Search results for: data mining techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29882

Search results for: data mining techniques

25712 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
25711 A Human Activity Recognition System Based on Sensory Data Related to Object Usage

Authors: M. Abdullah, Al-Wadud

Abstract:

Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.

Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model

Procedia PDF Downloads 322
25710 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field

Authors: Nastaran Moosavi, Mohammad Mokhtari

Abstract:

Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.

Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion

Procedia PDF Downloads 324
25709 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors

Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui

Abstract:

Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.

Keywords: data-driven method, process control, anomaly detection, dimensionality reduction

Procedia PDF Downloads 299
25708 An Investigation of E-Government by Using GIS and Establishing E-Government in Developing Countries Case Study: Iraq

Authors: Ahmed M. Jamel

Abstract:

Electronic government initiatives and public participation to them are among the indicators of today's development criteria of the countries. After consequent two wars, Iraq's current position in, for example, UN's e-government ranking is quite concerning and did not improve in recent years, either. In the preparation of this work, we are motivated with the fact that handling geographic data of the public facilities and resources are needed in most of the e-government projects. Geographical information systems (GIS) provide most common tools not only to manage spatial data but also to integrate such type of data with nonspatial attributes of the features. With this background, this paper proposes that establishing a working GIS in the health sector of Iraq would improve e-government applications. As the case study, investigating hospital locations in Erbil is chosen.

Keywords: e-government, GIS, Iraq, Erbil

Procedia PDF Downloads 389
25707 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 412
25706 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 27
25705 Modified InVEST for Whatsapp Messages Forensic Triage and Search through Visualization

Authors: Agria Rhamdhan

Abstract:

WhatsApp as the most popular mobile messaging app has been used as evidence in many criminal cases. As the use of mobile messages generates large amounts of data, forensic investigation faces the challenge of large data problems. The hardest part of finding this important evidence is because current practice utilizes tools and technique that require manual analysis to check all messages. That way, analyze large sets of mobile messaging data will take a lot of time and effort. Our work offers methodologies based on forensic triage to reduce large data to manageable sets resulting easier to do detailed reviews, then show the results through interactive visualization to show important term, entities and relationship through intelligent ranking using Term Frequency-Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA) Model. By implementing this methodology, investigators can improve investigation processing time and result's accuracy.

Keywords: forensics, triage, visualization, WhatsApp

Procedia PDF Downloads 168
25704 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles

Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.

Keywords: mobile mapping, GNSS, IMU, similarity, classification

Procedia PDF Downloads 84
25703 An Investigation into the Views of Distant Science Education Students Regarding Teaching Laboratory Work Online

Authors: Abraham Motlhabane

Abstract:

This research analysed the written views of science education students regarding the teaching of laboratory work using the online mode. The research adopted the qualitative methodology. The qualitative research was aimed at investigating small and distinct groups normally regarded as a single-site study. Qualitative research was used to describe and analyze the phenomena from the student’s perspective. This means the research began with assumptions of the world view that use theoretical lenses of research problems inquiring into the meaning of individual students. The research was conducted with three groups of students studying for Postgraduate Certificate in Education, Bachelor of Education and honors Bachelor of Education respectively. In each of the study programmes, the science education module is compulsory. Five science education students from each study programme were purposively selected to participate in this research. Therefore, 15 students participated in the research. In order to analysis the data, the data were first printed and hard copies were used in the analysis. The data was read several times and key concepts and ideas were highlighted. Themes and patterns were identified to describe the data. Coding as a process of organising and sorting data was used. The findings of the study are very diverse; some students are in favour of online laboratory whereas other students argue that science can only be learnt through hands-on experimentation.

Keywords: online learning, laboratory work, views, perceptions

Procedia PDF Downloads 145
25702 Corrective Feedback and Uptake Patterns in English Speaking Lessons at Hanoi Law University

Authors: Nhac Thanh Huong

Abstract:

New teaching methods have led to the changes in the teachers’ roles in an English class, in which teachers’ error correction is an integral part. Language error and corrective feedback have been the interest of many researchers in foreign language teaching. However, the techniques and the effectiveness of teachers’ feedback have been a question of much controversy. This present case study has been carried out with a view to finding out the patterns of teachers’ corrective feedback and their impact on students’ uptake in English speaking lessons of legal English major students at Hanoi Law University. In order to achieve those aims, the study makes use of classroom observations as the main method of data collection to seeks answers to the two following questions: 1. What patterns of corrective feedback occur in English speaking lessons for second- year legal English major students in Hanoi Law University?; 2. To what extent does that corrective feedback lead to students’ uptake? The study provided some important findings, among which was a close relationship between corrective feedback and uptake. In particular, recast was the most commonly used feedback type, yet it was the least effective in terms of students’ uptake and repair, while the most successful feedback, namely meta-linguistic feedback, clarification requests and elicitation, which led to students’ generated repair, was used at a much lower rate by teachers. Furthermore, it revealed that different types of errors needed different types of feedback. Also, the use of feedback depended on the students’ English proficiency level. In the light of findings, a number of pedagogical implications have been drawn in the hope of enhancing the effectiveness of teachers’ corrective feedback to students’ uptake in foreign language acquisition process.

Keywords: corrective feedback, error, uptake, speaking English lesson

Procedia PDF Downloads 262
25701 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 109
25700 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP

Procedia PDF Downloads 317
25699 A Low Cost Gain-Coupled Distributed Feedback Laser Based on Periodic Surface p-Contacts

Authors: Yongyi Chen, Li Qin, Peng Jia, Yongqiang Ning, Yun Liu, Lijun Wang

Abstract:

The distributed feedback (DFB) lasers are indispensable in optical phase array (OPA) used for light detection and ranging (LIDAR) techniques, laser communication systems and integrated optics, thanks to their stable single longitudinal mode and narrow linewidth properties. Traditional index-coupled (IC) DFB lasers with uniform gratings have an inherent problem of lasing two degenerated modes. Phase shifts are usually required to eliminate the mode degeneration, making the grating structure complex and expensive. High-quality antireflection (AR) coatings on both lasing facets are also essential owing to the random facet phases introduced by the chip cleavage process, which means half of the lasing energy is wasted. Gain-coupled DFB (GC-DFB) lasers based on the periodic gain (or loss) are announced to have single longitudinal mode as well as capable of the unsymmetrical coating to increase lasing power and efficiency thanks to facet immunity. However, expensive and time-consuming technologies such as epitaxial regrowth and nanoscale grating processing are still required just as IC-DFB lasers, preventing them from practical applications and commercial markets. In this research, we propose a low-cost, single-mode regrowth-free GC-DFB laser based on periodic surface p-contacts. The gain coupling effect is achieved simply by periodic current distribution in the quantum well caused by periodic surface p-contacts, introducing very little index-coupling effect that can be omitted. It is prepared by i-line lithography, without nanoscale grating fabrication or secondary epitaxy. Due to easy fabrication techniques, it provides a method to fabricate practical low cost GC-DFB lasers for widespread practical applications.

Keywords: DFB laser, gain-coupled, low cost, periodic p-contacts

Procedia PDF Downloads 128
25698 Beating Heart Coronary Artery Bypass Grafting on Intermittent Pump Support

Authors: Sushil Kumar Singh, Vivek Tewarson, Sarvesh Kumar, Shobhit Kumar

Abstract:

Objective: ‘Beating Heart coronary artery bypass grafting on Intermittent Pump Support’ is a more reliable method of coronary revascularization that takes advantage of off and on-pump CABG while eliminating the disadvantage of both techniques. Methods: From January 2015 to December 2021, a new technique, “Intermittent On pump beating heart CABG” using a suction stabilizer was used by putting aortic and venous cannulas electively in all the patients. Patients were supported by a pump intermittently, as and when required (Group 1, n=254). Retrospective data were collected from our record of the patients who underwent off-pump CABG electively by the same surgeon and team (Group 2, n=254). Results: Significant advantage was noted in Group 1 patients in terms of the number of grafts (3.31 ± 1.16 vs. 2.30 ±0.66), grafting of lateral vessels (316 vs.202), mean operating time (1.37 ± 0.23 hrs vs. 2.22 ± 0.45 hrs) and postoperative blood loss (406.30 ± 257.90 ml vs. 567.41 ± 265.20 ml).CPB support time was less than 15 minutes in the majority of patients (n=179, 70.37 %), with a mean of 16.81 minutes. It was required, particularly during the grafting of lateral vessels. A rise in enzymes level (CRP, CKMB, Trop I, and NTPro BNP) was noted in Group 1 patients. But, these did not affect the postoperative course in patients. There was no mortality in Group 1 patients, while four patients in Group 2 died. Coclusions: Intermittent on-pump CABG technique is a promising method of surgical revascularization for all patients requiring CABG. It has shown its superiority in terms of safety, the number of grafts, operating time, and better perioperative course.

Keywords: cardiopulmonary bypass, CABG, beating heart CABG, on-pump CABG

Procedia PDF Downloads 121
25697 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 14
25696 Rational Allocation of Resources in Water Infrastructure Development Projects

Authors: M. Macchiaroli, V. Pellecchia, L. Dolores

Abstract:

Within any European and world model of management of the integrated water service (in Italy only since 2012 is regulated by a national Authority, that is ARERA), a significant part is covered by the development of assets in terms of hydraulic networks and wastewater collection networks, including all their relative building works. The process of selecting the investments to be made starts from the preventive analysis of critical issues (water losses, unserved areas, low service standards, etc.) who occur in the managed territory of the Operator. Through the Program of Interventions (Provision by ARERA n. 580/2019/R/idr), the Operator provides to program the projects that can meet the emerged needs to determine the improvement of the water service levels. This phase (analyzed and solved by the author with a work published in 2019) involves the use of evaluation techniques (cost-benefit analysis, multi-criteria, and multi-objective techniques, neural networks, etc.) useful in selecting the most appropriate design answers to the different criticalities. However, at this point, the problem of establishing the time priorities between the various works deemed necessary remains open. That is, it is necessary to hierarchize the investments. In this decision-making moment, the interests of the private Operator are often opposed, which favors investments capable of generating high profitability, compared to those of the public controller (ARERA), which favors investments in greater social impact. In support of the concertation between these two actors, the protocol set out in the research has been developed, based on the AHP and capable of borrowing from the programmatic documents an orientation path for the settlement of the conflict. The protocol is applied to a case study of the Campania Region in Italy and has been professionally applied in the shared decision process between the manager and the local Authority.

Keywords: analytic hierarchy process, decision making, economic evaluation of projects, integrated water service

Procedia PDF Downloads 124
25695 Depositional Environment and Source Potential of Devonian Source Rock, Ghadames Basin, Southern Tunisia

Authors: S. Mahmoudi, A. Belhaj Mohamed, M. Saidi, F. Rezgui

Abstract:

Depositional environment and source potential of the different organic rich levels of Devonian age (up to 990m thick) from the onshore EC-1 well (Southern Tunisia) were investigated using different geochemical techniques (Rock-Eval pyrolysis, GC-MS) of over than 130 cutting samples. The obtained results including Rock Eval Pyrolysis data and biomarker distribution (terpanes, steranes and aromatics) have been used to describe the depositional environment and to assess the thermal maturity of the Devonian organic matter. These results show that the Emsian deposits exhibit poor to fair TOC contents. The associated organic matter is composed of mixed kerogen (type II/III), as indicated by the predominance of C29 steranes over C27 and C28 homologous, that was deposited in a slightly reduced environment favoring organic matter preservation. Thermal maturity assessed from Tmax, TNR and MPI-1 values shows a mature stage of organic matter. The Middle Devonian (Eifelian) shales are rich in type II organic matter that was deposited in an open marine depositional environment. The TOC values are high and vary between 2 and 7 % indicating good to excellent source rock. The relatively high IH values (reaching 547 mg HC/g TOC) and the low values of t19/t23 ratio (down to 0.2) confirm the marine origin of the organic matter (type II). During the Upper Devonian, the organic matter was deposited under variable redox conditions, oxic to suboxic which is clearly indicated by the low C35/C34 hopanes ratio, immature to marginally mature with the vitrinite reflectance ranging from 0.5 to 0.7 Ro and Tmax value of 426°C-436 °C and the TOC values range between 0.8% to 4%.

Keywords: biomarker, depositional environment, devonian, source rock

Procedia PDF Downloads 474
25694 Improving Low English Oral Skills of 5 Second-Year English Major Students at Debark University

Authors: Belyihun Muchie

Abstract:

This study investigates the low English oral communication skills of 5 second-year English major students at Debark University. It aims to identify the key factors contributing to their weaknesses and propose effective interventions to improve their spoken English proficiency. Mixed-methods research will be employed, utilizing observations, questionnaires, and semi-structured interviews to gather data from the participants. To clearly identify these factors, structured and informal observations will be employed; the former will be used to identify their fluency, pronunciation, vocabulary use, and grammar accuracy, and the later will be suited to observe the natural interactions and communication patterns of learners in the classroom setting. The questionnaires will assess their self-perceptions of their skills, perceived barriers to fluency, and preferred learning styles. Interviews will also delve deeper into their experiences and explore specific obstacles faced in oral communication. Data analysis will involve both quantitative and qualitative responses. The structured observation and questionnaire will be analyzed quantitatively, whereas the informal observation and interview transcripts will be analyzed thematically. Findings will be used to identify the major causes of low oral communication skills, such as limited vocabulary, grammatical errors, pronunciation difficulties, or lack of confidence. They are also helpful to develop targeted solutions addressing these causes, such as intensive pronunciation practice, conversation simulations, personalized feedback, or anxiety-reduction techniques. Finally, the findings will guide designing an intervention plan for implementation during the action research phase. The study's outcomes are expected to provide valuable insights into the challenges faced by English major students in developing oral communication skills, contribute to the development of evidence-based interventions for improving spoken English proficiency in similar contexts, and offer practical recommendations for English language instructors and curriculum developers to enhance student learning outcomes. By addressing the specific needs of these students and implementing tailored interventions, this research aims to bridge the gap between theoretical knowledge and practical speaking ability, equipping them with the confidence and skills to flourish in English communication settings.

Keywords: oral communication skills, mixed-methods, evidence-based interventions, spoken English proficiency

Procedia PDF Downloads 51
25693 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 341
25692 Design of Visual Repository, Constraint and Process Modeling Tool Based on Eclipse Plug-Ins

Authors: Rushiraj Heshi, Smriti Bhandari

Abstract:

Master Data Management requires creation of Central repository, applying constraints on Repository and designing processes to manage data. Designing of Repository, constraints on repository and business processes is very tedious and time consuming task for large Enterprise. Hence Visual Repository, constraints and Process (Workflow) modeling is the most critical step in Master Data Management.In this paper, we realize a Visual Modeling tool for implementing Repositories, Constraints and Processes based on Eclipse Plugin using GMF/EMF which follows principles of Model Driven Engineering (MDE).

Keywords: EMF, GMF, GEF, repository, constraint, process

Procedia PDF Downloads 497
25691 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 183
25690 The Effect of Applying the Electronic Supply System on the Performance of the Supply Chain in Health Organizations

Authors: Sameh S. Namnqani, Yaqoob Y. Abobakar, Ahmed M. Alsewehri, Khaled M. AlQethami

Abstract:

The main objective of this research is to know the impact of the application of the electronic supply system on the performance of the supply department of health organizations. To reach this goal, the study adopted independent variables to measure the dependent variable (performance of the supply department), namely: integration with suppliers, integration with intermediaries and distributors and knowledge of supply size, inventory, and demand. The study used the descriptive method and was aided by the questionnaire tool that was distributed to a sample of workers in the Supply Chain Management Department of King Abdullah Medical City. After the statistical analysis, the results showed that: The 70 sample members strongly agree with the (electronic integration with suppliers) axis with a p-value of 0.001, especially with regard to the following: Opening formal and informal communication channels between management and suppliers (Mean 4.59) and exchanging information with suppliers with transparency and clarity (Mean 4.50). It also clarified that the sample members agree on the axis of (electronic integration with brokers and distributors) with a p-value of 0.001 and this is represented in the following elements: Exchange of information between management, brokers and distributors with transparency, clarity (Mean 4.18) , and finding a close cooperation relationship between management, brokers and distributors (Mean 4.13). The results also indicated that the respondents agreed to some extent on the axis (knowledge of the size of supply, stock, and demand) with a p-value of 0.001. It also indicated that the respondents strongly agree with the existence of a relationship between electronic procurement and (the performance of the procurement department in health organizations) with a p-value of 0.001, which is represented in the following: transparency and clarity in dealing with suppliers and intermediaries to prevent fraud and manipulation (Mean 4.50) and reduce the costs of supplying the needs of the health organization (Mean 4.50). From the results, the study recommended several recommendations, the most important of which are: that health organizations work to increase the level of information sharing between them and suppliers in order to achieve the implementation of electronic procurement in the supply management of health organizations. Attention to using electronic data interchange methods and using modern programs that make supply management able to exchange information with brokers and distributors to find out the volume of supply, inventory, and demand. To know the volume of supply, inventory, and demand, it recommended the application of scientific methods of supply for storage. Take advantage of information technology, for example, electronic data exchange techniques and documents, where it can help in contact with suppliers, brokers, and distributors, and know the volume of supply, inventory, and demand, which contributes to improving the performance of the supply department in health organizations.

Keywords: healthcare supply chain, performance, electronic system, ERP

Procedia PDF Downloads 136
25689 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups

Authors: Lily Ingsrisawang, Tasanee Nacharoen

Abstract:

Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.

Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors

Procedia PDF Downloads 435
25688 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
25687 Contextual Distribution for Textual Alignment

Authors: Yuri Bizzoni, Marianne Reboul

Abstract:

Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.

Keywords: classical receptions, computational linguistics, distributional semantics, Homeric poems, machine translation, translation studies, text alignment

Procedia PDF Downloads 434
25686 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach

Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka

Abstract:

Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.

Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank

Procedia PDF Downloads 168
25685 On the Estimation of Crime Rate in the Southwest of Nigeria: Principal Component Analysis Approach

Authors: Kayode Balogun, Femi Ayoola

Abstract:

Crime is at alarming rate in this part of world and there are many factors that are contributing to this antisocietal behaviour both among the youths and old. In this work, principal component analysis (PCA) was used as a tool to reduce the dimensionality and to really know those variables that were crime prone in the study region. Data were collected on twenty-eight crime variables from National Bureau of Statistics (NBS) databank for a period of fifteen years, while retaining as much of the information as possible. We use PCA in this study to know the number of major variables and contributors to the crime in the Southwest Nigeria. The results of our analysis revealed that there were eight principal variables have been retained using the Scree plot and Loading plot which implies an eight-equation solution will be appropriate for the data. The eight components explained 93.81% of the total variation in the data set. We also found that the highest and commonly committed crimes in the Southwestern Nigeria were: Assault, Grievous Harm and Wounding, theft/stealing, burglary, house breaking, false pretence, unlawful arms possession and breach of public peace.

Keywords: crime rates, data, Southwest Nigeria, principal component analysis, variables

Procedia PDF Downloads 444
25684 Handwriting Recognition of Gurmukhi Script: A Survey of Online and Offline Techniques

Authors: Ravneet Kaur

Abstract:

Character recognition is a very interesting area of pattern recognition. From past few decades, an intensive research on character recognition for Roman, Chinese, and Japanese and Indian scripts have been reported. In this paper, a review of Handwritten Character Recognition work on Indian Script Gurmukhi is being highlighted. Most of the published papers were summarized, various methodologies were analysed and their results are reported.

Keywords: Gurmukhi character recognition, online, offline, HCR survey

Procedia PDF Downloads 424
25683 Geochemical Evaluation of Weathering-Induced Release of Trace Metals from the Maastritchian Shales in Parts of Bida an Anambra Basins, Nigeria

Authors: Adetunji Olusegun Aderigibigbe

Abstract:

Shales, especially black shales, are of great geological significance, in the study of heavy/trace metal contamination. This is due to their abundance in occurrence and high concentration of heavy metals embedded which are released during their weathering. Heavy metals constitute one of the most dangerous pollution known to human because they are toxic (i.e., carcinogenic), non-biodegradable and can enter the global eco-biological circle. In the past, heavy metal contamination in aquatic environment and agricultural top soil has been attributed to industrial wastes, mining extractions and pollution from traffic vehicles; only a few studies have focused on weathering of shale as possible source of heavy metal contamination. Based on the above background, this study attempts to establish weathering of shale as possible source of trace/heavy metal contaminations. This was done by carefully selecting fresh and their corresponding weathered shale samples from selected localities in Bida and Anambra Basins. The samples were analysed in Activation Laboratories Ltd; Ontario, Canada for trace/heavy metal. It was observed that some major and trace metals were released during weathering, i.e., some were depleted and some enriched. By this contamination of water zones and agricultural top soils are not only traceable to biogenic processes but geogenic inputs (weathering of shale) as well.

Keywords: contamination, fresh samples, heavy metals, pollution, shales, trace metals, weathered samples

Procedia PDF Downloads 134