Search results for: soil application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10756

Search results for: soil application

10366 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 323
10365 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: silty soil, waste plastic, compaction, consolidation, reinforcement

Procedia PDF Downloads 171
10364 Simplified Empirical Method for Predicting Liquefaction Potential and Its Application to Kaohsiung Areas in Taiwan

Authors: Darn H. Hsiao, Zhu-Yun Zheng

Abstract:

Since Taiwan is located between the Eurasian and Filipino plates and earthquakes often thus occur. The coastal plains in western Taiwan are alluvial plains, and the soils of the alluvium are mostly from the Lao-Shan belt in the central mountainous area of ​​southern Taiwan. It could come mostly from sand/shale and slate. The previous investigation found that the soils in the Kaohsiung area of ​​southern Taiwan are mainly composed of slate, shale, quartz, low-plastic clay, silt, silty sand and so on. It can also be found from the past earthquakes that the soil in Kaohsiung is highly susceptible to soil subsidence due to liquefaction. Insufficient bearing capacity of building will cause soil liquefaction disasters. In this study, the boring drilling data from nine districts among the Love River Basin in the city center, and some factors affecting liquefaction include the content of fines (FC), standard penetration test N value (SPT N), the thickness of clay layer near ground-surface, and the thickness of possible liquefied soil were further discussed for liquefaction potential as well as groundwater level. The results show that the liquefaction potential is higher in the areas near the riverside, the backfill area, and the west area of ​​the study area. This paper also uses the old paleo-geological map, soil particle distribution curve, compared with LPI map calculated from the analysis results. After all the parameters finally were studied for five sub zones in the Love River Basin by maximum-minimum method, it is found that both of standard penetration test N value and the thickness of the clay layer will be most influential.

Keywords: liquefaction, western Taiwan, liquefaction potential map, high liquefaction potential areas

Procedia PDF Downloads 117
10363 Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province

Authors: Rebone E. Mashapa, Phesheya E. Dlamini, Sandile S. Mthimkhulu

Abstract:

Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution.

Keywords: soil depth, soil physical properties, vertic soils, woody plant encroachment

Procedia PDF Downloads 145
10362 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes

Authors: Aya Rezgui, Lasaad Ajam, Belgacem Jalleli

Abstract:

The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions.

Keywords: Tunis soft soil, settlement, plastic wastes, finte -difference, FLAC3D modeling

Procedia PDF Downloads 132
10361 Characteristics of Interaction Forces Acting on a Newly-Design Rotary Blade for Thai Walking Tractor

Authors: Sirisak Choedkiatphon, Tanya Niyamapa

Abstract:

This research aimed to indeed understand the soil-rotary blade interaction of the newly-design rotary blade for Thai walking tractor. Therefore, this study was carried out to clarify the characteristics of the horizontal and the vertical forces and the moment around a rotary shaft of prototype rotary blade 15 lengthwise slice angle. It was set up and tested in laboratory soil bin at Kasetsart University under sandy loam and clay soil at soil dry bulk density and soil specific weight of 9.81 kN/m3 and 11.3% (d.b.), respectively. The tests were conducted at travel speeds of 0.069 and 0.142 m/s and rotational speeds of 150, 250 and 350 rpm. The characteristic of pushing-forward and lifting-up forces and moment around a rotor shaft were obtained by using the EOR transducer. Also, the acting point of resultant force of these soil-blade reaction forces was determined. The pushing-forward and lifting-up forces, moment around a rotor shaft and resultant force increased at higher travel speed and higher soil moisture content. In tilling stage, the acting points of resultant force located inside the circumstance of the blade locus. The results showed that the variation of magnitude and direction of pushing-forward, lifting-up and resultant forces corresponded to soil-blade interaction of the newly-design in tilling stage.

Keywords: rotary blde, soil-blade interaction, walking tractor, clay, sandy loam

Procedia PDF Downloads 207
10360 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics

Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu

Abstract:

Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.

Keywords: biodiversity, calcium-carbide, denitrification, toxicity

Procedia PDF Downloads 544
10359 Thermal Technologies Applications for Soil Remediation

Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri

Abstract:

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements

Procedia PDF Downloads 293
10358 Influence of P-Y Curves on Buckling Capacity of Pile Foundation

Authors: Praveen Huded, Suresh Dash

Abstract:

Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation.

Keywords: Pile foundation , Liquefaction, Buckling load, non-linear py curve, Opensees

Procedia PDF Downloads 162
10357 Effect of Inclusion of Rubber on the Compaction Characteristics of Cement - MSWIFA- Clayey Soil Mixtures

Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf

Abstract:

The aim of this study is to show the effect of adding cement municipal solid incineration fly ash and rubber as stabilizer materials on weak soil. A detailed experimental study was conducted in order to show the viability of using these admixtures in improving the maximum dry density and optimum moisture content of the composite soil. Soil samples were prepared by adding Rubber and Cement to municipal solid waste incineration fly-ash - oil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. Three different percentages of fly ash (10%, 20%, and 30%) MSWFA by total dry weight of soil and three different percentages of Portland cement (10%, 15%, and 20%) by total dry weight of the mix and 0%, 5%, 10% for Rubber by total dry weight of the mix were used to find the optimum value. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeded 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that adding Rubber to the mix Soil-MSWIFA-Cement decreases its MDD due to the low specific gravity of rubber and it affects a slight decrease in OMC because the rubber has low absorption of water.

Keywords: clayey soil, MSWIFA, proctor test, rubber

Procedia PDF Downloads 114
10356 Effect of Fiber Inclusion on the Geotechnical Parameters of Clayey Soil Subjected to Freeze-Thaw Cycles

Authors: Arun Prasad, P. B. Ramudu, Deep Shikha, Deep Jyoti Singh

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive soils.Freezing and thawing of soil affects the strength, durability and permeability of soil adversely. Experiments were carried out in order to investigate the effect of inclusion of randomly distributed polypropylene fibers on the strength, hydraulic conductivity and durability of local soil (CL) subjected to freeze–thaw cycles. For evaluating the change in strength of soil, a series of unconfined compression tests as well as tri-axial tests were carried out on reinforced and unreinforced soil samples. All the samples were subjected to seven cycles of freezing and thawing. Freezing was carried out at a temperature of - 15 to -18 °C; and thawing was carried out by keeping the samples at room temperature. The reinforcement of soil samples was done by mixing with polypropylene fibers, 12 mm long and with an aspect ratio of 240. The content of fibers was varied from 0.25 to 1% by dry weight of soil. The maximum strength of soil was found in samples having a fiber content of 0.75% for all the samples that were prepared at optimum moisture content (OMC), and if the OMC was increased (+2% OMC) or decreased (-2% OMC), the maximum strength observed at 0.5% fiber inclusion. The effect of fiber inclusion and freeze–thaw on the hydraulic conductivity was studied increased from around 25 times to 300 times that of the unreinforced soil, without subjected to any freeze-thaw cycles. For studying the increased durability of soil, mass loss after each freeze-thaw cycle was calculated and it was found that samples reinforced with polypropylene fibers show 50-60% less loss in weight than that of the unreinforced soil.

Keywords: fiber reinforcement, freezingand thawing, hydraulic conductivity, unconfined compressive strength

Procedia PDF Downloads 399
10355 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals

Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle

Abstract:

This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.

Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans

Procedia PDF Downloads 158
10354 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column

Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura

Abstract:

Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.

Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column

Procedia PDF Downloads 233
10353 Ground Deformation Module for the New Laboratory Methods

Authors: O. Giorgishvili

Abstract:

For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.

Keywords: build, deformation modulus, foundations, ground, laboratory research

Procedia PDF Downloads 367
10352 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece

Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos

Abstract:

The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.

Keywords: Greece, heavy metals, mining, pollution

Procedia PDF Downloads 127
10351 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS

Authors: Sanjay Kumar Behera, Kanhu Charan Patra

Abstract:

A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.

Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion

Procedia PDF Downloads 444
10350 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.

Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil

Procedia PDF Downloads 81
10349 Screening of Rice Genotypes in Methane and Carbon Dioxide Emissions Under Different Water Regimes

Authors: Mthiyane Pretty, Mitsui Toshiake, Nagano Hirohiko, Aycan Murat

Abstract:

Among the most significant greenhouse gases released from rice fields are methane and carbon dioxide. The primary focus of this research was to quantify CH₄ and CO₂ gas using different 4 rice cultivars, two water regimes, and a recording of soil moisture and temperature. In this study, we hypothesized that paddy field soils may directly affect soil enzymatic activities and physicochemical properties in the rhizosphere soil of paddy fields and subsequently indirectly affect the activity, abundance, diversity, and community composition of methanogens, ultimately affecting CH₄ flux. The experiment was laid out in the randomized block design with two treatments and three replications for each genotype. In two treatments, paddy fields and artificial soil were used. 35 days after planting (DAP), continuous flooding irrigation, Alternate wetting, and drying (AWD) were applied during the vegetative stage. The highest recorded measurements of soil and environmental parameters were soil moisture at 76%, soil temperature at 28.3℃, Bulk EC at 0.99 ds/m, and pore water EC at 1,25, using HydraGO portable soil sensor system. Gas samples were carried out once on a weekly basis at 09:00 am and 12: 00 pm to obtain the mean GHG flux. Gas Chromatography (GC, Shimadzu, GC-2010, Japan) was used for the analysis of CH4 and CO₂. The treatments with paddy field soil had a 1.3℃ higher temperature than artificial soil. The overall changes in Bulk EC were not significant across the treatment. The CH₄ emission patterns were observed in all rice genotypes, although they were less in treatments with AWD with artificial soil. This shows that AWD creates oxic conditions in the rice soil. CO₂ was also quantified, but it was in minute quantities, as rice plants were using CO₂ for photosynthesis. The highest tillering number was 7, and the lowest was 3 in cultivars grown. The rice varieties to be used for breeding are Norin 24, with showed a high number of tillers with less CH₄.

Keywords: greenhouse gases, methane, morphological characterization, alternating wetting and drying

Procedia PDF Downloads 79
10348 Determining the Nitrogen Mineralization Rate by Industrially Manufactured Organic Fertilizers on Alfisol in Southwestern Nigeria

Authors: Ayeni Leye Samuel

Abstract:

Laboratory incubation study was carried out at Adeyemi College of Education, Ondo Southwestern Nigeria to determine the rate of NO3-N, NH4-N, total N, OC and available P released to the soil samples collected from Okitipupa mangrove forest. The soil samples were incubated with organic (OG), organomineral (OMF) and NPK 15:15:15 (NPKF) fertilizers. Organic and organomineral fertilizers were separately applied at the rate of 0, 0.25 and 0.5mg/100 g soil while NPKF was applied at the rate of 0.002g/100g soil. The treatments were replicated three times and arranged on CRD. The treatments were incubated for 90 days. Compared with control, OG and NPKF at all rates significantly increased (p<0.05) soil NH4-N, NO3-N, total N and available P. The order of increase in NH4-N were 10t/ha OMF> 5t/ha OMF> 5t/ha OG>10t/ha OG>control>400 kg/ha while the order of increase in NO3-N were 5t/ha OMF>10t/ha OMF>10t/ha OG>5t/ha OG>control>400 kg/ha NPKF. 5t/ha OMF had the highest, 5t/ha OMF recorded the highest pH, 5t/ha OG had the highest OC while 10t/ha OG had the highest available P.

Keywords: c/n ratio, immobilization, incubation study, organomineral fertilizer

Procedia PDF Downloads 323
10347 Mechanical-Reliability Coupling for a Bearing Capacity Assessment of Shallow Foundations

Authors: Amal Hentati, Mbarka Selmi, Tarek Kormi, Julien Baroth, Barthelemy Harthong

Abstract:

The impact of uncertainties on the performance assessment of shallow foundations is often significant. The need of the geotechnical engineers to a more objective and rigorous description of soil variations permitting to quantify these uncertainties and to incorporate them into calculation methods led to the development of reliability approaches. In this context, a mechanical-reliability coupling was developed in this paper, using a program coded in Matlab and the finite element software Abaqus, for the bearing capacity assessment of shallow foundations. The reliability analysis, based on the finite element method, assumed both soil cohesion and friction angle as uncertain parameters characterized by normal or lognormal probability distributions. The inherent spatial variability of both soil properties was, then, taken into account using 1D stationary random fields. The application of the proposed methodology to a shallow foundation subjected to a centered vertical loading permitted to highlight the proposed process interest. Findings proved the insufficiency of the conventional approach to predict the foundation failure and a high sensitivity of the ultimate loads to the soil properties uncertainties, mainly those related to the friction angle, was noted. Moreover, an asymmetry of both displacement and velocity fields was obtained.

Keywords: mechanical-reliability coupling, finite element method, shallow foundation, random fields, spatial variability

Procedia PDF Downloads 660
10346 Analysis of Pollution in Agriculture Land Using Decagon Em-50 and Rock Magnetism Method

Authors: Adinda Syifa Azhari, Eleonora Agustine, Dini Fitriani

Abstract:

This measurement has been done to analyze the impact of industrial pollution on the environment. Our research is to indicate the soil which has contained some pollution by industrial activity around the area, especially in Sumedang, West Java. The parameter phsyics such as total dissolved solid, volumetric water content, electrical conductivity bulk and FD have shown that the soil has polluted and measured by Decagon EM 50. Decagon EM 50 is one of the geophysical environment instrumentation that is used to interpret the soil condition. This experiment has given a result of these parameter physics, these are: Volumetric water content (m³/m³) = 0,154 – 0,384; Electrical Conductivity Bulk (dS/m) = 0,29 – 1,11 ; Dielectric Permittivity (DP) = 77,636 – 78, 339.Based on these data, we have got the conclusion that the area has, in fact, been contaminated by dangerous materials. VWC is parameter physics that has shown water in soil. The data show the pollution of the soil at the place, of which the specifications are PH, Total Dissolved Solid (TDS), Electrical Conductivity (EC) bigger (>>) and Frequency Dependent (FD) smaller (<<); that means the soil is alkali with big grain and has high salt concentration.

Keywords: Decagon EM 50, electrical conductivity, industrial textiles, land, pollution

Procedia PDF Downloads 380
10345 Insect Manure (Frass) as a Complementary Fertilizer to Enhance Soil Mineralization Function: Application to Cranberry and Field Crops

Authors: Joël Passicousset, David Gilbert, Chloé Chervier-Legourd, Emmanuel Caron-Garant, Didier Labarre

Abstract:

Living soil agriculture tries to reconciliate food production while improving soil health, soil biodiversity, soil fertility and more generally attenuating the inherent environmental drawbacks induced by modern agriculture. Using appropriate organic materials as soil amendments has a role to play in the aim of increasing the soil organic matter, improving soil fertility, sequestering carbon, and diminishing the dependence on both mineral fertilizer and pesticides. Insect farming consists in producing insects that can be used as a rich-in-protein and entomo-based food. Usually, detritivores are chosen, thus they can be fed with food wastes, which contributes to circular economy while producing low-carbon food. This process also produces frass, made of insect feces, exuvial material, and non-digested fibrous material, that have valuable fertilizer and biostimulation properties. But frass, used as a sole fertilizer on a crop may be not completely adequate for plants’ needs. This is why this project considers black soldier fly (termed BSF, one of the three main insect species grown commercially) frass as a complementary fertilizer, both in organic and in conventional contexts. Three kinds of experiments are made to understand the behaviour of fertilizer treatments based on frass incorporation. Lab-scale mineralization experiments suggest that BSF frass alone mineralizes more slowly than chicken manure alone (CM), but at a ratio of 90% CM-10% BSF frass, the mineralization rate of the mixture is higher than both frass and CM individually. For example, in the 7 days following the fertilization with same nitrogen amount introduced among treatments, around 80% of the nitrogen content supplied through 90% CM-10% BSF frass fertilization is present in the soil under mineral forms, compared to roughly 60% for commercial CM fertilization and 45% with BSF-frass. This suggests that BSF frass contains a more recalcitrant form of organic nitrogen than CM, but also that BSF frass has a highly active microbiota that can increase CM mineralization rate. Consequently, when progressive mineralization is needed, pure BSF-frass may be a consistent option from an agronomic aspect whereas, for specific crops that require spikes of readily available nitrogen sources (like cranberry), fast release 90CM-10BSF frass biofertilizer are more appropriate. Field experiments on cranberry suggests that, indeed, 90CM-10BSF frass is a potent candidate for organic cranberry production, as currently, organic growers rely solely on CM, whose mineralization kinetics are known to imperfectly match plant’s needs, which is known to be a major reason that sustains the current yield gap between conventional and organic cranberry sectors.

Keywords: soil mineralization, biofertilizer, BSF-frass, chicken manure, soil functions, nitrogen, soil microbiota

Procedia PDF Downloads 69
10344 Environmental Impact Assessment of Municipal Solid Waste Disposal Site in Shahrood City

Authors: Mehri Bagherkazemi, Naser Hafezi Moghaddas

Abstract:

This study investigates the environmental impact of the disposal site located in Shahrood city, focusing on the geological characteristics of the region. Shahrood's disposal site primarily consists of limestone bedrock, overlaid by substantial alluvial deposits. The area's highly permeable soil is anticipated to have a significant influence on groundwater pollution. Spanning 52 hectares, the Shahrood disposal site is situated in the eastern sector of the city. Historically, waste disposal took place on the surface, but recent practices involve on-site trenching. This research involved the collection of soil and water samples near the disposal site, with subsequent analysis of 11 soil samples and 3 water samples. The soil's particle size distribution was determined, and comprehensive analyses were conducted for 35 elements in the soil and 42 elements in water. The study combines the results of these tests with field investigations to evaluate the landfill's impact on the surrounding soil and groundwater contamination.

Keywords: environmental geology, environmental impact assessment, disposal site, heavy metals contamination

Procedia PDF Downloads 77
10343 Evaluating the Permeability Coefficient of Sandy Soil for Grouting to Reinforce Soft Soil in Binh Duong, Vietnam

Authors: Trung Le Thanh

Abstract:

Soil permeability coefficient is an important parameter that affects the effectiveness of mortar restoration work to reinforce soft soil. Currently, there are many methods to determine the permeability coefficient of ground through laboratory and field experiments. However, the value of the permeability coefficient is determined very differently depending on the geology in general and the sand base in particular. This article presents how to determine the permeability coefficient of sand foundation in Phu My Ward, Tan Uyen City, Binh Duong. The author analyzes and evaluates the advantages and disadvantages of assessment methods based on the data and results obtained, and on that basis recommends a suitable method for determining the permeability coefficient for sand foundations. The research results serve the evaluation of the effectiveness of grouting to reinforce soft ground in general, and grouting of bored piles in particular.

Keywords: permeability coefficient, soft soil, shaft grouting, post grouting, jet grouting

Procedia PDF Downloads 71
10342 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy

Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie

Abstract:

Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.

Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy

Procedia PDF Downloads 401
10341 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale

Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize

Abstract:

Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.

Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy

Procedia PDF Downloads 98
10340 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 75
10339 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Maria Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 45
10338 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes

Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi

Abstract:

The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/ml

Keywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture

Procedia PDF Downloads 471
10337 Effects of Foliar Application of Glycine Betaine under Nickel Toxicity of Oat (Avena Sativa L.)

Authors: Khizar Hayat Bhatti, Fiza Javed, Misbah Zafar

Abstract:

Oat (Avena sativa L.) is a major cereal plant belonging to the family Poaceae. It is a very important source of carbohydrates, starch, minerals, vitamins and proteins that are beneficial for general health. Plants grow in the heavy metals contaminated soils that results in decline in growth. Glycine betaine application may improve plant growth, survival and resistance to metabolic disturbances due to stresses. Heavy metals, like nickels, have been accumulated for a long time in the soil because of industrial waste and sewage. The experiment was intended to alleviate the detrimental effects of heavy metal nickel stress on two oat varieties ‘Sgd-2011 and Hay’ using Glycine betain. Nickel was induced through soil application while GB was applied as foliar spray. After 10 days of nickel treatment, an exogenous spray of glycine betaine on the intact plant leaves. Data analysis was carried out using a Completely Randomized Design (CRD) with three replications in this study. For the analysis of all the data of the current research, Mini-Tab 19 software was used to compare the mean value of all treatments and Microsoft Excel software for generating the bars graphs. Significant accelerated plant growth was recorded when Ni exposed plants were treated with GB. Based on data findings, 3mM GB caused significant recovery from Ni stress doses. Overall results also demonstrated that the sgd-2011 variety of oats had the greatest outcomes for all parameters.

Keywords: CRD, foliar spray method, glycine betaine, heavy metals, nickel, ROS

Procedia PDF Downloads 5