attraction
Procedia PDF Downloads 1045549 An Intelligent Tutoring System Enriched with 3D Virtual Reality for Dentistry Students
Authors: Meltem Eryılmaz
Abstract:
With the emergence of the COVID-19 infection outbreak, the socio-cultural, political, economic, educational systems dynamics of the world have gone through a major change, especially in the educational field, specifically dentistry preclinical education, where the students must have a certain amount of real-time experience in endodontics and other various procedures. The totality of the digital and physical elements that make our five sense organs feel as if we really exist in a virtual world is called virtual reality. Virtual reality, which is very popular today, has started to be used in education. With the inclusion of developing technology in education and training environments, virtual learning platforms have been designed to enrich students' learning experiences. The field of health is also affected by these current developments, and the number of virtual reality applications developed for students studying dentistry is increasing day by day. The most widely used tools of this technology are virtual reality glasses. With virtual reality glasses, you can look any way you want in a world designed in 3D and navigate as you wish. With this project, solutions that will respond to different types of dental practices of students who study dentistry with virtual reality applications are produced. With this application, students who cannot find the opportunity to work with patients in distance education or who want to improve themselves at home have unlimited trial opportunities. Unity 2021, Visual Studio 2019, Cardboard SDK are used in the study.Keywords: dentistry, intelligent tutoring system, virtual reality, online learning, COVID-19
Procedia PDF Downloads 2065548 Optimality Theoretic Account of Indian Loanwords in Hadhrami Arabic
Authors: Mohammed Saleh Lahmdi, Hassan Obeid Alfadly
Abstract:
This study explores an optimality-theoretic account of Indian loanwords in Hadhrami Arabic (henceforth HA), a variety of Arabic spoken in Hadhramout Province in the coastal areas and Hadhramout Valley. The purpose of this paper is to find out how the phonological forms of Indian loanwords can be accounted for from an OT standpoint. To achieve this purpose, two main instruments were implemented: participant observation and interview. The sample of this study was selected carefully with certain characteristics by judgment sampling consisting of eleven informants. An ethnographic qualitative approach was employed to find out the phonological articulations that the researcher encountered during the implementation. Many phonological processes are used and several markedness and faithfulness constraints have been interacted in conflict in order to choose the optimal form of Hadhrami realisations. The findings of the study confirm that the Hadhrami syllable structure prevails over the donor language, i.e., the Indian (mainly Urdu) language. Specifically, markedness constraints dominate faithfulness ones when most of the Indian loanwords are incorporated into HA.Keywords: linguistic borrowing, optimality theory, Hadhrami Arabic, loanword, phonological processes
Procedia PDF Downloads 545547 Education For Social Justice: A Comparative Study of University Teachers' Conceptions and Practice
Authors: Digby Warren, Jiri Kropac
Abstract:
This comparative study seeks to develop a deeper understanding of what is meant by “education for social justice” (ESJ) - an aspiration articulated by universities, though often without much definition. The research methodology involved thematic analysis of data from in-depth interviews with academics (voluntary participants) in different disciplines and institutions in the UK, Czech Republic and other EU countries. The interviews explored lecturers’ conceptions of ESJ, their practice of it, and associated challenges and enabling factors. Main findings are that ESJ is construed as provision of equitable and conscientising education opportunities that run across the whole higher education (HE) journey, from widening access to HE to stimulating critical learning and awareness that can empower graduates to transform their lives and societies. Teaching practice featured study of topics related to social justice; collaborative and creative learning activities, and assignments offering choice and connection to students’ realities. Student responses could be mixed, occasionally resistant, but mostly positive in terms of gaining increased confidence and awareness of equality and social responsibility. Influences at the macro, meso and mico level could support or limit scope for ESJ. Overall, the study highlights the strong, values-based commitment of HE teachers to facilitating student learning engagement, wellbeing and development towards building a better world.Keywords: higher education, social justice, inclusivity, diversity
Procedia PDF Downloads 785546 Role of Machine Learning in Internet of Things Enabled Smart Cities
Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav
Abstract:
This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.Keywords: IoT, smart city, embedded systems, sustainable environment
Procedia PDF Downloads 5795545 Multilingualism and the Creation of New Languages: The Case of Camfranglais Spoken in Italy and Germany
Authors: Jocelyne Kenne Kenne
Abstract:
Previous works in the field of sociolinguistics have explored the various outcomes of linguistic pluralism. One of these outcomes is the creation of new languages. The presentation will focus on one of such languages, Camfranglais, a hybrid language spoken by Cameroonians. It appeared in the 1970s in the francophone area in Cameroon and developed as a result of interactions between French, English, Cameroonian Pidgin English and local Cameroonian languages, all languages spoken in Cameroon. With the migration of Cameroonians to Europe, researches have been conducted to analyze the sociolinguistic profile of Cameroonians in their new environment. The emphasis on this presentation will be on two recent studies that have been conducted to analyze the peculiarity of Camfranglais in two European countries: Germany and Italy. The research involved 59 Cameroonians living in Italy and 49 Cameroonians residing in Germany. The respondents were composed of participants from different linguistic background, students and workers, married and single. A combination of quantitative and qualitative research methods was employed. The field study was divided into three parts. The first part was focused on observing the Cameroonians interact in different places such as in canteens, in the university halls of residence, lecture theatres, at homes, at various Cameroonian meetings. Those observations were accompanied by audio-recordings of the various interactions. The aim was to study communication between Cameroonians to see whether they use Camfranglais or not; if yes, in which domains and what were the speakers’ linguistic profiles. Additionally, questionnaires of different lengths were used to collect biographical information concerning the participants and their sociolinguistic profile and finally, in-depth interviews with Cameroonians were conducted to inquire about the use, the functions and the importance of this language in the migratory context. The results of the research demonstrate how a widespread use of Camfranglais by Cameroonians in Germany and Italy reveal a longing for home on the one hand and a sign of belonging on the other. It also shows the differences that exist between the profiles of Camfranglais speakers in Europe and the speakers in Cameroon notably in terms of age and social class. Finally, it points out some differences in the use, the structure and the functions of this hybrid language in the migratory setting. This study is a contribution to existing research in the field of contact languages and can serve as a comparison for other situations of multilingualism and the creation of mixed languages. Furthermore, with globalization, the study of migrant languages and the contact of these languages with new languages are topics that might be productive for further research in the field of sociolinguistics.Keywords: interaction, migrants language, multilingualism, mixed languages
Procedia PDF Downloads 2185544 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 565543 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1455542 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models
Authors: Tejush Badal, Sanaa Alwidian
Abstract:
Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.Keywords: analysis, class diagram, model family, unified modeling language, union model
Procedia PDF Downloads 785541 The Impact of a Simulated Teaching Intervention on Preservice Teachers’ Sense of Professional Identity
Authors: Jade V. Rushby, Tony Loughland, Tracy L. Durksen, Hoa Nguyen, Robert M. Klassen
Abstract:
This paper reports a study investigating the development and implementation of an online multi-session ‘scenario-based learning’ (SBL) program administered to preservice teachers in Australia. The transition from initial teacher education to the teaching profession can present numerous cognitive and psychological challenges for early career teachers. Therefore, the identification of additional supports, such as scenario-based learning, that can supplement existing teacher education programs may help preservice teachers to feel more confident and prepared for the realities and complexities of teaching. Scenario-based learning is grounded in situated learning theory which holds that learning is most powerful when it is embedded within its authentic context. SBL exposes participants to complex and realistic workplace situations in a supportive environment and has been used extensively to help prepare students in other professions, such as legal and medical education. However, comparatively limited attention has been paid to investigating the effects of SBL in teacher education. In the present study, the SBL intervention provided participants with the opportunity to virtually engage with school-based scenarios, reflect on how they might respond to a series of plausible response options, and receive real-time feedback from experienced educators. The development process involved several stages, including collaboration with experienced educators to determine the scenario content based on ‘critical incidents’ they had encountered during their teaching careers, the establishment of the scoring key, the development of the expert feedback, and an extensive review process to refine the program content. The 4-part SBL program focused on areas that can be challenging in the beginning stages of a teaching career, including managing student behaviour and workload, differentiating the curriculum, and building relationships with colleagues, parents, and the community. Results from prior studies implemented by the research group using a similar 4-part format have shown a statistically significant increase in preservice teachers’ self-efficacy and classroom readiness from the pre-test to the final post-test. In the current research, professional teaching identity - incorporating self-efficacy, motivation, self-image, satisfaction, and commitment to teaching - was measured over six weeks at multiple time points: before, during, and after the 4-part scenario-based learning program. Analyses included latent growth curve modelling to assess the trajectory of change in the outcome variables throughout the intervention. The paper outlines (1) the theoretical underpinnings of SBL, (2) the development of the SBL program and methodology, and (3) the results from the study, including the impact of the SBL program on aspects of participating preservice teachers’ professional identity. The study shows how SBL interventions can be implemented alongside the initial teacher education curriculum to help prepare preservice teachers for the transition from student to teacher.Keywords: classroom simulations, e-learning, initial teacher education, preservice teachers, professional learning, professional teaching identity, scenario-based learning, teacher development
Procedia PDF Downloads 755540 Teachers Handbook: A Key to Imparting Teaching in Multilingual Classrooms at Kalinga Institute of Social Sciences (KISS)
Authors: Sushree Sangita Mohanty
Abstract:
The pedagogic system, which is used to work with indigenous groups, who have equally different socio-economic, socio-cultural & multi-lingual conditions with differing cognitive capabilities, makes the education situation complex. As a result, educating the indigenous people became just the dissemination of facts and information, but advancement in knowledge and possibilities somewhere hides. This gap arises complexities due to the language barrier and the teachers from a conventional background of teaching practices are unable to understand or connect with the students in the schools. This paper presents the research work of the Mother Tongue Based Multilingual Education (MTB-MLE) project that has developed a creative pedagogic endeavor for the students of Kalinga Institute of Social Sciences (KISS) for facilitating Multilingual Education (MLE) teaching. KISS is a home for 25,000 indigenous children. The students enrolled here are from 62 different indigenous communities who speak around 24 different languages with geographical articulation. The book contents include concept, understanding languages, similitudes among languages, the need of mother tongue in teaching and learning, skill development (Listening-Speaking-Reading-Writing), teachers activities for teaching in multilingual schools, the process of teaching, training format of multilingual teaching and procedures for basic data collection regarding multilingual schools and classroom handle.Keywords: indigenous, multi-lingual, pedagogic, teachers, teaching practices
Procedia PDF Downloads 2945539 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams
Authors: Rochelle Elva
Abstract:
Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of learning and mastery of skills. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation, and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy Value Theory and Motivation Theory to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected possible path to success that continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were, on average, one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.Keywords: expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science
Procedia PDF Downloads 875538 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 225537 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction
Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova
Abstract:
A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure
Procedia PDF Downloads 1995536 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade
Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim
Abstract:
Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade
Procedia PDF Downloads 227