Search results for: runoff coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1134

Search results for: runoff coefficients

744 Exploring Urbanization-Induced Wetland Loss within the Greater Toronto Area from 2005 to 2015

Authors: Kaushika Vinotheeswaran

Abstract:

The Greater Toronto Area (GTA), located in Ontario, Canada, is among the fastest-growing metropolitan areas in North America. Rapid urbanization within the GTA has led to increased imperviousness and surface runoff, contributing to wetland loss. Wetland cover and land cover data from the Southern Ontario Land Resource Information System were analyzed to characterize wetland loss to built-up areas and land conversions between 2005 and 2015, evaluating the extent of urbanization-induced wetland loss. Spatial analysis revealed a significant increase in the number of wetlands lost from 2005 to 2011 compared to the period from 2011 to 2015, with these losses attributed to increased urban expansions within the GTA. Non-wetland conversions, such as agricultural and impervious built-up uses to support urban expansions, played a significant role in wetland loss. Current approaches to wetland policy implementation and land-use planning strategies do not effectively identify or mitigate damage to wetlands in advance of development, resulting in significant wetland loss. Therefore, wetland conservation policies must be re-evaluated to address gaps in policy practice and focus on minimizing wetland loss.

Keywords: wetland loss, urbanization, impervious, pervious, wetland conservation

Procedia PDF Downloads 37
743 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 115
742 Coefficients of Some Double Trigonometric Cosine and Sine Series

Authors: Jatinderdeep Kaur

Abstract:

In this paper, the results of Kano from one-dimensional cosine and sine series are extended to two-dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as the class of semi convexity and class R are extended from one dimension to two dimensions. Under these extended classes, I have checked the function f(x,y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function. Further, some results are obtained which are the generalization of Moricz's results.

Keywords: conjugate dirichlet kernel, conjugate fejer kernel, fourier series, semi-convexity

Procedia PDF Downloads 412
741 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale

Authors: Imene Skhakhfa, Lahbaci Ouerdachi

Abstract:

To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.

Keywords: model calibration, intensity, runoff, hydrograph

Procedia PDF Downloads 467
740 Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams

Authors: Ali Sagiroglu, Sema Noyan Alacali, Guray Arslan

Abstract:

This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined.

Keywords: reinforced concrete, beam, shear strength, failure probability, safety factor

Procedia PDF Downloads 804
739 Development of Non-Point Pollutants Removal Equipments Using Media with Bacillus sp.

Authors: Han-Seul Lee, Min-Koo Kang, Sang-Ill Lee

Abstract:

This study was conducted to reduce runoff by rainwater infiltration facility using attached growth with Bacillus sp., which are reported to remove nitrogen and phosphorus, as well as organic matter effectively. This study was investigated non-point pollutants removal efficiency of organic, nitrogen, and phosphorus in column using the media attached growth with Bacillus sp. To compare attached growth with bacillus sp. and detached media, two columns filled with perlite, zeolite, vermiculite, pumice, peat-moss was installed. In A column (attached growth with bacillus sp.), in case of infiltration velocity 30 mm/hr in high concentration of influent, it showed the removal efficiency (after aging term) is SS (suspended solid) 85.8±1.2 %, T-P (total phosphorus) 67.0±8.1 %, T-N (total nitrogen) 66.0±4.9 %, COD (chemical oxygen demand) 73.6±2.9 %, NH4+-N 72.7±3.0 %. In B column (detached media), in case of infiltration velocity 30 mm/hr in high concentration of influent, it showed the removal efficiency (after aging term) is SS 86.0±2.2 %, T-P 62.5±11.3 %, T-N 53.3±3.9 %, COD 34.6±3.7 %, NH4+-N 61.5±2.8 %. Removal efficiency of A column is better than B column. As the result from this study, using media with Bacillus sp. can improve an effective removal of non-point source pollutants.

Keywords: non-point source pollutants, Bacillus sp., rainwater, infiltration facility

Procedia PDF Downloads 299
738 Novel Microstrip MIMO Antenna for 3G/4G Applications

Authors: Sandro Samir Nasief, Hussein Hamed Ghouz, Mohamed Fathy

Abstract:

A compact ultra-wide band micro-strip MIMO antenna is introduced. The antenna consists of two elements each of size 24X24 mm2 (square millimetre) while the total MIMO size is 58X24 mm2 after the spacing between MIMO elements and adding a decouple circuit. The first one covers from 3.29 to 6.9 GHZ using digital ground and the second antenna covers from 8.76 to 13.27 GHZ using defective ground. This type of antenna is used for 3G and 4G applications. The introduction for the antenna structure and the parametric study (reflection coefficients, gain, coupling and decoupling) will be introduced.

Keywords: micro-strip antenna, MIMO, digital ground, defective ground, decouple circuit, bandwidth

Procedia PDF Downloads 336
737 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 117
736 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 127
735 Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State

Authors: Rajendra Kumar Isaac, Monisha Isaac

Abstract:

Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.

Keywords: climate variability, agriculture, land use, mitigation strategies

Procedia PDF Downloads 250
734 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 120
733 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 320
732 Cesium 137 Leaching from Soils of Territories, Polluted by Radionuclides

Authors: S. V. Vasilenkov, O. N. Demina

Abstract:

Chernobyl NPP accident is the biggest in history of nuclear energetic. Bryansk region of Russia was exposed by the most intensive radiation pollution. For that, we made some researches in order to find the methods of soil rehabilitation on territories, polluted by radionuclides with the means of Cesium 137 leaching by watering. For experiments we took the soil from the upper more polluted 10 cm layer of different species. Cesium 137 leaching was made by different methods in washing columns. Washout of Cesium was made by periodical cycles in terms of 4-6 days. In experiments with easy argillaceous soil with start specific radioactivity 4158 bk/kg through 17 cycles the effective reducing was achieved and contained 1512 bk/kg. Besides, results of researches showed, that in the first 6-10 cycles we can see reducing of washing rate but after application of intensificators: ultrasound water processing, aerification, application of fertilizers (KCl), lime, freezing, we can see increasing of Cesium 137 leaching. The experimental investigations in washout of Cesium (Cs) – 137 from the soil were carried out in the field and laboratorial conditions during its freezing and melting. The experiments showed, that washout of Cesium (Cs) – 137 from the soil is rather high after freezing, than non-frozen soil is. And it conforms to washout of Cesium, made under the influence of the intensificaters. This fact allows to recommend chip and easy to construct technically arrangement for regulation of the snow-melt runoff for rehabilitation of the radioactive impoundment.

Keywords: pollution, radiation, Cesium 137 leaching, agriculture

Procedia PDF Downloads 269
731 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir

Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder

Abstract:

22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.

Keywords: drinking water reservoir, multivariate analysis, physico-chemical parameters, water quality

Procedia PDF Downloads 262
730 Inbreeding Study Using Runs of Homozygosity in Nelore Beef Cattle

Authors: Priscila A. Bernardes, Marcos E. Buzanskas, Luciana C. A. Regitano, Ricardo V. Ventura, Danisio P. Munari

Abstract:

The best linear unbiased predictor (BLUP) is a method commonly used in genetic evaluations of breeding programs. However, this approach can lead to higher inbreeding coefficients in the population due to the intensive use of few bulls with higher genetic potential, usually presenting some degree of relatedness. High levels of inbreeding are associated to low genetic viability, fertility, and performance for some economically important traits and therefore, should be constantly monitored. Unreliable pedigree data can also lead to misleading results. Genomic information (i.e., single nucleotide polymorphism – SNP) is a useful tool to estimate the inbreeding coefficient. Runs of homozygosity have been used to evaluate homozygous segments inherited due to direct or collateral inbreeding and allows inferring population selection history. This study aimed to evaluate runs of homozygosity (ROH) and inbreeding in a population of Nelore beef cattle. A total of 814 animals were genotyped with the Illumina BovineHD BeadChip and the quality control was carried out excluding SNPs located in non-autosomal regions, with unknown position, with a p-value in the Hardy-Weinberg equilibrium lower than 10⁻⁵, call rate lower than 0.98 and samples with the call rate lower than 0.90. After the quality control, 809 animals and 509,107 SNPs remained for analyses. For the ROH analysis, PLINK software was used considering segments with at least 50 SNPs with a minimum length of 1Mb in each animal. The inbreeding coefficient was calculated using the ratio between the sum of all ROH sizes and the size of the whole genome (2,548,724kb). A total of 25.711 ROH were observed, presenting mean, median, minimum, and maximum length of 3.34Mb, 2Mb, 1Mb, and 80.8Mb, respectively. The number of SNPs present in ROH segments varied from 50 to 14.954. The longest ROH length was observed in one animal, which presented a length of 634Mb (24.88% of the genome). Four bulls were among the 10 animals with the longest extension of ROH, presenting 11% of ROH with length higher than 10Mb. Segments longer than 10Mb indicate recent inbreeding. Therefore, the results indicate an intensive use of few sires in the studied data. The distribution of ROH along the chromosomes showed that chromosomes 5 and 6 presented a large number of segments when compared to other chromosomes. The mean, median, minimum, and maximum inbreeding coefficients were 5.84%, 5.40%, 0.00%, and 24.88%, respectively. Although the mean inbreeding was considered low, the ROH indicates a recent and intensive use of few sires, which should be avoided for the genetic progress of breed.

Keywords: autozygosity, Bos taurus indicus, genomic information, single nucleotide polymorphism

Procedia PDF Downloads 128
729 Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images

Authors: Bo Wang

Abstract:

This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future.

Keywords: remote sensing retrieve, PM 2.5, GF-1, aerosol optical depth

Procedia PDF Downloads 222
728 Problems of Water Resources : Vulnerability to Climate Change, Modeling with Software WEAP 21 (Upper and Middle Cheliff)

Authors: Mehaiguene Madjid, Meddi Mohamed

Abstract:

The results of applying the model WEAP 21 or 'Water Evaluation and Planning System' in Upper and Middle Cheliff are presented in cartographic and graphic forms by considering two scenarios: -Reference scenario 1961-1990, -Climate change scenarios (low and high) for 2020 and 2050. These scenarios are presented together in the results and compared them to know the impact on aquatic systems and water resources. For the low scenario for 2050, a decrease in the rate of runoff / infiltration will be 81.4 to 3.7 Hm3 between 2010 and 2050. While for the high scenario for 2050, the reduction will be 87.2 to 78.9 Hm3 between 2010 and 2050. Comparing the two scenarios, shows that the water supplied will increase by 216.7 Hm3 to 596 Hm3 up to 2050 if we do not take account of climate change. Whereas, if climate change will decrease step by step: from 2010 to 2026: for the climate change scenario (high scenario) by 2050, water supplied from 346 Hm3 to 361 Hm3. That of the reference scenario (1961-1990) will increase to 379.7 Hm3 in 2050. This is caused by the increased demand (increased population, irrigated area, etc ). The balance water management basin is positive for the different Horizons and different situations. If we do not take account of climate change will be the outflow of 5881.4 Hm3. This excess at the basin can be used as part of a transfer for example.

Keywords: balance water, management basin, climate change scenario, Upper and Middle Cheliff

Procedia PDF Downloads 289
727 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean

Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.

Keywords: coral environment, marine microbiology, network analysis, omics data analysis

Procedia PDF Downloads 235
726 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 332
725 Numerical Simulation Using Lattice Boltzmann Technique for Mass Transfer Characteristics in Liquid Jet Ejector

Authors: K. S. Agrawal

Abstract:

The performance of jet ejector was studied in detail by different authors. Several authors have studied mass transfer characteristics like interfacial area, mass transfer coefficients etc. In this paper, we have made an attempt to develop PDE model by considering bubble properties and apply Lattice-Boltzmann technique for PDE model. We may present the results for the interfacial area which we have obtained from our numerical simulation. Later the results are compared with previous work.

Keywords: jet ejector, mass transfer characteristics, numerical simulation, Lattice-Boltzmann technique

Procedia PDF Downloads 341
724 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique

Authors: Igor V. Savchenko, Dmitrii A. Samoshkin

Abstract:

The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.

Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 175
723 Multi-Scale Spatial Difference Analysis Based on Nighttime Lighting Data

Authors: Qinke Sun, Liang Zhou

Abstract:

The ‘Dragon-Elephant Debate’ between China and India is an important manifestation of global multipolarity in the 21st century. The two rising powers have carried out economic reforms one after another in the interval of more than ten years, becoming the fastest growing developing country and emerging economy in the world. At the same time, the development differences between China and India have gradually attracted wide attention of scholars. Based on the continuous annual night light data (DMSP-OLS) from 1992 to 2012, this paper systematically compares and analyses the regional development differences between China and India by Gini coefficient, coefficient of variation, comprehensive night light index (CNLI) and hot spot analysis. The results show that: (1) China's overall expansion from 1992 to 2012 is 1.84 times that of India, in which China's change is 2.6 times and India's change is 2 times. The percentage of lights in unlighted areas in China dropped from 92% to 82%, while that in India from 71% to 50%. (2) China's new growth-oriented cities appear in Hohhot, Inner Mongolia, Ordos, and Urumqi in the west, and the declining cities are concentrated in Liaoning Province and Jilin Province in the northeast; India's new growth-oriented cities are concentrated in Chhattisgarh in the north, while the declining areas are distributed in Uttar Pradesh. (3) China's differences on different scales are lower than India's, and regional inequality of development is gradually narrowing. Gini coefficients at the regional and provincial levels have decreased from 0.29, 0.44 to 0.24 and 0.38, respectively, while regional inequality in India has slowly improved and regional differences are gradually widening, with Gini coefficients rising from 0.28 to 0.32. The provincial Gini coefficient decreased slightly from 0.64 to 0.63. (4) The spatial pattern of China's regional development is mainly east-west difference, which shows the difference between coastal and inland areas; while the spatial pattern of India's regional development is mainly north-south difference, but because the southern states are sea-dependent, it also reflects the coastal inland difference to a certain extent. (5) Beijing and Shanghai present a multi-core outward expansion model, with an average annual CNLI higher than 0.01, while New Delhi and Mumbai present the main core enhancement expansion model, with an average annual CNLI lower than 0.01, of which the average annual CNLI in Shanghai is about five times that in Mumbai.

Keywords: spatial pattern, spatial difference, DMSP-OLS, China, India

Procedia PDF Downloads 126
722 Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin

Authors: Golaleh Ghaffari

Abstract:

A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region.

Keywords: erosion, Gheshlagh dam, sediment yield, SWAT

Procedia PDF Downloads 499
721 Design of Chaos Algorithm Based Optimal PID Controller for SVC

Authors: Saeid Jalilzadeh

Abstract:

SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.

Keywords: chaos, PID controller, SVC, frequency oscillation

Procedia PDF Downloads 425
720 Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings

Authors: Meral Yucel, Vildan Ok

Abstract:

This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009.

Keywords: high rise buildings, pressure coefficients, wind tunnel experiments, wind standard of tall buildings

Procedia PDF Downloads 253
719 Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions

Authors: Jitendra Kumar Chawla, Mukesh Kumar Mishra

Abstract:

The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail.

Keywords: modulational instability, ion acoustic wave, KBM method

Procedia PDF Downloads 633
718 Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials

Authors: Hatice Guzel, Imran Oral, Huseyin Isler

Abstract:

In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations.

Keywords: composite materials, elastic constants, orthotropic materials, ultrasound

Procedia PDF Downloads 264
717 Determination of Benzatropine in Hair by GC/MS after Liquid-Liquid Extraction (LLE)

Authors: Abdulsallam A. Bakdash, Aiyshah M. Alshehri, Hind M. Alenzi

Abstract:

Benzatropine (benztropine) is used to treat symptoms of Parkinson's disease or involuntary movements due to the side effects of certain psychiatric drugs. We report in this study, results of a procedure for the determination of benzatropine in hair using LLE, once with methanol and second with phosphate buffer (pH 6.0), followed by filtration and then re-extraction with dichloromethane. A GC/MS method was developed and validated for this determination using selected ion monitoring (SIM) detection without derivatization. Linearity established over the concentration range 0.1-20.0 ng/mg hair, and the correlation coefficients were greater than 0.99. Recoveries were 52.2% and 21.1% using methanol and phosphate buffer extraction, respectively. Detection limits of benzatropine in hair were between 0.65 and 3.0 ng/mg hair, while the accuracy were 10.4% and 18.5% (RSD), respectively. We also applied this method to the analysis of soaked hair samples and demonstrated that the LLE using methanol meets the requirement for the analysis of benzatropine in hair.

Keywords: hair analysis, benzatropine, liquid-liquid extraction, GC/MS

Procedia PDF Downloads 384
716 Application of Data Mining for Aquifer Environmental Assessment

Authors: Saman Javadi, Mehdi Hashemy, Mohahammad Mahmoodi

Abstract:

Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. The common way to provide vulnerability map is DRASTIC. Meanwhile, application of the method is not easy to apply for any aquifer due to choosing appropriate constant values of weights and ranks. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the case study represent zones with different level of vulnerability. The finding results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is obtained 61%.

Keywords: clustering, data mining, groundwater, vulnerability assessment

Procedia PDF Downloads 572
715 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 37