Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 250

Search results for: micro-strip antenna

250 Design of Broadband W-Slotted Microstrip Patch Antenna

Authors: Neeraj G. Nahata, K. S. Bhagat


Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software.

Keywords: broadband, microstrip antenna, VSWR, W-slotted patch

Procedia PDF Downloads 230
249 Directivity and Gain Improvement for Microstrip Array Antenna with Directors

Authors: Hassan M. Elkamchouchi, Samy H. Darwish, Yasser H. Elkamchouchi, M. E. Morsy


Methodology is suggested to design a linear rectangular microstrip array antenna based on Yagi antenna theory. The antenna with different directors' lengths as parasitic elements were designed, simulated, and analyzed using HFSS. The calculus and results illustrate the effectiveness of using specific parasitic elements to improve the directivity and gain for microstrip array antenna. The results have shown that the suggested methodology has the potential to be applied for improving the antenna performance. Maximum radiation intensity (Umax) of the order of 0.47w/st was recorded, directivity of 6.58dB, and gain better than 6.07dB are readily achievable for the antenna that working.

Keywords: directivity, director, microstrip antenna, gain improvment

Procedia PDF Downloads 352
248 Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications

Authors: M. Naimur Rahman, Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran


This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band.

Keywords: Ku-band antenna, microstrip antenna, psi-shaped antenna, satellite applications

Procedia PDF Downloads 192
247 Effect of Ionized Plasma Medium on the Radiation of a Rectangular Microstrip Antenna on Ferrite Substrate

Authors: Ayman Al Sawalha


This paper presents theoretical investigations on the radiation of rectangular microstrip antenna printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study of rectangular microstrip antenna in free space is carried out by applying the transmission line model combining with potential function techniques while hydrodynamic theory is used for it is analysis in plasma medium. By taking the biased and unbiased ferrite cases, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of rectangular microstrip antenna structure significantly.

Keywords: ferrite, microstrip antenna, plasma, radiation

Procedia PDF Downloads 233
246 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok


In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: multi-slotted antenna, microstrip patch antenna, frequency selective surface, artificial magnetic conduction

Procedia PDF Downloads 274
245 Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication

Authors: Subal Kar, Madhuja Ghosh, Amitesh Kumar, Arijit Majumder


Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency.

Keywords: split ring resonator, metamaterial, CSRR loaded patch antenna, microstrip patch antenna, LC resonator

Procedia PDF Downloads 238
244 A CPW Fed Bowtie Microstrip Slot Antenna for Wireless Applications

Authors: Amandeep Singh, Surinder Singh


A slotted Bow-Tie microstrip patch antenna utilizing input of coplanar waveguide for high frequency wireless applications is proposed and analyzed in this work. RT/Duroid 5880 with its dielectric constant 2.2 is opted for the experimentation to analyze the proposed microstrip slot antenna. This antenna is exclusively designed for the frequency range of 10 GHz to 11 GHz and modelling parameters are obtained from the already existing data and dimensions of antenna are adjusted by employing some corrugated slots in the Bowtie shape to obtain the required bandwidth so that it can radiate within the specified range. The characteristics of proposed antenna are measured by a FEM electromagnetic field solver and it is found that the reflection coefficient, voltage standing wave ratio, radiated gain, feed point impedance, radiation efficiency are in a good agreement. This antenna is also exhibiting an absolute bandwidth of 1000 MHz. The validated results indicate that the proposed bowtie microstrip slot antenna comes under the wideband category and utilized in the wireless application ranges between the 10 GHz – 11 GHz.

Keywords: CPW, bowtie, FEM, corrugated

Procedia PDF Downloads 405
243 Design of a Compact Microstrip Patch Antenna for LTE Applications by Applying FDSC Model

Authors: Settapong Malisuwan, Jesada Sivaraks, Peerawat Promkladpanao, Nattakit Suriyakrai, Navneet Madan


In this paper, a compact microstrip patch antenna is designed for mobile LTE applications by applying the frequency-dependent Smith-Chart (FDSC) model. The FDSC model is adopted in this research to reduce the error on the frequency-dependent characteristics. The Ansoft HFSS and various techniques is applied to meet frequency and size requirements. The proposed method within this research is suitable for use in computer-aided microstrip antenna design and RF integrated circuit (RFIC) design.

Keywords: frequency-dependent, smith-chart, microstrip, antenna, LTE, CAD

Procedia PDF Downloads 266
242 Design and Analysis of Proximity Fed Single Band Microstrip Patch Antenna with Parasitic Lines

Authors: Inderpreet Kaur, Sukhjit Kaur, Balwinder Singh Sohi


The design proposed in this paper mainly focuses on implementation of a single feed compact rectangular microstrip patch antenna (MSA) for single band application. The antenna presented here also works in dual band but its best performance has been obtained when optimised to work in single band mode. In this paper, a new feeding structure is applied in the patch antenna design to overcome undesirable features of the earlier multilayer feeding structures while maintaining their interesting features.To make the proposed antenna more efficient the optimization of the antenna design parameters have been done using HFSS’s optometric. For the proposed antenna one resonant frequency has been obtained at 6.03GHz, with Bandwidth of 167MHz and return loss of -33.82db. The characteristics of the designed structure are investigated by using FEM based electromagnetic solver.

Keywords: bandwidth, retun loss, parasitic lines, microstrip antenna

Procedia PDF Downloads 366
241 A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation

Authors: Lakhdar Zaid, Albane Sangiovanni


A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.

Keywords: active antenna, polarization diversity, patch antenna, polyphase filter

Procedia PDF Downloads 231
240 A Parasitic Resonator-Based Diamond Shape Microstrip Antenna for Ultra-Wide-Band Applications

Authors: M. Zulfiker Mahmud, M. Naimur Rahman, Farhad Bin Ashraf, Norbahiah Misran, Mohammad Tariqul Islam


This study proposes a diamond-shaped microstrip patch antenna for ultra-wideband applications. The antenna is made up of a diamond shape radiating patch, partial ground plane, and three asterisk-shaped parasitic elements. The parasitic elements are positioned above the ground plane to enhance the bandwidth and gain. The proposed antenna has a compact dimension of 30 x 25 x 1.6 mm3 and achieves an overall bandwidth (S11<-10dB) is 5.8 GHz from 2.7 GHz to 8.5 GHz. The antenna attains more than 4 dBi realized the gain and 80% efficiency over the bandwidth with omnidirectional radiation pattern. The design and simulation of the proposed antenna are performed in Computer Simulation Technology (CST) Microwave Studio. The observation during the analysis of the simulated data reveals that the proposed antenna is suitable for Ultra wide-band (UWB) applications where high gain is required.

Keywords: diamond-shaped antenna, microstrip antenna, parasitic resonator, UWB applications

Procedia PDF Downloads 107
239 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna

Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach


This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.

Keywords: dual-band antenna, fractal antenna, GPS band, modified ground structure, sierpinski triangle, WiMAX band

Procedia PDF Downloads 351
238 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element

Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid


Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.

Keywords: FEKO, HFSS, dual band, shorted annular ring patch

Procedia PDF Downloads 318
237 Modified Step Size Patch Array Antenna for UWB Wireless Applications

Authors: Hamid Aslani, Ahmed Radwan


In this paper, a single element microstrip antenna is presented for UWB applications by using techniques as partial ground plane and modified the shape of the patch. The antenna is properly designed to have a compact size and constant gain against frequency. The simulated results have done using two EM software and show good agreement with the measured results for the fabricated antenna. Then a designing of two elements patch antenna array for UWB in the frequency band of 3.1-10 GHz is presented in this paper. The array is constructed by means of feeding two omni-directional modified circular patch elements with a modified power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1–10 GHz). Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits.

Keywords: ultra wide band, radiation performance, microstrip antenna, size miniaturized antenna

Procedia PDF Downloads 185
236 Mutual Coupling Reduction between Patch Antenna Array Elements Using Metamaterial Z Shaped Resonators

Authors: Oossama Tabbabi, Mondher Labidi, Fethi Choubani, J. David


Modern wireless communication systems require compact design, low cost and simple structure antennas to insure reliability, agility, and high efficiency characteristics. This paper presents a microstrip antenna array designed for 8 GHz applications. To reduce the mutual coupling effects, a Z shape metamaterial structure was imprinted in the microstrip antenna array composed of two elements. Simulation results show the improvement of mutual coupling by adding Z shape metamaterial structure to the antenna substrate. The proposed structure reduces mutual coupling by 19 dB. The simulation has been performed by using HFSS simulator.

Keywords: antenna array, compact design, modern wireless communication, mutual coupling effects

Procedia PDF Downloads 223
235 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem


A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G technology, array antenna, microstrip, millimeter wave

Procedia PDF Downloads 224
234 The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication

Authors: Shahid M. Ali, Zakiullah


An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system.

Keywords: dual band, microstrip patch antenna, HFSS, Ku band, satellite

Procedia PDF Downloads 264
233 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting

Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach


A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875

Keywords: UWB planar antenna, L-shaped slots, wireless applications, impedance band-width, radiation pattern, CST

Procedia PDF Downloads 335
232 Novel Microstrip MIMO Antenna for 3G/4G Applications

Authors: Sandro Samir Nasief, Hussein Hamed Ghouz, Mohamed Fathy


A compact ultra-wide band micro-strip MIMO antenna is introduced. The antenna consists of two elements each of size 24X24 mm2 (square millimetre) while the total MIMO size is 58X24 mm2 after the spacing between MIMO elements and adding a decouple circuit. The first one covers from 3.29 to 6.9 GHZ using digital ground and the second antenna covers from 8.76 to 13.27 GHZ using defective ground. This type of antenna is used for 3G and 4G applications. The introduction for the antenna structure and the parametric study (reflection coefficients, gain, coupling and decoupling) will be introduced.

Keywords: micro-strip antenna, MIMO, digital ground, defective ground, decouple circuit, bandwidth

Procedia PDF Downloads 244
231 Optimization of Dual Band Antenna on Silicon Substrate

Authors: Syrine lahmadi, Jamel Bel Hadj Tahar


In this paper, a rectangular antenna with slots integrated on silicon substrate operating in 60GHz, is studied and optimized. The effect of different parameter of the antenna (width, length, the position of the microstrip-feed line...) and the parameter of the substrate (the thickness, the dielectric constant) on gain, frequency is presented. Also, the paper presents a solution to ameliorate the bandwidth. The maximum simulated radiation gain of this rectangular dual band antenna is 5, 38 dB around 60GHz. The simulation studied id developed based on advanced design system tools. It is found that the designed antenna is 19 % smaller than a rectangular antenna with the same dimensions. This antenna with dual band can function for many communication systems as automobile or radar.

Keywords: dual band, enlargement of bandwidth, miniaturized antennas, printed antenna

Procedia PDF Downloads 278
230 Transmission Line Matrix (TLM) Modelling of Microstrip Circular Antenna

Authors: Jugoslav Jokovic, Tijana Dimitrijevic, Nebojsa Doncov


The goal of this paper is to investigate the possibilities and effectiveness of the TLM (Transmission Line Matrix) method for modelling of up-to-date microstrip antennas with circular geometry that have significant application in modern wireless communication systems. The coaxially fed microstrip antenna configurations with circular patch are analyzed by using the in-house 3DTLMcyl_cw solver based on computational electromagnetic TLM method adapted to the cylindrical grid and enhanced with the compact wire model. Opposed to the widely used rectangular TLM mesh, where a staircase approximation has to be used to describe curved boundaries, precise modelling of circular boundaries can be accomplished in the cylindrical grid irrespective of the mesh resolution. Using the compact wire model incorporated in cylindrical mesh, it is possible to model coaxial feed and include the influence of the real excitation in the antenna model. The conventional and inverted configuration of a coaxially fed circular patch antenna are considered, comparing the resonances obtained using TLM cylindrical model with results reached by the corresponding model in a rectangular grid as well as with experimental ones. Bearing in mind that accuracy of simulated results depends on a relevantly created model, besides structure geometry and dimensions, it is important to consider additional modelling issues, regarding appropriate mesh resolution and a relevant extension of a mesh around the considered structure that would provide convergence of the results.

Keywords: computational electromagnetic, coaxial feed, microstrip antenna, TLM modelling

Procedia PDF Downloads 211
229 Dual Reconfigurable Antenna Using Capacitive Coupling Slot and Parasitic Square Ring

Authors: M. Abou Al-alaa, H. A. Elsadek, E. A. Abdallah, E. A. Hashish


A square patch antenna with both frequency and polarization reconfigurability is presented. The antenna consists of a square patch with coplanar feed on the ground plane. On the patch side, there is a parasitic square ring that is responsible for changing the antenna polarization. On the ground plane, there is a rectangular slot. By changing of length of this slot, the antenna resonance frequency can be changed. The antenna operates at 1.57 and 2.45 GHz that used in GPS and Bluetooth applications, respectively. The length of the slot in the proposed antenna is 40 mm, and the antenna operates at the lower frequency (1.57 GHz). By using switches in the ground plane the slot length can be adjust to 24 mm, so the antenna operates at upper frequency (2.45 GHz). Two switches are mounted on the parasitic ring at optimized positions. By switching between the different states of these two switches, the proposed antenna operates with linear polarization (LP) and circular polarization (CP) at each operating frequency. The antenna gain at 1.57 and 2.45 GHz are 5.9 and 7.64 dBi, respectively. The antenna is analyzed using the CST Microwave Studio. The proposed antenna was fabricated and measured. Results comparison shows good agreement. The antenna has applications in several wireless communication systems.

Keywords: microstrip patch antenna, reconfigurable antenna, frequency reconfigurability, polarization reconfigurability, parasitic square ring, linear polarization, circular polarization

Procedia PDF Downloads 421
228 Multiband Prefractal Microstrip Antenna for Wireless Applications

Authors: Yadwinder Kumar, Priyanka Rani Amandeep Singh


In this paper the design of a multiband pre-fractal micro strip antenna with proximity coupling feed is presented. The proposed antenna resonates on seven different frequencies that are 2.6 GHz, 5.1 GHz, 9.4 GHz, 11.5 GHz, 13.8 GHz, 16.3 GHz, and 18.6 GHz. Simulated results presented here shows that the minimum return loss is achieved at the 16.3 GHz frequency which is up to 37 dB. Also the maximum band width of 700 MHz is achieved by the frequency bands 13.4 GHz to 14.1 GHz, 15.9 GHz to 16.6 GHz and 18.2 GHz to 18.9 GHz. The proposed feed line is sandwiched between two substrate layers and increases in the bandwidth of antenna has been observed up to 13% in comparison of micro strip feed line. Effect of key design parameters such as variation in substrate material, substrate height and feeding technique on antenna S-parameter have been investigated and discussed.

Keywords: fractal antenna, pre-fractals, micro strip antenna, ISM band, electromagnetic coupling, VSWR

Procedia PDF Downloads 502
227 High Gain Mobile Base Station Antenna Using Curved Woodpile EBG Technique

Authors: P. Kamphikul, P. Krachodnok, R. Wongsan


This paper presents the gain improvement of a sector antenna for mobile phone base station by using the new technique to enhance its gain for microstrip antenna (MSA) array without construction enlargement. The curved woodpile Electromagnetic Band Gap (EBG) has been utilized to improve the gain instead. The advantages of this proposed antenna are reducing the length of MSAs array but providing the higher gain and easy fabrication and installation. Moreover, it provides a fan-shaped radiation pattern, wide in the horizontal direction and relatively narrow in the vertical direction, which appropriate for mobile phone base station. The paper also presents the design procedures of a 1x8 MSAs array associated with U-shaped reflector for decreasing their back and side lobes. The fabricated curved woodpile EBG exhibits bandgap characteristics at 2.1 GHz and is utilized for realizing a resonant cavity of MSAs array. This idea has been verified by both the Computer Simulation Technology (CST) software and experimental results. As the results, the fabricated proposed antenna achieves a high gain of 20.3 dB and the half-power beam widths in the E- and H-plane of 36.8 and 8.7 degrees, respectively. Good qualitative agreement between measured and simulated results of the proposed antenna was obtained.

Keywords: gain improvement, microstrip antenna array, electromagnetic band gap, base station

Procedia PDF Downloads 216
226 Optimization of a Hand-Fan Shaped Microstrip Patch Antenna by Means of Orthogonal Design Method of Design of Experiments for L-Band and S-Band Applications

Authors: Jaswinder Kaur, Nitika, Navneet Kaur, Rajesh Khanna


A hand-fan shaped microstrip patch antenna (MPA) for L-band and S-band applications is designed, and its characteristics have been reconnoitered. The proposed microstrip patch antenna with double U-slot defected ground structure (DGS) is fabricated on an FR4 substrate which is a very readily available and inexpensive material. The suggested antenna is optimized using Orthogonal Design Method (ODM) of Design of Experiments (DOE) to cover the frequency range from 0.91-2.82 GHz for L-band and S-band applications. The L-band covers the frequency range of 1-2 GHz, which is allocated to telemetry, aeronautical, and military systems for passive satellite sensors, weather radars, radio astronomy, and mobile communication. The S-band covers the frequency range of 2-3 GHz, which is used by weather radars, surface ship radars and communication satellites and is also reserved for various wireless applications such as Worldwide Interoperability for Microwave Access (Wi-MAX), super high frequency radio frequency identification (SHF RFID), industrial, scientific and medical bands (ISM), Bluetooth, wireless broadband (Wi-Bro) and wireless local area network (WLAN). The proposed method of optimization is very time efficient and accurate as compared to the conventional evolutionary algorithms due to its statistical strategy. Moreover, the antenna is tested, followed by the comparison of simulated and measured results.

Keywords: design of experiments, hand fan shaped MPA, L-Band, orthogonal design method, S-Band

Procedia PDF Downloads 37
225 Design of S-Shape GPS Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan Desai, Trushit Upadhyaya, Shobhit K. Patel


The micro strip antennas area has seen some inventive work in recent years and is now one of the most dynamic fields of antenna theory. A novel and simple printed wideband monopole antenna is presented. Printed on a single dielectric substrate and easily fed by using a 50 ohm microstip line, low-profile antenna structure with two parallel S-shaped meandered line of same size. In this research, S–form micro strip patch antenna is designed from measuring the prototypes of the proposed antenna one available bands with 10db return loss bandwidths of about GPS application (GPS L2 1490 MHz) and covering the 1400 to 1580 MHz frequency band at 1.5 GHz The simulated results for main parameters such as return loss, impedance bandwidth, radiation patterns and gains are also discussed herein. The modeling study shows that such antennas, in simplicity design and supply, and can satisfy GPS application. Two parallel slots are incorporated to disturb the surface flow path, introducing local inductive effect. This antenna is fed by a coaxial feeding tube.

Keywords: bandwidth, electrically small antenna, microstrip, patch antenna, GPS

Procedia PDF Downloads 408
224 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

Authors: V. V. Reddy, N. V. Sarma


A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x-axis, y-axis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel poly fractal antenna are demonstrated.

Keywords: fractal, circular polarization, Minkowski, Koch

Procedia PDF Downloads 272
223 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications

Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell


In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.

Keywords: cellular communications, multiple-input/multiple-output systems, mobile-phone antenna, polarization diversity

Procedia PDF Downloads 51
222 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications

Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen


The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.

Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern

Procedia PDF Downloads 42
221 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception

Authors: Gabriel Ugalahi, Dominic S. Nyitamen


This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.

Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)

Procedia PDF Downloads 147