Search results for: solid waste composition and characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12931

Search results for: solid waste composition and characteristics

12541 Healthcare Waste Management Practices in Bangladesh: A Case Study in Dhaka City, Bangladesh

Authors: H. M. Nuralam, Z. Xiao-lan, B. K. Dubey, D. Wen-Chuan

Abstract:

Healthcare waste (HCW) is one of the major concerns in environmental issues due to its infectious and hazardous nature that is requires specific treatment and systematic management prior to final disposal. This study aimed to assess HCW management system in Dhaka City (DC), Bangladesh, by investigating the present practices implemented by the city. In this study, five different healthcare establishments were selected in DC. Field visits and interviews with health personnel and staff who are concerned with the waste management were conducted. The information was gathered through questionnaire focus on the different aspect of HCW management like, waste segregation and collection, storage and transport, awareness as well. The results showed that a total of 7,215 kg/day (7.2 ton/day) of waste were generated, of which 79.36% (5.6 ton/day) was non-hazardous waste and 20.6% (1.5 ton/day) was hazardous waste. The rate of waste generation in these healthcare establishments (HCEs) was 2.6 kg/bed/day. There was no appropriate and systematic management of HCWs except at few private HCEs that segregate their hazardous waste. All the surveyed HCEs dumped their HCW together with the municipal waste, and some staff members were also found to be engaged in improper handling of the generated waste. Furthermore, the used sharp instruments, saline bags, blood bags and test tubes were collected for resale or reuse. Nevertheless, the lack of awareness, appropriate policy, regulation and willingness to act, were responsible for the improper management of HCW in DC. There was lack of practical training of concerned healthcare to handle the waste properly, while the nurses and staff were found to be aware of the health impacts of HCW.

Keywords: awareness, disposal, Dhaka city, healthcare waste management, waste generation

Procedia PDF Downloads 301
12540 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 73
12539 Impact of Life Cycle Assessment for Municipal Plastic Waste Treatment in South Africa

Authors: O. A. Olagunju, S. L. Kiambi

Abstract:

Municipal Plastic Wastes (MPW) can have several negative effects on the environment, and this is causing a growing concern which requires urgent intervention. Addressing these environmental challenges by proffering alternative end-of-life (EOL) techniques for MPW treatment is thus critical for designing and implementing effective long-term remedies. In this study, the environmental implications of several MPW treatment technologies were assessed using life cycle assessment (LCA). Our focus was on four potential waste treatment scenarios for MPW: waste disposal via landfill, waste incineration, waste regeneration, and reusability of recycled waste. The findings show that recycling has a greater benefit over landfilling and incineration methods. The most important environmental benefit comes from the recycling of plastics, which may serve as reliable source materials for environmentally friendly products. Following a holistic evaluation, five major factors that influence the overall impact on the environment were outlined: the mass fraction in waste, the recycling rate, the conversion efficiency, the waste-to-energy conversion rate, and the type of energy which can be utilized from incineration generated energy

Keywords: end-of-life, incineration, landfill, life cycle assessment, municipal plastic waste, recycling, waste-to-energy

Procedia PDF Downloads 55
12538 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process

Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams

Abstract:

In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.

Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy

Procedia PDF Downloads 106
12537 A Study of Farming Earthworms Commercial with Organic Waste

Authors: Phrutsaya Piyanusorn

Abstract:

This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management.

Keywords: farmin earthworms, commercial, organic waste, marketing management

Procedia PDF Downloads 301
12536 Impact of COVID-19 on Hospital Waste

Authors: Caroline Correia, Stefani Perna, John Gaughan, Elizabeth Cerceo

Abstract:

Introduction: The COVID-19 pandemic has brought unprecedented changes to how hospitals function on a daily basis. Increased personal protective equipment (PPE) usage and measures to pre-package, separate, and decontaminate have the potential to increase the waste load. However, limiting non-essential surgeries drastically reduces operating room (OR) waste, and restricting visitation policies to contain outbreaks may help conserve resources. The impact of these policy changes with increased disposable PPE usage on hospital production of waste is unknown. Methods: Waste produced in pounds (lbs) was measured for January through June during both 2019 and 2020 through Stericycle in Cooper University Hospital in Camden, NJ. This timeframe was selected since the pandemic began in January 2020 in the US. The total waste produced during this time was 328,623 lbs in 2019 and 306,454 lbs in 2020. Using Poisson counts (α=.05), less waste was produced in 2020 (p < 0.001). The amount of sharps and regulated medical waste (grossly bloody items) were both significantly decreased as well (p < 0.0001, p=0.0002), and these account for 10-15% of the total waste produced. Discussion: Despite the increased usage of disposable PPE, overall hospital waste was decreased during the pandemic as compared to prior. As surgeries are estimated to be responsible for up to one-half of waste produced by hospitals, it is possible that constraint on elective procedures contributed to the decreased waste in all three categories; estimates of a 35% decrease in surgical volume would be expected to impact waste production. The effects of the pandemic on waste production should continue to be monitored to understand the environmental impact as health systems resume backlogged surgeries at a higher volume.

Keywords: COVID-19, hospital, surgery, waste

Procedia PDF Downloads 83
12535 Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics

Authors: Ramovatar, Neeraj Panwar

Abstract:

Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices.

Keywords: dielectric properties, energy storage properties, impedance spectroscopy, lead free ceramics

Procedia PDF Downloads 125
12534 The Impact of Women on Urban Sustainability (Case Study: Three Districts of Tehran)

Authors: Reza Mokhtari Malekabadi, Leila Jalalabadi, Zahra Kiyani Ghaleh No

Abstract:

Today, systems of management and urban planning, attempt to reach more sustainable development through monitoring developments, urban development and development plans. Monitoring of changes in the urban places and sustainable urban development accounted a base for the realization of worthy goals urban sustainable development. The importance of women in environmental protection programs is high enough that in 21 agenda has been requested from all countries to allocate more shares to women in their policies. On the other hand, urban waste landfill has become one of the environmental concerns in modern cities. This research assumes that the impact of women on recycling, reduction and proper waste landfill is much more than men. For this reason, three districts; Yousef Abad, Heshmatieh and Nezam Abad are gauged through questionnaire and using the analytical research hypothesis model. This research will be categorized as functional research. The results have shown that noticing the power of women, their participation towards realization of the development objectives and programs can be used in solving their problems.

Keywords: citizens, urban, environmental, sustainability, solid waste, Tehran

Procedia PDF Downloads 333
12533 The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria

Authors: N. Benabdeslam, N. Bouzidi, F. Atmani, R. Boucif, A. Sakhri

Abstract:

The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore.

Keywords: characteristic granular, grinding, mineralogical composition, phosphate ore, parameters

Procedia PDF Downloads 183
12532 Solubility and Dissolution Enhancement of Poorly Soluble Drugs Using Biosericin

Authors: Namdeo Jadhav, Nitin Salunkhe

Abstract:

Currently, sericin is being treated as waste of sericulture industry, especially at reeling process. Looking at prospective physicochemical properties, an attempt has been made to explore pharmaceutical applications of sericin waste in fabrication of medicated solid dispersions. Solid dispersions (SDs) of poorly soluble drugs (Lornoxicam, Meloxicam & Felodipine) were prepared by spray drying, solvent evaporation, ball milling and physical kneading in mass ratio of drug: sericin (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3 w/w) and were investigated by solubility, ATR-FTIR, XRD and DSC, micromeritics and tablettability, surface morphology and in-vitro dissolution. It has been observed that sericin improves solubility of drugs by 8 to 10 times compared to pure drugs. The presence of hydrogen bonding between drugs and sericin was confirmed from the ATR-FTIR spectra. Amongst these methods, spray dried (1:2 w/w) SDs showed fully amorphous state representing molecularly distributed drug as confirmed from XRD and DSC study. Spray dried meloxicam SDs showed better compressibility and compactibility. The microphotograph of spray dried batches of lornoxicam (SDLX) and meloxicam SDs (SDMX) showed bowl shaped, and bowl plus spherical particles respectively, while spray dried felodipine SDs (SDFL) showed spherical shape. The SDLX, SDMX and SDFL (1:2 w/w) displayed better dissolution performance than other methods. Conclusively, hydrophilic matrix of sericin can be used to deliver poor water soluble drugs and its aerodynamic shape may show a great potential for various drug deliveries. If established as pharmaceutical excipient, sericin holds a potential to revolutionise economics of pharmaceutical industry, and sericulture farming, especially of Asian countries.

Keywords: biosericin, poorly soluble drugs, solid dispersion, solubility and dissolution improvement

Procedia PDF Downloads 228
12531 Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation

Authors: A. Hassiba Zemmouri, B. Nabil Mameri, C. Hakim Lounici

Abstract:

In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction.

Keywords: waste activated sludge, fenton pre-treatment, biodegradability, biogas

Procedia PDF Downloads 619
12530 Household Food Wastage Assessment: A Case Study in South Africa

Authors: Fhumulani R. Ramukhwatho, Roelien du Plessis, Suzan H. H. Oelofse

Abstract:

There are a growing number of scientific papers, journals and reports on household food waste, the reason being that food waste has become a significant global issue that is costing billions of Rands in resources. To reduce food waste in a sustainable manner, it requires an understanding of the generation of food waste. This paper assesses household food wastage in the City of Tshwane Metropolitan Municipality (CTMM). A total of 210 interviewed participants using face-to-face interviews based on a structured questionnaire and the actual weighing of households’ food wasted was quantified using a weighing kitchen scale. Fifty-nine percent of respondents agreed that they wasted food, while 41% thought they did not waste food at all. Households wasted an average total of 6 kg of food waste per week per household. The study concluded that households buy and prepare more food that ends up wasted.

Keywords: assessment, developing country, food waste, household

Procedia PDF Downloads 303
12529 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste

Procedia PDF Downloads 359
12528 Extracting Polyhydroxyalkanoates from Waste Sludge of Husbandry Industry Wastewater Treatment Plants

Authors: M. S. Lu, Y. P. Tsai, H. Shu, K. F. Chen, L. L. Lai

Abstract:

This study used sodium hypochlorite/sodium dodecyl sulfate method to successfully extract polyhydroxyalkanoates (PHA) from the wasted sludge of a husbandry industry wastewater treatment plant. We investigated the optimum operational conditions of three key factors with respect to effectively extract PHAs from husbandry industry wastewater sludge, including the sodium hypochlorite concentration, liquid-solid ratio, and reaction time. The experimental results showed the optimum operational conditions for polyhydroxyalkanoate recovery as follows: (1) being digested by the sodium hypochlorite/sodium dodecyl sulfate solution with 15% (v/v) of hypochlorite concentration, (2) being operated at the condition of 1.25 mLmg-1 of liquid-solid ratio, and (3) being reacted for more than 60 min. Under these conditions, the content of the recovered PHAs was about 53.2±0.66 mgPHAs/gVSS, and the purity of the recovered PHAs was about 78.5±6.91 wt%. The recovered PHAs were further used to produce biodegradable plastics for decomposition test buried in soils. The decomposition test showed 66.5% of the biodegradable plastics produced in the study remained after being buried in soils for 49 days. The cost for extracting PHAs is about 10.3 US$/kgPHAs and is lower than those produced by pure culture methods (12-15 US$/kgPHAs).

Keywords: biodegradable plastic, biopolymers, polyhydroxyalkanoates (PHAs), waste sludge

Procedia PDF Downloads 324
12527 Study of the Composition of Lipids in Different Kinds of Packaged Food Products

Authors: Zineb Taidirt, Fathia Sebahi, Mohamed Karim Guarchani, Anissa Berkane, Noureddine Smail, Ouahiba Hadjoudj

Abstract:

Cardiovascular diseases are one of the most important causes of death in Algeria. Several risk factors are responsible for this, including the consumption of foods containing saturated fat and trans fatty acids TFAs. This brief presents the results of a descriptive study of the lipid composition of 251 food products marketed in Algeria. The objective of the study is to describe the nature and composition of lipids and to verify the compliance of saturated and trans fatty acids intakes with the regulations. The study is based on data from the nutrition labelling of marketed food products. The results showed that the lipids in foodstuffs are diverse in nature and of varying amounts, but their nature is not specified on all products. In addition, the required content of saturated fatty acids is mentioned only in 29.48% of the products; 21.62% of them do not comply with the standard. Hydrogenation of fats, which produced Trans fatty acids, is common: 19.92% of products contain hydrogenated fats, and 74.89% may contain them according to the aspect of the lipid (solid fat). However, the trans fatty acid content is only mentioned in 5.18% of the products. The latter is above the limits set by Algerian regulations in 50% of the butter samples studied. The composition of lipids in mono- and polyunsaturated fatty acids essential for the body is insufficient: only 13.94% of the products inform their contents on their labels. It is necessary to adopt mandatory restriction of trans fatty acids, to ban the use of partially-hydrogenated oils, and to require required mandatory labeling of the TFAs and the other fatty acids on packaged foods, and to conduct more studies in order to appreciate the intake of TFAs and saturated fat and appreciate their effects on the Algerian population and to get more informed about the composition of the lipid in packaged foods.

Keywords: cardiovascular diseases, lipids, nutrition labelling, lipids, trans fatty acids

Procedia PDF Downloads 106
12526 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions

Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia

Abstract:

The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.

Keywords: InAs-InP, electrons concentration, irradiation, solid solutions

Procedia PDF Downloads 169
12525 Analysing Waste Management Options in the Printing Industry: Case of a South African Company

Authors: Stanley Fore

Abstract:

The case study company is one of the leading newsprint companies in South Africa. The company has achieved this status through operational expansion, diversification and investing in cutting-edge technology. They have a reputation for the highest quality and personalised service that transcends borders and industries. The company offers a wide variety of small and large scales printing services. The company is faced with the challenge of significant waste production during normal operations. The company generates 1200 kg of plastic waste and 60 – 70 tonnes of paper waste per month. The company operates a waste management process currently, whereby waste paper is sold, at low cost, to recycling firms for further processing. Having considered the quantity of waste being generated, the company has embarked on a venture to find a more profitable solution to its current waste production. As waste management and recycling is not the company’s core business, the aim of the venture is to implement a secondary profitable waste process business. The venture will be expedited as a strategic project. This research aims to estimate the financial feasibility of a selected solution as well as the impact of non-financial considerations thereof. The financial feasibility is analysed using metrics such as Payback period; internal rate of return and net present value.

Keywords: waste, printing industry, up-cycling, management

Procedia PDF Downloads 239
12524 Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System

Authors: Bai Zhiwei, Zhang Shuxia

Abstract:

By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate.

Keywords: fluoride halogen compound, remove, radiation, solid uranium compound

Procedia PDF Downloads 278
12523 The Use of Palm Kernel Cake in Ration and Its Influence on VFA, NH3 and pH Rumen Fluid of Goat

Authors: Arief, Noovirman Jamarun, Benni Satria

Abstract:

Background: The main problem in the development of livestock in Indonesia is feed both in terms of quality and quantity. On the other hand, conventional feed ingredients are expensive and difficult to obtain. Therefore, it is necessary to find alternative feed ingredients that have good quality, potential, and low cost. Feed ingredients that meet the above requirements are by-products of the palm oil industry, namely palm kernel cake (PKC). This study aims to obtain the best PKC composition for Etawa goat concentrate ration. Material and Methode : This research consists of 2 stages. Stage I is invitro study using Tilley and Terry method. The study used a Completely Randomized Design (CRD) with 4 treatments of rations and 4 replications. The treatment is the composition of the use of palm kernel cake (PKC) in the ration, namely, A). 10%, B). 20%, C). 30%, D). 40%. Other feed ingredients are corn, rice bran, tofu waste and minerals. The measured variables are the characteristics of the rumen fluid (pH, VFA and NH3). Stage II was done using the best ration of stage I (Ration C), followed by testing the use of Tithonia (Thitonia difersifolia) and agricultural waste of sweet potato leaves as a source of forage for livestock by in-vitro. The study used a Completely Randomized Design (CRD) with 3 treatments and 5 replications. The treatments were: Treatment A) Best Concentrate Ration Stage I + Titonia (Thitonia difersifolia), Treatment B) Best Concentrate Ration Stage I + Tithonia (Thitonia difersifolia) and Sweet potato Leaves, Treatment C) Best Concentrate Ration Stage I + Sweet potato leaves. The data obtained were analyzed using variance analysis while the differences between treatments were tested using the Duncant Multiple Range Test (DMRT) according to Steel and Torrie. Results of Stage II showed that the use of PKC in rations as concentrate feed combined with forage originating from Tithonia (Thitonia difersifolia) and sweet potato leaves produced pH, VFA and NH3-N which were still in normal conditions. The best treatment was obtained from diet B (P <0.05) with 6.9 pH, 116.29 mM VFA and 15mM NH3-N. Conclussion From the results of the study it can be concluded that PKC can be used as feed ingredients for dairy goat concentrate with a combination of forage from Tithonia (Tithonia difersifolia) and sweet potato leaves.

Keywords: palm oil by-product, palm kernel cake, concentrate, rumen fluid, Etawa goat

Procedia PDF Downloads 149
12522 Knowledge and Practices on Waste Disposal Management Among Medical Technology Students at National University – Manila

Authors: John Peter Dacanay, Edison Ramos, Cristopher James Dicang

Abstract:

Waste management is a global concern due to increasing waste production from changing consumption patterns and population growth. Proper waste disposal management is a critical aspect of public health and environmental protection. In the healthcare industry, medical waste is generated in large quantities, and if not disposed of properly, it poses a significant threat to human health and the environment. Efficient waste management conserves natural resources and prevents harm to human health, and implementing an effective waste management system can save human lives. The study aimed to assess the level of awareness and practices on waste disposal management, highlighting the understanding of proper disposal, potential hazards, and environmental implications among Medical Technology students. This would help to provide more recommendations for improving waste management practices in healthcare settings as well as for better waste management practices in educational institutions. From the collected data, a female of 21 years of age stands out among the respondents. With the frequency and percentage of medical technology students' knowledge of laboratory waste management being high, it indicates that all respondents demonstrated a solid understanding of proper disposal methods, regulations, risks, and handling procedures related to laboratory waste. That said, the findings emphasize the significance of education and awareness programs in equipping individuals involved in laboratory practices with the necessary knowledge to handle and dispose of hazardous and infectious waste properly. Most respondents demonstrate positive practices or are highly mannered in laboratory waste management, including proper segregation and disposal in designated containers. However, there are concerns about the occasional mixing of waste types, emphasizing the reiteration of proper waste segregation. Students show a strong commitment to using personal protective equipment and promptly cleaning up spills. Some students admit to improper disposal due to rushing, highlighting the importance of time management and safety prioritization. Overall, students follow protocols for hazardous waste disposal, indicating a responsible approach. The school's waste management system is perceived as adequate, but continuous assessment and improvement are necessary. Encouraging reporting of issues and concerns is crucial for ongoing improvement and risk mitigation. The analysis reveals a moderate positive relationship between the respondents' knowledge and practices regarding laboratory waste management. The statistically significant correlation with a p-value of 0.26 (p-value 0.05) suggests that individuals with higher levels of knowledge tend to exhibit better practices. These findings align with previous research emphasizing the pivotal role of knowledge in influencing individuals' behaviors and practices concerning laboratory waste management. When individuals possess a comprehensive understanding of proper procedures, regulations, and potential risks associated with laboratory waste, they are more inclined to adopt appropriate practices. Therefore, fostering knowledge through education and training is essential in promoting responsible and effective waste management in laboratory settings.

Keywords: waste disposal management, knowledge, attitude, practices

Procedia PDF Downloads 57
12521 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 279
12520 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 400
12519 Preparation, Characterization and Ionic Conductivity of (1‒x) (CdI2‒Ag2CrO4)‒(x) Al2O3 Composite Solid Electrolytes

Authors: Rafiuddin

Abstract:

Composite solid electrolyte of the salt and oxide type is an effective approach to improve the ionic conductivity in low and intermediate temperature regions. The conductivity enhancement in the composites occurs via interfaces. Because of their high ionic conduction, composite electrolytes have wide applications in different electrochemical devices such as solid-state batteries, solid oxide fuel cells, and electrochemical cells. In this work, a series of novel (1‒x) (CdI2‒Ag2CrO4)‒xAl2O3 composite solid electrolytes has been synthesized. The prepared materials were characterized by X‒ray diffraction, differential thermal analysis, and AC impedance spectroscopy. The impedance spectra show single semicircle representing the simultaneous contribution of grain and grain boundary. The conductivity increased with the increase of Al2O3 content and shows the maximum conductivity (σ= 0.0012 S cm‒1) for 30% of Al2O3 content at 30 ℃.

Keywords: composite solid electrolyte, X-ray diffraction, Impedance spectroscopy, ionic conductivity

Procedia PDF Downloads 377
12518 Composition Dependence of Exchange Anisotropy in PtₓMn₁₋ₓ/Co₇₀Fe₃₀ Films

Authors: Sina Ranjbar, Masakiyo Tsunoda, Mikihiko Oogane, Yasuo Ando

Abstract:

We systematically investigated the exchange anisotropy for ferromagnetic Co70Fe30 and antiferromagnetic PtMn bilayer films. We focused on the relevance between the exchange bias and the composition of the Ptₓ Mn₁₋ₓ (14 < x < 22 and 45 < x < 56 at %) films, and we successfully optimized the composition. The crystal structure of the Ptₓ Mn₁₋ₓ films was FCC for 14 < x < 22 at % and FCT for 45 < x < 56 at % after annealing at 370 ◦C for 6 hours. The unidirectional anisotropy constant (Jₖ) for fcc-Pt₁₅Mn₈₅ (20 nm) and fct-Pt₄₈Mn₅₂ (20 nm) prepared under optimum conditions in composition were 0.16 and 0.20 erg/cm², respectively. Both Pt₁₅Mn₈₅ and Pt₄₈Mn₅₂ films showed a larger unidirectional anisotropy constant (Jₖ) than in other reports. They also showed a flatter surface than that of other antiferromagnetic materials. The obtained PtMn films with a large exchange anisotropy and slight roughness are useful as an antiferromagnetic layer in spintronic applications.

Keywords: antiferromagnetic material, PtMn thin film, exchange anisotropy, composition dependence

Procedia PDF Downloads 240
12517 Comparison of E-Waste Management in Switzerland and in Australia: A Qualitative Content Analysis

Authors: Md Tasbirul Islam, Pablo Dias, Nazmul Huda

Abstract:

E-waste/Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams across the globe. This paper aims to compare the e-waste management system in Switzerland and Australia in terms of four features - legislative initiatives, disposal practice, collection and financial mechanisms. The qualitative content analysis is employed as a research method in the study. Data were collected from various published academic research papers, industry reports, and web sources. In addition, a questionnaire survey is conducted in Australia to understand the public awareness and opinions on the features. The results of the study provide valuable insights to policymakers in Australia developing better e-waste management system in conjunction with the public consensus, and the state-of-the-art operational strategies currently being practiced in Switzerland.

Keywords: E-waste management, WEEE, awareness, pro-environmental behavior, Australia, Switzerland

Procedia PDF Downloads 254
12516 Waste Generation in Iranian Building Industry: Addressing a Theory

Authors: Golnaz Moghimi, Alireza Afsharghotli, Alireza Rezaei

Abstract:

Construction waste has been gradually increased as a result of upsizing construction projects which are occurred within the lifecycle of buildings. Since waste management is a major priority and has profound impacts on the volume of waste generated in construction stage, the majority of efforts have been attempted to reuse, recycle and reduce waste. However, there is still room to study on lack of sufficient knowledge about waste management in construction industry. This paper intends to provide an insight into the effect of project management knowledge areas on waste management solely on construction stage. To this end, a survey among Iranian building construction industry contractors was conducted to identify the effectiveness of project management knowledge areas on three jobsite key factors including ‘Site activity’, ‘Training’, and ‘Awareness’. As a result, four management disciplines were identified as most influential ones on amount of construction waste. These disciplines were Project Cost Management, Quality Management, Human Resource Management, and Integration Management. Based on the research findings, a new model was presented to develop effective construction waste strategies.

Keywords: awareness, PMBOK, site activity, training, waste management

Procedia PDF Downloads 317
12515 Cement Matrix Obtained with Recycled Aggregates and Micro/Nanosilica Admixtures

Authors: C. Mazilu, D. P. Georgescu, A. Apostu, R. Deju

Abstract:

Cement mortars and concretes are some of the most used construction materials in the world, global cement production being expected to grow to approx. 5 billion tons, until 2030. But, cement is an energy intensive material, the cement industry being responsible for cca. 7% of the world's CO2 emissions. Also, natural aggregates represent non-renewable resources, exhaustible, which must be used efficiently. A way to reduce the negative impact on the environment is the use of additional hydraulically active materials, as a partial substitute for cement in mortars and concretes and/or the use of recycled concrete aggregates (RCA) for the recovery of construction waste, according to EU Directive 2018/851. One of the most effective active hydraulic admixtures is microsilica and more recently, with the technological development on a nanometric scale, nanosilica. Studies carried out in recent years have shown that the introduction of SiO2 nanoparticles into cement matrix improves the properties, even compared to microsilica. This is due to the very small size of the nanosilica particles (<100nm) and the very large specific surface, which helps to accelerate cement hydration and acts as a nucleating agent to generate even more calcium hydrosilicate which densifies and compacts the structure. The cementitious compositions containing recycled concrete aggregates (RCA) present, in generally, inferior properties compared to those obtained with natural aggregates. Depending on the degree of replacement of natural aggregate, decreases the workability of mortars and concretes with RAC, decrease mechanical resistances and increase drying shrinkage; all being determined, in particular, by the presence to the old mortar attached to the original aggregate from the RAC, which makes its porosity high and the mixture of components to require more water for preparation. The present study aims to use micro and nanosilica for increase the performance of some mortars and concretes obtained with RCA. The research focused on two types of cementitious systems: a special mortar composition used for encapsulating Low Level radioactive Waste (LLW); a composition of structural concrete, class C30/37, with the combination of exposure classes XC4+XF1 and settlement class S4. The mortar was made with 100% recycled aggregate, 0-5 mm sort and in the case of concrete, 30% recycled aggregate was used for 4-8 and 8-16 sorts, according to EN 206, Annex E. The recycled aggregate was obtained from a specially made concrete for this study, which after 28 days was crushed with the help of a Retsch jaw crusher and further separated by sieving on granulometric sorters. The partial replacement of cement was done progressively, in the case of the mortar composition, with microsilica (3, 6, 9, 12, 15% wt.), nanosilica (0.75, 1.5, 2.25% wt.), respectively mixtures of micro and nanosilica. The optimal combination of silica, from the point of view of mechanical resistance, was later used also in the case of the concrete composition. For the chosen cementitious compositions, the influence of micro and/or nanosilica on the properties in the fresh state (workability, rheological characteristics) and hardened state (mechanical resistance, water absorption, freeze-thaw resistance, etc.) is highlighted.

Keywords: cement, recycled concrete aggregates, micro/nanosilica, durability

Procedia PDF Downloads 39
12514 Groundwater Contamination Assessment and Mitigation Strategies for Water Resource Sustainability: A Concise Review

Authors: Khawar Naeem, Adel Elomri, Adel Zghibi

Abstract:

Contamination leakage from municipal solid waste (MSW) landfills is a serious environmental challenge that poses a threat to interconnected ecosystems. It not only contaminates the soil of the saturated zone, but it also percolates down the earth and contaminates the groundwater (GW). In this concise literature review, an effort is made to understand the environmental hazards posed by this contamination to the soil and groundwater, the type of contamination, and possible solutions proposed in the literature. In the study’s second phase, the MSW management practices are explored as the landfill site dump rate and type of MSW into the landfill site directly depend on the MSW management strategies. Case studies from multiple developed and underdeveloped countries are presented, and the complex MSW management system is investigated from an operational perspective to minimize the contamination of GW. One of the significant tools used in the literature was found to be Systems Dynamic Modeling (SDM), which is a simulation-based approach to study the stakeholder’s approach. By employing the SDM approach, the risk of GW contamination can be reduced by devising effective MSW management policies, ultimately resulting in water resource sustainability and regional sustainable development.

Keywords: groundwater contamination, environmental risk, municipal solid waste management, system dynamic modeling, water resource sustainability, sustainable development

Procedia PDF Downloads 42
12513 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs

Authors: Sawarni Hasibuan, Juliza Hidayati

Abstract:

Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.

Keywords: cleaner production innovation, creativity, SMEs Batik, sustainability supply chain

Procedia PDF Downloads 249
12512 Impact of Agricultural Waste Utilization and Management on the Environment

Authors: Ravi Kumar

Abstract:

Agricultural wastes are the non-product outcomes of agricultural processing whose monetary value is less as compared to its collection cost, transportation, and processing. When such agricultural waste is not properly disposed of, it may damage the natural environment and cause detrimental pollution in the atmosphere. Agricultural development and intensive farming methods usually result in wastes that remarkably affect the rural environments in particular and the global environment in general. Agricultural waste has toxicity latent to human beings, animals, and plants through various indirect and direct outlets. The present paper explores the various activities that result in agricultural waste and the routes that can utilize the agricultural waste in a manageable manner to reduce its adverse impact on the environment. Presently, the agricultural waste management system for ecological agriculture and sustainable development has emerged as a crucial issue for policymakers. There is an urgent need to consider agricultural wastes as prospective resources rather than undesirable in order to avoid the transmission and contamination of water, land, and air resources. Waste management includes the disposal and treatment of waste with a view to eliminate threats of waste by modifying the waste to condense the microbial load. The study concludes that proper waste utilization and management will facilitate the purification and development of the ecosystem and provide feasible biofuel resources. This proper utilization and management of these wastes for agricultural production may reduce their accumulation and further reduce environmental pollution by improving environmental health.

Keywords: agricultural waste, utilization, management, environment, health

Procedia PDF Downloads 65