Search results for: transport kinetics
2105 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation
Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang
Abstract:
Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres
Procedia PDF Downloads 692104 Shortening Distances: The Link between Logistics and International Trade
Authors: Felipe Bedoya Maya, Agustina Calatayud, Vileydy Gonzalez Mejia
Abstract:
Encompassing inventory, warehousing, and transportation management, logistics is a crucial predictor of firm performance. This has been extensively proven by extant literature in business and operations management. Logistics is also a fundamental determinant of a country's ability to access international markets. Available studies in international and transport economics have shown that limited transport infrastructure and underperforming transport services can severely affect international competitiveness. However, the evidence lacks the overall impact of logistics performance-encompassing all inventory, warehousing, and transport components- on global trade. In order to fill this knowledge gap, the paper uses a gravitational trade model with 155 countries from all geographical regions between 2007 and 2018. Data on logistics performance is obtained from the World Bank's Logistics Performance Index (LPI). First, the relationship between logistics performance and a country’s total trade is estimated, followed by a breakdown by the economic sector. Then, the analysis is disaggregated according to the level of technological intensity of traded goods. Finally, after evaluating the intensive margin of trade, the relevance of logistics infrastructure and services for the extensive trade margin is assessed. Results suggest that: (i) improvements in both logistics infrastructure and services are associated with export growth; (ii) manufactured goods can significantly benefit from these improvements, especially when both exporting and importing countries increase their logistics performance; (iii) the quality of logistics infrastructure and services becomes more important as traded goods are technology-intensive; and (iv) improving the exporting country's logistics performance is essential in the intensive margin of trade while enhancing the importing country's logistics performance is more relevant in the extensive margin.Keywords: gravity models, infrastructure, international trade, logistics
Procedia PDF Downloads 2082103 Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution
Authors: T. Moremedi, L. Katata-Seru, S. Sardar, A. Bandyopadhyay, E. Makhado, M. Joseph Hato
Abstract:
The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.Keywords: xanthan gum, adsorbents, rhodamine B, Freundlich
Procedia PDF Downloads 1272102 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 232101 Copper (II) Complex of New Tetradentate Asymmetrical Schiff Base Ligand: Synthesis, Characterization, and Catecholase-Mimetic Activity
Authors: Cahit Demetgul, Sahin Bayraktar, Neslihan Beyazit
Abstract:
Metalloenzymes are enzyme proteins containing metal ions, which are directly bound to the protein or to enzyme-bound nonprotein components. One of the major metalloenzymes that play a key role in oxidation reactions is catechol oxidase, which shows catecholase activity i.e. oxidation of a broad range of catechols to quinones through the four-electron reduction of molecular oxygen to water. Studies on the model compounds mimicking the catecholase activity are very useful and promising for the development of new, more efficient bioinspired catalysts, for in vitro oxidation reactions. In this study, a new tetradentate asymmetrical Schiff-base and its Cu(II) complex were synthesized by condensation of 4-nitro-1,2-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Cu(II) salt, respectively. The prepared compounds were characterized by elemental analysis, FT-IR, NMR, UV-Vis and magnetic susceptibility. The catecholase-mimicking activity of the new Schiff Base Cu(II) complex was performed for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) in methanol at 25 °C, where the electronic spectra were recorded at different time intervals. The yield of the quinone (3,5-DTBQ) was determined from the measured absorbance at 400 nm of the resulting solution. The compatibility of catalytic reaction with Michaelis-Menten kinetics was also investigated. In conclusion, we have found that our new Schiff Base Cu(II) complex presents a significant capacity to catalyze the oxidation reaction of the catechol to o-quinone.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 3092100 Application of a Compact Wastewater Treatment Unit in a Rural Area
Authors: Mohamed El-Khateeb
Abstract:
Encompassing inventory, warehousing, and transportation management, logistics is a crucial predictor of firm performance. This has been extensively proven by extant literature in business and operations management. Logistics is also a fundamental determinant of a country's ability to access international markets. Available studies in international and transport economics have shown that limited transport infrastructure and underperforming transport services can severely affect international competitiveness. However, the evidence lacks the overall impact of logistics performance-encompassing all inventory, warehousing, and transport components- on global trade. In order to fill this knowledge gap, the paper uses a gravitational trade model with 155 countries from all geographical regions between 2007 and 2018. Data on logistics performance is obtained from the World Bank's Logistics Performance Index (LPI). First, the relationship between logistics performance and a country’s total trade is estimated, followed by a breakdown by the economic sector. Then, the analysis is disaggregated according to the level of technological intensity of traded goods. Finally, after evaluating the intensive margin of trade, the relevance of logistics infrastructure and services for the extensive trade margin is assessed. Results suggest that: (i) improvements in both logistics infrastructure and services are associated with export growth; (ii) manufactured goods can significantly benefit from these improvements, especially when both exporting and importing countries increase their logistics performance; (iii) the quality of logistics infrastructure and services becomes more important as traded goods are technology-intensive; and (iv) improving the exporting country's logistics performance is essential in the intensive margin of trade while enhancing the importing country's logistics performance is more relevant in the extensive margin.Keywords: low-cost, recycling, reuse, solid waste, wastewater treatment
Procedia PDF Downloads 1962099 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System
Authors: P. K. Sarkar, Amit Kumar Jain
Abstract:
The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.Keywords: urban transport, differential fares, congestion, transport demand management, elasticity
Procedia PDF Downloads 3082098 Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets
Authors: Shahana Sharmin
Abstract:
In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug.Keywords: diltiazem hydrochloride, ethyl cellulose, hydroxy propyl methyl cellulose, release kinetics, sustained release pellets
Procedia PDF Downloads 4142097 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport
Authors: Aditya Purohit, Neha Bansal
Abstract:
Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport
Procedia PDF Downloads 1972096 Online Public Transport Safety Awareness System
Authors: Danny Mwangi, Collins Oduor Ondiek
Abstract:
Mass mobility is one of the most important characteristics of every industrialized civilization. Man must travel about in order to fulfill his commitment to putting food on his table. As a result, movement is an important part of human life. Man must travel from one place to another. This is a natural trait of humans, according to elementary science. Variables in human mobility have arisen as a result of technological advancements over time. Public transit is one of these modes of transportation. When it comes to reducing safety-related risks in the public transport system, awareness is crucial. So much so even when it comes to public transportation in Kenya. Having a system that can be able to keep users updated with real-time traffic updates on the route, they are on and also have the ability to rate drivers after a trip could go a long way in improving safety on Kenyan roads. What this proposed system is intended to accomplish is to reduce occurrences of reckless driving and give matatu drivers the feeling that they are accountable to someone and more so have the incentive to be better drivers who are motivated to follow the law and have passenger safety as a priority. The research was conducted, and the findings show that 95.2% of respondents were not satisfied with the current safety measures in the Kenyan public transport sector. This means that the chances for this system to be accepted in the market are high because it addresses a key issue. 98.8% of the respondents were of the opinion that the implementation of the proposed system would significantly increase safety measures in the public transport sector. During the research, it was clear that the main challenge 77.1% of the respondents face when using public transport is that there is no way to monitor driver safety performance, and 68.7% of the respondent believed the widespread use of unroadworthy public transit vehicles contributed to the lack of safety when using public transport. However, 77.1% of the respondents expect the benefit of creating a sense of accountability for the drivers, and 74.7% of the respondents expect the benefit of increased passenger safety. 63.9% believe that with the implementation of the system, there will be the benefit of monitoring driver performance. This shows that with the implementation of the proposed system, it will be possible to make a lot of progress in terms of making Kenyan roads safer when using public transit. According to the findings, it is recommended that this proposed public transportation safety awareness system be implemented as it will be able to address matatu passengers' safety concerns while also encouraging matatu drivers to drive more carefully. As a result, it's a project with a chance of becoming viable, marketable, and feasible.Keywords: public safety, public transportation, accountable driving, safe transportation
Procedia PDF Downloads 1032095 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents
Authors: Sutapa Mondal Roy, Suban K. Sahoo
Abstract:
The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery
Procedia PDF Downloads 3842094 Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish
Authors: Pramod K. Prabhakar, Prem P. Srivastav
Abstract:
Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish.Keywords: first order kinetics, biochemical changes, Maxwell model, colour, texture, Arrhenius type equation
Procedia PDF Downloads 2342093 Determination of in Situ Degradation Kinetics of Some Legumes Waste Unused for Human Consumption
Authors: Şevket Evci, Mehmet Akif Karsli
Abstract:
The aim of this study is to determine nutrient contents, in situ ruminal degradation kinetics and protein fractions of screenings bean (B), chick pea (ChP), red lentil (RL) and green lentil (GL) that is used as residue in grain legume packing industry. For this purpose, four samples of each legumes species-a total of 16 samples, collected from different parts of our country were utilized. Feedstuffs used in the experiment were incubated for 0, 2 4, 8, 12, 24, and 48 hours in the rumen of 3 ruminally cannulated Akkaraman rams as duplicate. The nutrient contents, in situ ruminal dry matter (DM), organic matter (OM) and crude protein (CP) degradabilities and fractions, and escape protein contents were evaluated. The highest OM and CP contents were observed in RL (P<0.05). Chick pea had the highest ether extract (EE) content and EE values were 3.47, 6.72, 2.26, 8.66 % for RL, B, GL and ChP, respectively (P<0.05). Crude fiber (CF), ADF, and NDF contents were the highest in RL and the lowest in ChP. CF values were 24.03, 10.80, 4.09 and 3.57 % for RL, GL, B and ChP (P<0.05). Acid detergent insoluble nitrogen content of samples did not differ. Escape protein content was the highest in RL and the lowest in B (P<0.05). After 48 h incubation, the lowest OM and CP degradabilities were observed in RL. While the highest OM degradability was seen in ChP the highest CP degradability was observed in B (P<0.05). The lowest water soluble OM and CP contents were observed in RL whereas the highest potentially degradable OM and CP contents were seen in B and ChP (P<0.05). Both rate of OM and CP degradations (k-1) did not differ among samples (P>0.05). In conclusion, it was noted that feedstuffs (GL, ChP and B) used in the experiment except RL had a greater ruminal degradibilities of both OM and CP and moreover, had a higher escape protein contents, except B. It was thought that these feedstuffs can be substituted with some of common protein sources used in animal nutrition.Keywords: in situ, nutrient contents, ruminant, subsieve
Procedia PDF Downloads 4812092 Strategic Innovation of Nanotechnology: Novel Applications of Biomimetics and Microfluidics in Food Safety
Authors: Boce Zhang
Abstract:
Strategic innovation of nanotechnology to promote food safety has drawn tremendous attentions among research groups, which includes the need for research support during the implementation of the Food Safety Modernization Act (FSMA) in the United States. There are urgent demands and knowledge gaps to the understanding of a) food-water-bacteria interface as for how pathogens persist and transmit during food processing and storage; b) minimum processing requirement needed to prevent pathogen cross-contamination in the food system. These knowledge gaps are of critical importance to the food industry. However, the lack of knowledge is largely hindered by the limitations of research tools. Our groups recently endeavored two novel engineering systems with biomimetics and microfluidics as a holistic approach to hazard analysis and risk mitigation, which provided unprecedented research opportunities to study pathogen behavior, in particular, contamination, and cross-contamination, at the critical food-water-pathogen interface. First, biomimetically-patterned surfaces (BPS) were developed to replicate the identical surface topography and chemistry of a natural food surface. We demonstrated that BPS is a superior research tool that empowers the study of a) how pathogens persist through sanitizer treatment, b) how to apply fluidic shear-force and surface tension to increase the vulnerability of the bacterial cells, by detaching them from a protected area, etc. Secondly, microfluidic devices were designed and fabricated to study the bactericidal kinetics in the sub-second time frame (0.1~1 second). The sub-second kinetics is critical because the cross-contamination process, which includes detachment, migration, and reattachment, can occur in a very short timeframe. With this microfluidic device, we were able to simulate and study these sub-second cross-contamination scenarios, and to further investigate the minimum sanitizer concentration needed to sufficiently prevent pathogen cross-contamination during the food processing. We anticipate that the findings from these studies will provide critical insight on bacterial behavior at the food-water-cell interface, and the kinetics of bacterial inactivation from a broad range of sanitizers and processing conditions, thus facilitating the development and implementation of science-based food safety regulations and practices to mitigate the food safety risks.Keywords: biomimetic materials, microbial food safety, microfluidic device, nanotechnology
Procedia PDF Downloads 3592091 City Buses and Sustainable Urban Mobility in Kano Metropolis 1967-2015: An Historical Perspective
Authors: Yusuf Umar Madugu
Abstract:
Since its creation in 1967, Kano has tremendously undergone political, social and economic transformations. Public urban transportation has been playing a vital role in sustaining economic growth of Kano metropolis, especially with the existence of modern buses with the regular network of roads, in all the main centers of trade. This study, therefore, centers on the role of intra-city buses in molding the economy of Kano. Its main focus is post-colonial Kano (i.e. 1967-2015), a period that witnessed rapid expansion of commercial activities and ever increasing urbanization which goes along with it population explosion. The commuters patronized the urban transport, a situation that made the business lucrative. More so, the traders who had come from within and outside Kano relied heavily on commercial vehicles to transport their merchandise to their various destinations. Commercial road transport system, therefore, had become well organized in Kano with a significant number of people earning their means of livelihood from it. It also serves as a source of revenue to governments at different levels. However, the study of transport and development as an academic discipline is inter-disciplinary in nature. This study, therefore, employs the services and the methodologies of other disciplines such as Geography, History, Urban and Regional Planning, Engineering, Computer Science, Economics, etc. to provide a comprehensive picture of the issues under investigation. The source materials for this study included extensive use of written literature and oral information. In view of the crucial importance of intra-city commercial transport services, this study demonstrates its role in the overall economic transformation of the study area. It generally also, contributed in opening up a new ground and looked into the history of commercial transport system. At present, Kano Metropolitan area is located between latitude 110 50’ and 12007’, and longitude 80 22’ and 80 47’ within the Semi-Arid Sudan Savannah Zone of West Africa about 840kilometers of the edge of the Sahara desert. The Metropolitan area has expanded over the years and has become the third largest conurbation in Nigeria with a population of about 4million. It is made up of eight local government areas viz: Kano Municipal, Gwale, Dala, Tarauni, Nasarawa, Fage, Ungogo, and Kumbotso.Keywords: assessment, buses, city, mobility, sustainable
Procedia PDF Downloads 2232090 Risky Driving Behavior among Bus Driver in Jakarta
Authors: Ratri A. Benedictus, Felicia M. Yolanda
Abstract:
Public transport is a crucial issue for capital city in developing country, such as Jakarta. Inadequate number and low quality of public transport services resulting personal vehicles as the main option. As a result, traffic jams are getting worse in Jakarta. The low quality of public transport, particularly buses, compounded by the risk behavior of the driver. Traffic accidents involving public bus in Jakarta were often the case, even result in fatality. The purpose of this study is to get a description of risk behavior among the public bus drivers in Jakarta. 132 bus drivers become respondent of this study. Risky Driving Behavior scale of Dorn were used. Data were analyzed using descriptive statistics. 51.5% of respondents felt often showing risky behavior while on driving. The highest type of risky driving behavior is still using the unsafe bus (62%). Followed by trespass the bus line (30%), over speed (21%), violate the road signs (15%) and driving with unhealthy physical condition (4%). Results of this study suggested that high understanding of the bus drivers on their risk behaviors have not lead to the emergence of safe driving behavior. Therefore, together with technical engineering and instrumentation work intervention over this issue, psychological aspects also need to be considered, such as: risk perception, safety attitude,safety culture, locus of control and Fatalism.Keywords: bus driver, psychological factors, public transportation, risky driving behavior
Procedia PDF Downloads 3582089 Potassium Acetate - Coconut Shell Activated Carbon for Adsorption of Benzene and Toluene: Equilibrium and Kinetic Studies
Authors: Jibril Mohammed, Usman Dadum Hamza, Abdulsalam Surajudeen, Baba Yahya Danjuma
Abstract:
Considerable concerns have been raised over the presence of volatile organic compounds (VOCs) in water. In this study, coconut shell based activated carbon was produced through chemical activation with potassium acetate (PAAC) for adsorption of benzene and toluene. The porous carbons were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), proximate analysis, and ultimate analysis and nitrogen adsorption tests. Adsorption of benzene and toluene on the porous carbons were conducted at varying concentrations (50-250 mg/l). The high BET surface area of 622 m2/g and highly heteroporous adsorbent prepared gave good removal efficiencies of 79 and 82% for benzene and toluene respectively, with 32% yield. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms with all the models having R2 > 0.94. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 192 mg/g and 227 mg/g for benzene and toluene respectively. The Webber and Chakkravorti equilibrium parameter (RL) values are between 0 and 1 confirming the favourability of the Langmuir model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The PAAC produced can be used effectively to salvage environmental pollution problems posed by VOCs through a sustainable process.Keywords: adsorption, equilibrium and kinetics studies, potassium acetate, water treatment
Procedia PDF Downloads 2202088 Atmospheric Transport Modeling of Radio-Xenon Detections Possibly Related to the Announced Nuclear Test in North Korea on February 12, 2013
Authors: Kobi Kutsher
Abstract:
On February 12th 2013, monitoring stations of the Preparatory Commission of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) detected a seismic event with explosion-like underground characteristics in the Democratic People’s Republic of Korea (DPRK). The location was found to be in the vicinity of the two previous announced nuclear tests in 2006 and 2009.The nuclear test was also announced by the government of the DPRK.After an underground nuclear explosion, radioactive fission products (mostly noble gases) can seep through layers of rock and sediment until they escape into the atmosphere. The fission products are dispersed in the atmosphere and may be detected thousands of kilometers downwind from the test site. Indeed, more than 7 weeks after the explosion, unusual detections of noble gases was reported at the radionuclide station in Takasaki, Japan. The radionuclide station is a part of the International Monitoring System, operated to verify the CTBT. This study provides an estimation of the possible source region and the total radioactivity of the release using Atmospheric Transport Modeling.Keywords: atmospheric transport modeling, CTBTO, nuclear tests, radioactive fission products
Procedia PDF Downloads 4252087 Indoor Emissions Produced by Kerosene Heating, Determining Its Formation Potential of Secondary Particulate Matter and Transport
Authors: J. M. Muñoz, Y. Vasquez, P. Oyola, M. Rubio
Abstract:
All emissions of contaminants inside of homes, offices, school and another enclosure closer that affect the health of those who inhabit or use them are cataloged how indoor pollution. The importance of this study is because individuals spend most of their time in indoors ambient. The main indoor pollutants are oxides of nitrogen (NOₓ), sulfur dioxide (SO₂), carbon monoxide (CO) and particulate matter (PM). Combustion heaters are an important source of pollution indoors. It will be measured: NOₓ, SO₂, CO, PM₂,₅ y PM₁₀ continuous and discreet form at indoor and outdoor of two households with different heating energy; kerosene and electricity (control home) respectively, in addition to environmental parameters such as temperature. With the values obtained in the 'control home' it will be possible estimate the contaminants transport from outside to inside of the household and later the contribution generated by kerosene heating. Transporting the emissions from burning kerosene to a photochemical chamber coupled to a continuous and discreet measuring system of contaminants it will be evaluated the oxidation of the emissions and formation of secondary particulate matter. It will be expected watch a contaminants transport from outside to inside of the household and the kerosene emissions present a high potential of formation secondary particulate matter.Keywords: heating, indoor pollution, kerosene, secondary particulate matter
Procedia PDF Downloads 2162086 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 1552085 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics
Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García
Abstract:
Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics
Procedia PDF Downloads 2992084 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City
Authors: Adinarayana Badveeti, Mohammad Shafi Mir
Abstract:
In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.Keywords: traffic congestion, modeling, traffic management, travel time index
Procedia PDF Downloads 3192083 Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates
Authors: Ahmed Kiani
Abstract:
The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders.Keywords: electric vehicles, greenhouse gas emission reductions, market analysis, policy recommendations
Procedia PDF Downloads 3092082 Induced Thermo-Osmotic Convection for Heat and Mass Transfer
Authors: Francisco J. Arias
Abstract:
Consideration is given to a mechanism of heat and mass transport in solutions similar than that of natural convection but with one important difference. Here the mechanism is not promoted by density differences in the fluid occurring due to temperature gradients (coefficient of thermal expansion) but rather by solubility differences due to the thermal dependence of the solubility (coefficient of thermal solubility). Utilizing a simplified physical model, it is shown that by the proper choice of the concentration of a given solution, convection might be induced by the alternating precipitation of the solute -when the solution becomes supersaturated, and its posterior recombination when changes in temperature occurs. The spontaneous change in the Gibbs free energy during the mixing is the driven force for the mechanism. The maximum extractable energy from this new type of thermal convection was derived. Experimental data from a closed-loop circuit was obtained demonstrating the feasibility for continuous separation and recombination of the solution. This type of heat and mass transport -which doesn’t depend on gravity, might potentially be interesting for heat and mass transport downwards (as in solar-roof collectors to inside homes), horizontal (e.g., microelectronic applications), and in microgravity (space technology). Also, because the coefficient of thermal solubility could be positive or negative, the investigated thermo-osmosis convection can be used either for heating or cooling.Keywords: natural convection, thermal gradient, solubility, osmotic pressure
Procedia PDF Downloads 2932081 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li
Abstract:
Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture
Procedia PDF Downloads 1602080 Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves
Authors: Ross Calvert, Colin Whittaker, Alison Raby, Alistair G. L. Borthwick, Ton S. van den Bremer
Abstract:
Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants.Keywords: perturbation methods, plastic pollution transport, Stokes drift, wave flume experiments, wave-induced mean flow
Procedia PDF Downloads 1212079 Modeling of Bed Level Changes in Larak Island
Authors: Saeed Zeinali, Nasser Talebbeydokhti, Mehdi Saeidian, Shahrad Vosough
Abstract:
In this article, bathymetry changes have been studied as a case study for Larak Island, located in The South of Iran. The advanced 2D model of Mike21 has been used for this purpose. A simple procedure has been utilized in this model. First, the hydrodynamic (HD) module of Mike21 has been used to obtain the required output for sediment transport model (ST module). The ST module modeled the area for tidal currents only. Bed level changes are resulted by series of modeling for both HD and ST module in 3 months time step. The final bathymetry in each time step is used as the primary bathymetry for next time step. This consecutive procedure been continued until bathymetry for the year 2020 is obtained.Keywords: bed level changes, Larak Island, hydrodynamic, sediment transport
Procedia PDF Downloads 2672078 Efficient Depolymerization of Polyethylene terephthalate (PET) Using Bimetallic Catalysts
Authors: Akmuhammet Karayev, Hassam Mazhar, Mamdouh Al Harthi
Abstract:
Polyethylene terephthalate (PET) recycling stands as a pivotal solution in combating plastic pollution and fostering a circular economy. This study addresses the catalytic glycolysis of PET, a key step in its recycling process, using synthesized catalysts. Our focus lies in elucidating the catalytic mechanism, optimizing reaction kinetics, and enhancing reactor design for efficient PET conversion. We synthesized anionic clays tailored for PET glycolysis and comprehensively characterized them using XRD, FT-IR, BET, DSC, and TGA techniques, confirming their suitability as catalysts. Through systematic parametric studies, we optimized reaction conditions to achieve complete PET conversion to bis hydroxy ethylene terephthalate (BHET) with over 75% yield within 2 hours at 200°C, employing a minimal catalyst concentration of 0.5%. These results underscore the catalysts' exceptional efficiency and sustainability, positioning them as frontrunners in catalyzing PET recycling processes. Furthermore, we demonstrated the recyclability of the obtained BHETs by repolymerizing them back to PET without the need for a catalyst. Heating the BHETs in a distillation unit facilitated their conversion back to PET, highlighting the closed-loop potential of our recycling approach. Our work embodies a significant leap in catalytic glycolysis kinetics, driven by sustainable catalysts, offering rapid and high-impact PET conversion while minimizing environmental footprint. This breakthrough not only sets new benchmarks for efficiency in PET recycling but also exemplifies the pivotal role of catalysis and reaction engineering in advancing sustainable materials management.Keywords: polymer recycling, catalysis, circular economy, glycolysis
Procedia PDF Downloads 412077 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario
Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis
Abstract:
With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain
Procedia PDF Downloads 1762076 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects
Authors: Lukas Vierus, Thomas Schuster
Abstract:
A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions
Procedia PDF Downloads 51