Search results for: vehicle color recognition
3662 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 1553661 Speech Recognition Performance by Adults: A Proposal for a Battery for Marathi
Authors: S. B. Rathna Kumar, Pranjali A Ujwane, Panchanan Mohanty
Abstract:
The present study aimed to develop a battery for assessing speech recognition performance by adults in Marathi. A total of four word lists were developed by considering word frequency, word familiarity, words in common use, and phonemic balance. Each word list consists of 25 words (15 monosyllabic words in CVC structure and 10 monosyllabic words in CVCV structure). Equivalence analysis and performance-intensity function testing was carried using the four word lists on a total of 150 native speakers of Marathi belonging to different regions of Maharashtra (Vidarbha, Marathwada, Khandesh and Northern Maharashtra, Pune, and Konkan). The subjects were further equally divided into five groups based on above mentioned regions. It was found that there was no significant difference (p > 0.05) in the speech recognition performance between groups for each word list and between word lists for each group. Hence, the four word lists developed were equally difficult for all the groups and can be used interchangeably. The performance-intensity (PI) function curve showed semi-linear function, and the groups’ mean slope of the linear portions of the curve indicated an average linear slope of 4.64%, 4.73%, 4.68%, and 4.85% increase in word recognition score per dB for list 1, list 2, list 3 and list 4 respectively. Although, there is no data available on speech recognition tests for adults in Marathi, most of the findings of the study are in line with the findings of research reports on other languages. The four word lists, thus developed, were found to have sufficient reliability and validity in assessing speech recognition performance by adults in Marathi.Keywords: speech recognition performance, phonemic balance, equivalence analysis, performance-intensity function testing, reliability, validity
Procedia PDF Downloads 3563660 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1633659 Effect of Air Temperatures (°C) and Slice Thickness (mm) on Drying Characteristics and Some Quality Properties of Omani Banana
Authors: Atheer Al-Maqbali, Mohammed Al-Rizeiqi, Pankaj Pathare
Abstract:
There is an ever-increased demand for the consumption of banana products in Oman and elsewhere in the region due to the nutritional value and the decent taste of the product. There are approximately 3,751 acres of land designated for banana cultivation in the Sultanate of Oman, which produces approximately 18,447 tons of banana product. The fresh banana product is extremely perishable, resulting in a significant post-harvest economic loss. Since the product has high sensory acceptability, the drying method is a common method for processing fresh banana products. This study aims to use the drying technology in the production of dried bananas to preserve the largest amount of natural color and delicious taste for the consumer. The study also aimed to assess the shelf stability of both water activity (aw) and color (L*, a*, b*) for fresh and finished dried bananas by using a Conventional Air Drying System. Water activity aw, color characteristic L a b, and product’s hardness were analyzed for 3mm, 5mm, and7 mm thickness at different temperaturesoC. All data were analyzed statistically using STATA 13.0, and α ≤ 0.05 was considered for the significance level. The study is useful to banana farmers to improve cultivation, food processors to optimize producer’s output and policy makers in the optimization of banana processing and post-harvest management of the products.Keywords: banana, drying, oman, quality, thickness, hardness, color
Procedia PDF Downloads 923658 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 3043657 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 4153656 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 1343655 Changes on Some Physical and Chemical Properties of Red Beetroot Juice during Ultrasound Pretreatment
Authors: Serdal Sabanci, Mutlu Çevik, Derya Tezcan, Cansu Çelebi, Filiz Içier
Abstract:
Ultrasound is defined as sound waves having frequencies higher than 20 kHz, which is greater than the limits of the human hearing range. In recent years, ultrasonic treatment is an emerging technology being used increasingly in the food industry. It is applied as an alternative technique for different purposes such as microbial and enzyme inactivation, extraction, drying, filtration, crystallization, degas, cutting etc. Red beetroot (Beta vulgaris L.) is a root vegetable which is rich in mineral components, folic acid, dietary fiber, anthocyanin pigments. In this study, the application of low frequency high intensity ultrasound to the red beetroot slices and red beetroot juice for different treatment times (0, 5, 10, 15, 20 min) was investigated. Ultrasonicated red beetroot slices were also squeezed immediately. Changes on colour, betanin, pH and titratable acidity properties of red beetroot juices (the ultrasonicated juice (UJ) and the juice from ultrasonicated slices (JUS)) were determined. Although there was no significant difference statistically in the changes of color value of JUS samples due to ultrasound application (p>0.05), the color properties of UJ samples ultrasonicated for low durations were statistically different from raw material (p<0.05). The difference between color values of UJ and raw material disappeared (p>0.05) as the ultrasonication duration increased. The application of ultrasound to red beet root slices adversely affected and decreased the betanin content of JUS samples. On the other hand, the betanin content of UJ samples increased as the ultrasonication duration increased. Ultrasound treatment did not affect pH and titratable acidity of red beetroot juices statistically (p>0.05). The results suggest that ultrasound technology is the simple and economical technique which may successfully be employed for the processing of red beetroot juice with improved color and betanin quality. However, further investigation is still needed to confirm this.Keywords: red beetroot, ultrasound, color, betanin
Procedia PDF Downloads 3993654 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters
Authors: Shaban Guma, Naim Bajcinca
Abstract:
We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless
Procedia PDF Downloads 3313653 Methodology to Affirm Driver Engagement in Dynamic Driving Task (DDT) for a Level 2 Adas Feature
Authors: Praneeth Puvvula
Abstract:
Autonomy in has become increasingly common in modern automotive cars. There are 5 levels of autonomy as defined by SAE. This paper focuses on a SAE level 2 feature which, by definition, is able to control the vehicle longitudinally and laterally at the same time. The system keeps the vehicle centred with in the lane by detecting the lane boundaries while maintaining the vehicle speed. As with the features from SAE level 1 to level 3, the primary responsibility of dynamic driving task lies with the driver. This will need monitoring techniques to ensure the driver is always engaged even while the feature is active. This paper focuses on the these techniques, which would help the safe usage of the feature and provide appropriate warnings to the driver.Keywords: autonomous driving, safety, adas, automotive technology
Procedia PDF Downloads 893652 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim Fares Zaidi
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: ARSDS, HTK, HMM, MFCC, PLP
Procedia PDF Downloads 1083651 Analyzing of Speed Disparity in Mixed Vehicle Technologies on Horizontal Curves
Authors: Tahmina Sultana, Yasser Hassan
Abstract:
Vehicle technologies rapidly evolving due to their multifaceted advantages. Adapted different vehicle technologies like connectivity and automation on the same roads with conventional vehicles controlled by human drivers may increase speed disparity in mixed vehicle technologies. Identifying relationships between speed distribution measures of different vehicles and road geometry can be an indicator of speed disparity in mixed technologies. Previous studies proved that speed disparity measures and traffic accidents are inextricably related. Horizontal curves from three geographic areas were selected based on relevant criteria, and speed data were collected at the midpoint of the preceding tangent and starting, ending, and middle point of the curve. Multiple linear mixed effect models (LME) were developed using the instantaneous speed measures representing the speed of vehicles at different points of horizontal curves to recognize relationships between speed variance (standard deviation) and road geometry. A simulation-based framework (Monte Carlo) was introduced to check the speed disparity on horizontal curves in mixed vehicle technologies when consideration is given to the interactions among connected vehicles (CVs), autonomous vehicles (AVs), and non-connected vehicles (NCVs) on horizontal curves. The Monte Carlo method was used in the simulation to randomly sample values for the various parameters from their respective distributions. Theresults show that NCVs had higher speed variation than CVs and AVs. In addition, AVs and CVs contributed to reduce speed disparity in the mixed vehicle technologies in any penetration rates.Keywords: autonomous vehicles, connected vehicles, non-connected vehicles, speed variance
Procedia PDF Downloads 1453650 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1553649 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 1113648 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 1793647 Interactive Shadow Play Animation System
Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding
Abstract:
The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.Keywords: hadow play animation, Kinect, gesture recognition, VRPN, HCI
Procedia PDF Downloads 4013646 Supernatural Beliefs Impact Pattern Perception
Authors: Silvia Boschetti, Jakub Binter, Robin Kopecký, Lenka PříPlatová, Jaroslav Flegr
Abstract:
A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments.Keywords: culture, esoteric belief, pattern perception, religiosity
Procedia PDF Downloads 1863645 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 1563644 Analysis of Collision Avoidance System
Authors: N. Gayathri Devi, K. Batri
Abstract:
The advent of technology has increased the traffic hazards and the road accidents take place. Collision detection system in automobile aims at reducing or mitigating the severity of an accident. This project aims at avoiding Vehicle head on collision by means of collision detection algorithm. This collision detection algorithm predicts the collision and the avoidance or minimization have to be done within few seconds on confirmation. Under critical situation collision minimization is made possible by turning the vehicle to the desired turn radius so that collision impact can be reduced. In order to avoid the collision completely, the turning of the vehicle should be achieved at reduced speed in order to maintain the stability.Keywords: collision avoidance system, time to collision, time to turn, turn radius
Procedia PDF Downloads 5483643 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 4053642 Evolution of the Environmental Justice Concept
Authors: Zahra Bakhtiari
Abstract:
This article explores the development and evolution of the concept of environmental justice, which has shifted from being dominated by white and middle-class individuals to a civil struggle by marginalized communities against environmental injustices. Environmental justice aims to achieve equity in decision-making and policy-making related to the environment. The concept of justice in this context includes four fundamental aspects: distribution, procedure, recognition, and capabilities. Recent scholars have attempted to broaden the concept of justice to include dimensions of participation, recognition, and capabilities. Focusing on all four dimensions of environmental justice is crucial for effective planning and policy-making to address environmental issues. Ignoring any of these aspects can lead to the failure of efforts and the waste of resources.Keywords: environmental justice, distribution, procedure, recognition, capabilities
Procedia PDF Downloads 933641 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 2663640 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles
Authors: Mahmoud Said Jneid, Péter Harth
Abstract:
EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control
Procedia PDF Downloads 833639 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts
Authors: M. Javanmard
Abstract:
This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.Keywords: shelled walnut, MAP, quality, storage temperature
Procedia PDF Downloads 3883638 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.
Procedia PDF Downloads 1533637 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor
Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan
Abstract:
The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management
Procedia PDF Downloads 2443636 Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle
Authors: Saud Hassan
Abstract:
This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag.Keywords: aerodynamics, Ahemd vehicle , backlight angle, finite element method
Procedia PDF Downloads 7813635 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system
Procedia PDF Downloads 4723634 Pattern Recognition Search: An Advancement Over Interpolation Search
Authors: Shahpar Yilmaz, Yasir Nadeem, Syed A. Mehdi
Abstract:
Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search.Keywords: array, complexity, index, sorting, space, time
Procedia PDF Downloads 2433633 Fuzzy Vehicle Routing Problem for Extreme Environment
Authors: G. Sirbiladze, B. Ghvaberidze, B. Matsaberidze
Abstract:
A fuzzy vehicle routing problem is considered in the possibilistic environment. A new criterion, maximization of expectation of reliability for movement on closed routes is constructed. The objective of the research is to implement a two-stage scheme for solution of this problem. Based on the algorithm of preferences on the first stage, the sample of so-called “promising” routes will be selected. On the second stage, for the selected promising routes new bi-criteria problem will be solved - minimization of total traveled distance and maximization of reliability of routes. The problem will be stated as a fuzzy-partitioning problem. Two possible solutions of this scheme are considered.Keywords: vehicle routing problem, fuzzy partitioning problem, multiple-criteria optimization, possibility theory
Procedia PDF Downloads 547