Search results for: soft switching
1010 Use of Bamboo Piles in Ground Improvement Design: Case Study
Authors: Thayalan Nall, Andreas Putra
Abstract:
A major offshore reclamation work is currently underway in Southeast Asia for a container terminal. The total extent of the reclamation extent is 2600m x 800m and the seabed level is around -5mRL below mean sea level. Subsoil profile below seabed comprises soft marine clays of thickness varying from 8m to 15m. To contain the dredging spoil within the reclamation area, perimeter bunds have been constructed to +2.5mRL. They include breakwaters of trapezoidal geometry, made of boulder size rock along the northern, eastern and western perimeters, with a sand bund along the southern perimeter. Breakwaters were constructed on a composite bamboo pile and raft foundation system. Bamboo clusters 8m long, with 7 individual Bamboos bundled together as one, have been installed within the footprint of the breakwater below seabed in soft marine clay. To facilitate drainage two prefabricated vertical drains (PVD) have been attached to each cluster. Once the cluster piles were installed, a bamboo raft was placed as a load transfer platform. Rafts were made up of 5 layers of bamboo mattress, and in each layer bamboos were spaced at 200mm centres. The rafts wouldn’t sink under their own weight, and hence, they were sunk by loading quarry run rock onto them. Bamboo is a building material available in abundance in Indonesia and obtained at a relatively low cost. They are commonly used as semi-rigid inclusions to improve compressibility and stability of soft soils. Although bamboo is widely used in soft soil engineering design, no local design guides are available and the designs are carried out based on local experience. In June 2015, when the 1st load of sand was pumped by a dredging vessel next to the breakwater, a 150m long section of the breakwater underwent failure and displaced the breakwater between 1.2m to 4.0m. The cause of the failure was investigated to implement remedial measures to reduce the risk of further failures. Analyses using both limit equilibrium approach and finite element modelling revealed two plausible modes of breakwater failure. This paper outlines: 1) Developed Geology and the ground model, 2) The techniques used for the installation of bamboo piles, 3) Details of the analyses including modes and mechanism of failure and 4) Design changes incorporated to reduce the risk of failure.Keywords: bamboo piles, ground improvement, reclamation, breakwater failure
Procedia PDF Downloads 4171009 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique
Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef
Abstract:
X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.Keywords: enhancement, x-rays, pixel intensity values, MatLab
Procedia PDF Downloads 4851008 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper
Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng
Abstract:
Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.Keywords: liquid crystal elastomers, microgripper, smart materials, robotics
Procedia PDF Downloads 1401007 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment
Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar
Abstract:
Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate
Procedia PDF Downloads 3201006 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices
Procedia PDF Downloads 2981005 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy
Authors: Babak Eslami
Abstract:
Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.Keywords: multifrequency, sensitivity, soft matter, polymer
Procedia PDF Downloads 1341004 Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test
Authors: Sergio Luiz da Costa Junior, Carolina Fofonka Palomino, Paulo Cesar Lodi
Abstract:
The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test.Keywords: geofoam, geomembrane, soft ground, strength shear
Procedia PDF Downloads 3151003 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 461002 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University
Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf
Abstract:
This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer
Procedia PDF Downloads 1311001 Improving Anchor Technology for Adapting the Weak Soil
Authors: Sang Hee Shin
Abstract:
The technical improving project is for using the domestic construction technology in the weak soil condition. The improved technology is applied directly under local construction site at OOO, OOO. Existing anchor technology was developed for the case of soft ground as N value 10 or less. In case of soft ground and heavy load, the attachment site per one strand is shortened due to the distributed interval so that the installation site is increased relatively and being economically infeasible. In addition, in case of high tensile load, adhesion phenomenon between wedge and block occurs. To solve these problems, it strengthens the function of the attached strands to treat a ‘bulbing’ on the strands. In the solution for minimizing the internal damage and strengthening the removal function, it induces lubricating action using the film and the attached film, and it makes the buffer structure using wedge lubricating structure and the spring. The technology is performed such as in-house testing and the field testing. The project can improve the reliability of the standardized quality technique. As a result, it intended to give the technical competitiveness.Keywords: anchor, improving technology, removal anchor, soil reinforcement, weak soil
Procedia PDF Downloads 2111000 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 219999 Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model
Authors: Maryam Tajadod
Abstract:
The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located.Keywords: bone metastases, lutetium-177, radium-223, actinium-225, absorbed dose
Procedia PDF Downloads 112998 The Semiotics of Soft Power; An Examination of the South Korean Entertainment Industry
Authors: Enya Trenholm-Jensen
Abstract:
This paper employs various semiotic methodologies to examine the mechanism of soft power. Soft power refers to a country’s global reputation and their ability to leverage that reputation to achieve certain aims. South Korea has invested heavily in their soft power strategy for a multitude of predominantly historical and geopolitical reasons. On account of this investment and the global prominence of their strategy, South Korea was considered to be the optimal candidate for the aims of this investigation. Having isolated the entertainment industry as one of the most heavily funded segments of the South Korean soft power strategy, the analysis restricted itself to this sector. Within this industry, two entertainment products were selected as case studies. The case studies were chosen based on commercial success according to metrics such as streams, purchases, and subsequent revenue. This criterion was deemed to be the most objective and verifiable indicator of the products general appeal. The entertainment products which met the chosen criterion were Netflix’ “Squid Game” and BTS’ hit single “Butter”. The methodologies employed were chosen according to the medium of the entertainment products. For “Squid Game,” an aesthetic analysis was carried out to investigate how multi- layered meanings were mobilized in a show popularized by its visual grammar. To examine “Butter”, both music semiology and linguistic analysis were employed. The music section featured an analysis underpinned by denotative and connotative music semiotic theories borrowing from scholars Theo van Leeuwen and Martin Irvine. The linguistic analysis focused on stance and semantic fields according to scholarship by George Yule and John W. DuBois. The aesthetic analysis of the first case study revealed intertextual references to famous artworks, which served to augment the emotional provocation of the Squid Game narrative. For the second case study, the findings exposed a set of musical meaning units arranged in a patchwork of familiar and futuristic elements to achieve a song that existed on the boundary between old and new. The linguistic analysis of the song’s lyrics found a deceptively innocuous surface level meaning that bore implications for authority, intimacy, and commercial success. Whether through means of visual metaphor, embedded auditory associations, or linguistic subtext, the collective findings of the three analyses exhibited a desire to conjure a form of positive arousal in the spectator. In the synthesis section, this process is likened to that of branding. Through an exploration of branding, the entertainment products can be understood as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept. Limitations in the form of a timeframe biased perspective are addressed, and directions for future research are suggested. This paper employs semiotic methodologies to examine two entertainment products as mechanisms of soft power. Through means of visual metaphor, embedded auditory associations, or linguistic subtext, the findings reveal a desire to conjure positive arousal in the spectator. The synthesis finds similarities to branding, thus positioning the entertainment products as cogs in a larger operation aiming to create positive associations to Korea as a country and a concept.Keywords: BTS, cognitive semiotics, entertainment, soft power, south korea, squid game
Procedia PDF Downloads 154997 Discrete Element Simulations of Composite Ceramic Powders
Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat
Abstract:
Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography
Procedia PDF Downloads 138996 Spatial Characters Adapted to Rainwater Natural Circulation in Residential Landscape
Authors: Yun Zhang
Abstract:
Urban housing in China is typified by residential districts that occupy 25 to 40 percentage of the urban land. In residential districts, squares, roads, and building facades, as well as plants, usually form a four-grade spatial structure: district entrances, central landscapes, housing cluster entrances, green spaces between dwellings. This spatial structure and its elements not only compose the visible residential landscape but also play a major role of carrying rain water. These elements, therefore, imply ecological significance to urban fitness. Based upon theories of landscape ecology, residential landscape can be understood as a pattern typified by minor soft patch of planted area and major hard patch of buildings and squares, as well as hard corridors of roads. Use five landscape districts in Hangzhou as examples; this paper finds that the size, shape and slope direction of soft patch, the bend of roads, and the form of the four-grade spatial structure are influential for adapting to natural rainwater circulation.Keywords: Hangzhou China, rainwater, residential landscape, spatial character, urban housing
Procedia PDF Downloads 324995 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films
Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh
Abstract:
According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.Keywords: memristor, quantum dot, resistive switching, thin film
Procedia PDF Downloads 122994 Toward an Informed Capacity Development Program in Inclusive and Sustainable Agricultural and Rural Development
Authors: Maria Ana T. Quimbo
Abstract:
As the Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) approaches its 50th founding anniversary. It continues to pursue its mission of strengthening the capacities of Southeast Asian leaders and institutions under its reformulated mission of Inclusive and Sustainable Agricultural and Rural Development (ISARD). Guided by this mission, this study analyzed the desired and priority capacity development needs of institutions heads and key personnel toward addressing the constraints, problems, and issues related to agricultural and rural development toward achieving their institutional goals. Adopting an exploratory, descriptive research design, the study examined the competency needs at the institutional and personnel levels. A total of 35 institution heads from seven countries and 40 key personnel from eight countries served as research participants. The results showed a variety of competencies in the areas of leadership and management, agriculture, climate change, research, monitoring, and evaluation, planning, and extension or community service. While mismatch was found in a number of desired and priority competency areas as perceived by the respondents, there were also interesting concordant answers in both technical and non-technical areas. Interestingly, the competency needs both desired and prioritized were a combination of “hard” or technical skills and “soft” or interpersonal skills. Policy recommendations were forwarded on the need to continue building capacities in core competencies along ISARD; have a balance of 'hard' skills and 'soft' skills through the use of appropriate training strategies and explicit statement in training objectives, strengthen awareness on “soft” skills through its integration in workplace culture, build capacity on action research, continue partnerships encourage mentoring, prioritize competencies, and build capacity of desired and priority competency areas.Keywords: capacity development, competency needs assessment, sustainability and development, ISARD
Procedia PDF Downloads 378993 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 239992 Vulnerability Risk Assessment of Non-Engineered Houses Based on Damage Data of the 2009 Padang Earthquake 2009 in Padang City, Indonesia
Authors: Rusnardi Rahmat Putra, Junji Kiyono, Aiko Furukawa
Abstract:
Several powerful earthquakes have struck Padang during recent years, one of the largest of which was an M 7.6 event that occurred on September 30, 2009 and caused more than 1000 casualties. Following the event, we conducted a 12-site microtremor array investigation to gain a representative determination of the soil condition of subsurface structures in Padang. From the dispersion curve of array observations, the central business district of Padang corresponds to relatively soft soil condition with Vs30 less than 400 m/s. because only one accelerometer existed, we simulated the 2009 Padang earthquake to obtain peak ground acceleration for all sites in Padang city. By considering the damage data of the 2009 Padang earthquake, we produced seismic risk vulnerability estimation of non-engineered houses for rock, medium and soft soil condition. We estimated the loss ratio based on the ground response, seismic hazard of Padang and the existing damaged to non-engineered structure houses due to Padang earthquake in 2009 data for several return periods of earthquake events.Keywords: profile, Padang earthquake, microtremor array, seismic vulnerability
Procedia PDF Downloads 410991 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers
Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan
Abstract:
The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers
Procedia PDF Downloads 335990 A Case of Apocrine Sweat Gland Adenocarcinoma in a Tabby Cat
Authors: Funda Terzi, Elif Dogan, Ayse B. Kapcak
Abstract:
In this report, clinical, radiological, macroscopic, and histopathological findings of apocrine sweat gland adenocarcinoma are presented in a 13-year-old male tabby cat. In clinical examination, soft tissue masses were detected in the caudal abdomen and left tuber coxae. On radiological examination, subcutaneous masses with soft tissue contrast appearance were detected, and the masses were surgically removed under general anesthesia. The sizes of the masses were approximately 2x2x3 cm in the caudal abdomen and approximately 1x1x2 cm in the tuber coxae region. The cross-section of the mass was whitish-yellow in color. After the masses were fixed in 10% formaldehyde solution, a routine histopathology procedure was applied. In histopathological examination, apocrine sweat glands in a cystic structure and extensions from the center of the cyst to the lumen were determined, and anisonucleosis, anisocytosis, and anaplastic cells with giant nuclei were observed in the epithelial cells of the gland facing the lumen. A diagnosis of papillary-cystic type apocrine sweat gland adenocarcinoma was made with these findings.Keywords: apocrine sweat gland, carcinoma, cat, histopathology
Procedia PDF Downloads 176989 Understanding the Endogenous Impact of Tropical Cyclones Floods and Sustainable Landscape Management Innovations on Farm Productivity in Malawi
Authors: Innocent Pangapanga, Eric Mungatana
Abstract:
Tropical cyclones–related floods (TCRFs) in Malawi have devastating effects on smallholder agriculture, thereby threatening the food security agenda, which is already constrained by poor agricultural innovations, low use of improved varieties, and unaffordable inorganic fertilizers, and fragmenting landholding sizes. Accordingly, households have engineered and indigenously implemented sustainable landscape management (SLM) innovations to contain the adverse effects of TCRFs on farm productivity. This study, therefore, interrogated the efficacy of SLM adoption on farm productivity under varying TCRFs, while controlling for the potential selection bias and unobservable heterogeneity through the application of the Endogenous Switching Regression Model. In this study, we further investigated factors driving SLM adoption. Substantively, we found TCRFs reducing farm productivity by 31 percent, on the one hand, and influencing the adoption of SLM innovations by 27 percent, on the other hand. The study also observed that households that interacted SLM with TCRFs were more likely to enhance farm productivity by 24 percent than their counterparts. Interestingly, the study results further demonstrated that multiple adoptions of SLM-related innovations, including intercropping, agroforestry, and organic manure, enhanced farm productivity by 126 percent, suggesting promoting SLM adoption as a package to appropriately inform existing sustainable development goals’ agricultural productivity initiatives under intensifying TCRFs in the country.Keywords: tropical cyclones–related floods, sustainable landscape management innovations, farm productivity, endogeneity, endogenous switching regression model, panel data, smallholder agriculture
Procedia PDF Downloads 116988 Model Studies on Shear Behavior of Reinforced Reconstituted Clay
Abstract:
In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.Keywords: reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests
Procedia PDF Downloads 409987 Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development
Authors: Susana Gonçalves, Joana Lencart, Anabela Gregório Dias
Abstract:
Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT.Keywords: TBI, VMAT, anthropomorphic phantom, tissue equivalent materials
Procedia PDF Downloads 80986 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment
Procedia PDF Downloads 102985 Proactive SoC Balancing of Li-ion Batteries for Automotive Application
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas weyh
Abstract:
The demand for battery electric vehicles (BEV) is steadily increasing, and it can be assumed that electric mobility will dominate the market for individual transportation in the future. Regarding BEVs, the focus of state-of-the-art research and development is on vehicle batteries since their properties primarily determine vehicles' characteristic parameters, such as price, driving range, charging time, and lifetime. State-of-the-art battery packs consist of invariable configurations of battery cells, connected in series and parallel. A promising alternative is battery systems based on multilevel inverters, which can alter the configuration of the battery cells during operation via semiconductor switches. The main benefit of such topologies is that a three-phase AC voltage can be directly generated from the battery pack, and no separate power inverters are required. Therefore, modular battery systems based on different multilevel inverter topologies and reconfigurable battery systems are currently under investigation. Another advantage of the multilevel concept is that the possibility to reconfigure the battery pack allows battery cells with different states of charge (SoC) to be connected in parallel, and thus low-loss balancing can take place between such cells. In contrast, in conventional battery systems, parallel connected (hard-wired) battery cells are discharged via bleeder resistors to keep the individual SoCs of the parallel battery strands balanced, ultimately reducing the vehicle range. Different multilevel inverter topologies and reconfigurable batteries have been described in the available literature that makes the before-mentioned advantages possible. However, what has not yet been described is how an intelligent operating algorithm needs to look like to keep the SoCs of the individual battery strands of a modular battery system with integrated power electronics balanced. Therefore, this paper suggests an SoC balancing approach for Battery Modular Multilevel Management (BM3) converter systems, which can be similarly used for reconfigurable battery systems or other multilevel inverter topologies with parallel connectivity. The here suggested approach attempts to simultaneously utilize all converter modules (bypassing individual modules should be avoided) because the parallel connection of adjacent modules reduces the phase-strand's battery impedance. Furthermore, the presented approach tries to reduce the number of switching events when changing the switching state combination. Thereby, the ohmic battery losses and switching losses are kept as low as possible. Since no power is dissipated in any designated bleeder resistors and no designated active balancing circuitry is required, the suggested approach can be categorized as a proactive balancing approach. To verify the algorithm's validity, simulations are used.Keywords: battery management system, BEV, battery modular multilevel management (BM3), SoC balancing
Procedia PDF Downloads 120984 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy
Procedia PDF Downloads 505983 Preoperative versus Postoperative Radiation Therapy in Patients with Soft Tissue Sarcoma of the Extremity
Authors: AliAkbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi, Behnam Kadkhodaei
Abstract:
Background: Soft tissue sarcomas (STS) are generally treated with a combination of limb preservation surgery and radiation therapy. Today, preoperative radiation therapy is considered for accurate treatment volume and smaller field size. Therefore, this study was performed to compare preoperative with postoperative radiation therapy in patients with extremity STS. Methods: In this non-randomized clinical trial, patients with localized extremity STS referred to the orthopedic clinics in Iran from 2021 to 2023 were studied. Patients were randomly divided into two groups: preoperative and postoperative radiation therapy. The two groups of patients were compared in terms of acute (wound dehiscence and infection) and late (limb edema, subcutaneous fibrosis, and joint stiffness) complications and their severity, as well as local recurrence and other one-year outcomes. Results: A total of 80 patients with localized extremity STS were evaluated in two treatment groups. The groups were matched in terms of age, sex, history of diabetes mellitus, hypertension, smoking, involved side, involved extremity, lesion location, and tumor histopathology. The acute complications of treatment in the two groups of patients did not differ significantly (P > 0.05). Of the late complications, only joint stiffness between the two groups had significant statistical differences (P < 0.001). The severity of all three late complications in the postoperative radiation therapy group was significantly higher (P < 0.05). There was no significant difference between the two groups in terms of the rate of local recurrence of other one-year outcomes (P > 0.05). Conclusion: This study showed that in patients with localized extremity STS, the two therapeutic approaches of adjuvant and neoadjuvant radiation therapy did not differ significantly in terms of local recurrence and distant metastasis during the one-year follow-up period and due to fewer late complications in preoperative radiotherapy group, this treatment approach can be a better choice than postoperative radiation therapy.Keywords: soft tissue sarcoma, extremity, preoperative radiation therapy, postoperative radiation therapy
Procedia PDF Downloads 45982 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia
Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi
Abstract:
The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles
Procedia PDF Downloads 399981 Development of Strategic Cooperation in Managing Thailand-Myanmar Borders: Roles of Education in Enhancing Sustainability
Authors: Rungrot Trongsakul
Abstract:
This paper was aimed to study the strategic cooperation development of Thailand in accordance with the door open policy of Myanmar, by use of DIMES Model: Diplomacy, Information, Military and Economics, Socio-Culture. This research employed qualitative method, aiming to study, analyze and synthesize the content of laws, policies, relevant research papers and documents, and relevant theories, and to study external environment and national power based on DIMES Model. The five steps of strategic development utilized in this study included (1) conceptual framework and definition; (2) environmental scanning; (3) assessing; (4) determining; and (5) drafting strategic plan. The suggested strategies were based on the concept of 'Soft Power'. Therefore, the determination of measures, action plans or projects as strategic means of public and private organizations should be based on sincere participation among people and communities living on the borders shared by both countries. Adoption of education, learning and sharing process is a key to building sustainability of the countries’ strategic cooperation, while an application of 'Soft Power' in all dimensions of the cooperation between the two countries was suggested.Keywords: education, strategic cooperation, Thailand-Myanmar borders, sustainability
Procedia PDF Downloads 352