Search results for: smart camera networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4545

Search results for: smart camera networks

4155 DBN-Based Face Recognition System Using Light Field

Authors: Bing Gu

Abstract:

Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.

Keywords: DBN, face recognition, light field, Lytro

Procedia PDF Downloads 464
4154 Social Networks as a Tool for Sports Marketing

Authors: Márcia Aparecida Teixeira

Abstract:

Sports, in particular football, boosts considerably the financial market of a certain locality, be it city or even a country. The financial transactions involving this medium stand out from other existing businesses, such as small industries. Strategically, social networks are inserted in this sporting environment, in order to promote and attract new fans of this modality. The present study analyzes the use of social networks in Sports Marketing with a focus on football. For the object of this study, it was chosen a specific club, the Club Atlético Mineiro, a Brazilian club of great national notoriety. The social networks on focus will be: Facebook, Twitter, and Instagram. It will be analyzed the content and frequency of the posts, reception of the target public in relation to the content made available and its feedback.

Keywords: social network, sport, strategy, marketing

Procedia PDF Downloads 388
4153 Location Tracking of Human Using Mobile Robot and Wireless Sensor Networks

Authors: Muazzam A. Khan

Abstract:

In order to avoid dangerous environmental disasters, robots are being recognized as good entrants to step in as human rescuers. Robots has been gaining interest of many researchers in rescue matters especially which are furnished with advanced sensors. In distributed wireless robot system main objective for a rescue system is to track the location of the object continuously. This paper provides a novel idea to track and locate human in disaster area using stereo vision system and ZigBee technology. This system recursively predict and updates 3D coordinates in a robot coordinate camera system of a human which makes the system cost effective. This system is comprised of ZigBee network which has many advantages such as low power consumption, self-healing low data rates and low cost.

Keywords: stereo vision, segmentation, classification, human tracking, ZigBee module

Procedia PDF Downloads 493
4152 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 374
4151 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 305
4150 Constrained RGBD SLAM with a Prior Knowledge of the Environment

Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome

Abstract:

In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.

Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model

Procedia PDF Downloads 414
4149 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 400
4148 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.

Keywords: language skills, implementing, listening skill, attention, smart aids

Procedia PDF Downloads 42
4147 Language Development and Growing Spanning Trees in Children Semantic Network

Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh

Abstract:

In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.

Keywords: maximum spanning trees, word-embedding, semantic networks, language development

Procedia PDF Downloads 145
4146 A Philosophical Investigation into African Conceptions of Personhood in the Fourth Industrial Revolution

Authors: Sanelisiwe Ndlovu

Abstract:

Cities have become testbeds for automation and experimenting with artificial intelligence (AI) in managing urban services and public spaces. Smart Cities and AI systems are changing most human experiences from health and education to personal relations. For instance, in healthcare, social robots are being implemented as tools to assist patients. Similarly, in education, social robots are being used as tutors or co-learners to promote cognitive and affective outcomes. With that general picture in mind, one can now ask a further question about Smart Cities and artificial agents and their moral standing in the African context of personhood. There has been a wealth of literature on the topic of personhood; however, there is an absence of literature on African personhood in highly automated environments. Personhood in African philosophy is defined by the role one can and should play in the community. However, in today’s technologically advanced world, a risk is that machines become more capable of accomplishing tasks that humans would otherwise do. Further, on many African communitarian accounts, personhood and moral standing are associated with active relationality with the community. However, in the Smart City, human closeness is gradually diminishing. For instance, humans already do engage and identify with robotic entities, sometimes even romantically. The primary aim of this study is to investigate how African conceptions of personhood and community interact in a highly automated environment such as Smart Cities. Accordingly, this study lies in presenting a rarely discussed African perspective that emphasizes the necessity and the importance of relationality in handling Smart Cities and AI ethically. Thus, the proposed approach can be seen as the sub-Saharan African contribution to personhood and the growing AI debates, which takes the reality of the interconnectedness of society seriously. And it will also open up new opportunities to tackle old problems and use existing resources to confront new problems in the Fourth Industrial Revolution.

Keywords: smart city, artificial intelligence, personhood, community

Procedia PDF Downloads 202
4145 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 134
4144 Examples of Techniques and Algorithms Used in Wlan Security

Authors: Vahid Bairami Rad

Abstract:

Wireless communications offer organizations and users many benefits such as portability and flexibility, increased productivity, and lower installation costs. Wireless networks serve as the transport mechanism between devices and among devices and the traditional wired networks (enterprise networks and the internet). Wireless networks are many and diverse but are frequently categorized into three groups based on their coverage range: WWAN, WLAN, and WPAN. WWAN, representing wireless wide area networks, includes wide coverage area technologies such as 2G cellular, Cellular Digital Packet Data (CDPD), Global System for Mobile Communications (GSM), and Mobitex. WLAN, representing wireless local area networks, includes 802.11, Hyper lan, and several others. WPAN, represents wireless personal area network technologies such as Bluetooth and Infrared. The security services are provided largely by the WEP (Wired Equivalent Privacy) protocol to protect link-level data during wireless transmission between clients and access points. That is, WEP does not provide end-to-end security but only for the wireless portion of the connection.

Keywords: wireless lan, wired equivalent privacy, wireless network security, wlan security

Procedia PDF Downloads 569
4143 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 111
4142 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 188
4141 Estimating the Ladder Angle and the Camera Position From a 2D Photograph Based on Applications of Projective Geometry and Matrix Analysis

Authors: Inigo Beckett

Abstract:

In forensic investigations, it is often the case that the most potentially useful recorded evidence derives from coincidental imagery, recorded immediately before or during an incident, and that during the incident (e.g. a ‘failure’ or fire event), the evidence is changed or destroyed. To an image analysis expert involved in photogrammetric analysis for Civil or Criminal Proceedings, traditional computer vision methods involving calibrated cameras is often not appropriate because image metadata cannot be relied upon. This paper presents an approach for resolving this problem, considering in particular and by way of a case study, the angle of a simple ladder shown in a photograph. The UK Health and Safety Executive (HSE) guidance document published in 2014 (INDG455) advises that a leaning ladder should be erected at 75 degrees to the horizontal axis. Personal injury cases can arise in the construction industry because a ladder is too steep or too shallow. Ad-hoc photographs of such ladders in their incident position provide a basis for analysis of their angle. This paper presents a direct approach for ascertaining the position of the camera and the angle of the ladder simultaneously from the photograph(s) by way of a workflow that encompasses a novel application of projective geometry and matrix analysis. Mathematical analysis shows that for a given pixel ratio of directly measured collinear points (i.e. features that lie on the same line segment) from the 2D digital photograph with respect to a given viewing point, we can constrain the 3D camera position to a surface of a sphere in the scene. Depending on what we know about the ladder, we can enforce another independent constraint on the possible camera positions which enables us to constrain the possible positions even further. Experiments were conducted using synthetic and real-world data. The synthetic data modeled a vertical plane with a ladder on a horizontally flat plane resting against a vertical wall. The real-world data was captured using an Apple iPhone 13 Pro and 3D laser scan survey data whereby a ladder was placed in a known location and angle to the vertical axis. For each case, we calculated camera positions and the ladder angles using this method and cross-compared them against their respective ‘true’ values.

Keywords: image analysis, projective geometry, homography, photogrammetry, ladders, Forensics, Mathematical modeling, planar geometry, matrix analysis, collinear, cameras, photographs

Procedia PDF Downloads 52
4140 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study

Authors: Fahri Benli, Sitalakshmi Venkartraman, Ye Wei, Fiona Wahr

Abstract:

A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modelling as a case study.

Keywords: experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes

Procedia PDF Downloads 189
4139 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control

Procedia PDF Downloads 447
4138 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks

Authors: Jai Prakash Prasad, Suresh Chandra Mohan

Abstract:

Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.

Keywords: energy efficient, network lifetime, sensor networks, wireless communication

Procedia PDF Downloads 469
4137 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 26
4136 The Relationship between the Use of Social Networks with Executive Functions and Academic Performance in High School Students in Tehran

Authors: Esmail Sadipour

Abstract:

The use of social networks is increasing day by day in all societies. The purpose of this research was to know the relationship between the use of social networks (Instagram, WhatsApp, and Telegram) with executive functions and academic performance in first-year female high school students. This research was applied in terms of purpose, quantitative in terms of data type, and correlational in terms of technique. The population of this research consisted of all female high school students in the first year of district 2 of Tehran. Using Green's formula, the sample size of 150 people was determined and selected by cluster random method. In this way, from all 17 high schools in district 2 of Tehran, 5 high schools were selected by a simple random method and then one class was selected from each high school, and a total of 155 students were selected. To measure the use of social networks, a researcher-made questionnaire was used, the Barclay test (2012) was used for executive functions, and last semester's GPA was used for academic performance. Pearson's correlation coefficient and multivariate regression were used to analyze the data. The results showed that there is a negative relationship between the amount of use of social networks and self-control, self-motivation and time self-management. In other words, the more the use of social networks, the fewer executive functions of students, self-control, self-motivation, and self-management of their time. Also, with the increase in the use of social networks, the academic performance of students has decreased.

Keywords: social networks, executive function, academic performance, working memory

Procedia PDF Downloads 95
4135 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 89
4134 The Effectiveness of Social Story with the Help Smart Board use to Teach Social Skills for Preschool Children with ASD

Authors: Dilay Akgun Giray

Abstract:

Basic insuffiency spaces of ASD diagnosed individuals can be grouped as cognitive and academic characteristics, communicational characteristics, social characteristics and emotional characteristics. Referring to the features that children with ASD exhibit on social events, it is clear they have limitations for several social skills. One of the evidence based practices which has been developed and used for the limitations of definite social skills for individuals with autism is “Social Story Method”. Social stories was designed and applied for the first time in 1991, a special education teacher, in order to acquire social skills and improve the existing social skills for children with ASD. Many studies have revealed the effectiveness of social stories for teaching the social skills to individuals with ASD. In this study, three social skills that the child ,who was diagnosed ASD, is going to need primarily will be studied with smart board. This study is multiple probe across-behavior design which is one of the single subject research models.

Keywords: authism spectrum disorders, social skills, social story, smart board

Procedia PDF Downloads 486
4133 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 234
4132 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers

Procedia PDF Downloads 710
4131 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 70
4130 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 562
4129 A Framework of Virtualized Software Controller for Smart Manufacturing

Authors: Pin Xiu Chen, Shang Liang Chen

Abstract:

A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.

Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing

Procedia PDF Downloads 82
4128 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 142
4127 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
4126 Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

Authors: Saed Khawaldeh, Mohamed Elsharnouby, Alaa Eddin Alchalabi, Usama Pervaiz, Tajwar Aleef, Vu Hoang Minh

Abstract:

Taxonomic classification has a wide-range of applications such as finding out more about the evolutionary history of organisms that can be done by making a comparison between species living now and species that lived in the past. This comparison can be made using different kinds of extracted species’ data which include DNA sequences. Compared to the estimated number of the organisms that nature harbours, humanity does not have a thorough comprehension of which specific species they all belong to, in spite of the significant development of science and scientific knowledge over many years. One of the methods that can be applied to extract information out of the study of organisms in this regard is to use the DNA sequence of a living organism as a marker, thus making it available to classify it into a taxonomy. The classification of living organisms can be done in many machine learning techniques including Neural Networks (NNs). In this study, DNA sequences classification is performed using Convolutional Neural Networks (CNNs) which is a special type of NNs.

Keywords: deep networks, convolutional neural networks, taxonomic classification, DNA sequences classification

Procedia PDF Downloads 442