Search results for: pharmaceutical sciences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1562

Search results for: pharmaceutical sciences

1172 Extraction of Dye from Coconut Husk and Its Application on Wool and Silk

Authors: Deepali Rastogi

Abstract:

Natural dyes are considered to be eco-friendly as they cause no pollution and are safe to use. With the growing interest in natural dyes, new sources of natural dyes are being explored. Coconut (Cocos nucifera) is native to tropical eastern region. It is abundantly available in Asia, Africa and South America. While coconut has tremendous commercial value in food, oil, pharmaceutical and cosmetic industry, the most important use of coconut husk has been as coir which is used for making mats, ropes, etc. In the present study an attempt has been made to extract dye from the coconut husk and study its application on wool and silk. Dye was extracted from coconut husk in an aqueous medium at three different pH. The coconut husk fibres were boiled in water at different pH of 4, 7 and 9 for one hour. On visual inspection of the extracted dye solution, maximum colour was found to be extracted at pH 9. The solution was obtained in neutral medium whereas, no dye was extracted in acidic medium. Therefore, alkaline medium at pH 9 was selected for the extraction of dye from coconut husk. The extracted dye was applied on wool and silk at three different pH, viz., 4, 7 and 9. The effect of pre- and post- mordanting with alum and ferrous sulphate on the colour value of coconut husk dye was also studied. The L*a*b*/L*c*h* values were measured to see the effect of the mordants on the colour values of all the dyed and mordanted samples. Bright golden brown to dark brown colours were obtained at pH 4 on both wool and silk. The colour yield was not very good at pH 7 and 9. Mordanting with alum resulted in darker and brighter shades of brown, whereas mordanting with ferrous sulphate resulted in darker and duller shades. All the samples were tested for colourfastness to light, rubbing, washing and perspiration. Both wool and silk dyed with dye extracted from coconut husk exhibited good to excellent wash, rub and perspiration fastness. Fastness to light was moderate to good.

Keywords: coconut husk, wool, silk, natural dye, mordants

Procedia PDF Downloads 398
1171 A Detailed Computational Investigation into Copper Catalyzed Sonogashira Coupling Reaction

Authors: C. Rajalakshmi, Vibin Ipe Thomas

Abstract:

Sonogashira coupling reactions are widely employed in the synthesis of molecules of biological and pharmaceutical importance. Copper catalyzed Sonogashira coupling reactions are gaining importance owing to the low cost and less toxicity of copper as compared to the palladium catalyst. In the present work, a detailed computational study has been carried out on the Sonogashira coupling reaction between aryl halides and terminal alkynes catalyzed by Copper (I) species with trans-1, 2 Diaminocyclohexane as ligand. All calculations are performed at Density Functional Theory (DFT) level, using the hybrid Becke3LYP functional. Cu and I atoms are described using an effective core potential (LANL2DZ) for the inner electrons and its associated double-ζ basis set for the outer electrons. For all other atoms, 6-311G+* basis set is used. We have identified that the active catalyst species is a neutral 3-coordinate trans-1,2 diaminocyclohexane ligated Cu (I) alkyne complex and found that the oxidative addition and reductive elimination occurs in a single step proceeding through one transition state. This is owing to the ease of reductive elimination involving coupling of Csp2-Csp carbon atoms and the less stable Cu (III) intermediate. This shows the mechanism of copper catalyzed Sonogashira coupling reactions are quite different from those catalyzed by palladium. To gain further insights into the mechanism, substrates containing various functional groups are considered in our study to traverse their effect on the feasibility of the reaction. We have also explored the effect of ligand on the catalytic cycle of the coupling reaction. The theoretical results obtained are in good agreement with the experimental observation. This shows the relevance of a combined theoretical and experimental approach for rationally improving the cross-coupling reaction mechanisms.

Keywords: copper catalysed, density functional theory, reaction mechanism, Sonogashira coupling

Procedia PDF Downloads 93
1170 Preparation of Zinc Oxide Nanoparticles and Its Anti-diabetic Effect with Momordica Charantia Plant Extract in Diabetic Mice

Authors: Zahid Hussain, Nayyab Sultan

Abstract:

This study describes the preparation of zinc oxide nanoparticles and their anti-diabetic effect individually and with the combination of Momordica charantia plant extract. This plant is termed bitter melon, balsam pear, bitter gourd, or karela. Blood glucose levels in mice were monitored in their random state before and after the administration of zinc oxide nanoparticles and plant extract. The powdered form of nanoparticles and the selected plant were used as an oral treatment. Diabetes was induced in mice by using a chemical named as streptozotocin. It is an artificial diabetes-inducing chemical. In the case of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg); the maximum anti-diabetic effect observed was 70% ± 1.6 and 75% ± 1.3, respectively. In the case of the combination of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg), the maximum anti-diabetic effect observed was 86% ± 2.0. The results obtained were more effective as compared to standard drugs Amaryl (3mg/kg), having an effectiveness of 52% ± 2.4, and Glucophage (500mg/kg), having an effectiveness of 29% ± 2.1. Results indicate that zinc oxide nanoparticles and plant extract in combination are more helpful in treating diabetes as compared to their individual treatments. It is considered a natural treatment without any side effects rather than using standard drugs, which shows adverse side effects on health, and most probably detoxifies in liver and kidneys. More experimental work and extensive research procedures are still required in order to make them applicable to pharmaceutical industries.

Keywords: albino mice, amaryl, anti-diabetic effect, blood glucose level, Camellia sinensis, diabetes mellitus, Momordica charantia plant extract, streptozotocin, zinc oxide nanoparticles

Procedia PDF Downloads 86
1169 Synthesis of Nanoparticles and Thin Film of Cu₂ZnSnS₄ by Hydrothermal Method and Its Application as Congo Red Photocatalyst

Authors: Paula Salazar, Rodrigo Henríquez, Pablo Zerega

Abstract:

The textile, food and pharmaceutical industries are expanding daily worldwide, and they are located within the most polluting industries due to the fact that wastewater is discharged into watercourses with high concentrations of dyes and traces of drugs. Many of these compounds are stable to light and biodegradation, being considered as emerging organic contaminants. Advanced oxidation processes (AOPs) emerge as an effective alternative for the removal and elimination of this type of contaminants. Heterogeneous photocatalysis has been extensively studied as it is an efficient, low-cost and durable method. As the main photocatalyst, TiO₂ has been used for the degradation of a large number of dyes and drugs. The disadvantage of TiO₂ is its absorption in the UV region of the solar spectrum. On the other hand, quaternary chalcogenides based on Cu₂SnZnX₄ (X = S, Se) are a possible alternative due to their narrow bandgap (ca. between 0.8 to 1.5 eV depending on the phase considered), low cost, an abundance of its constituent elements in the earth's crust and its low toxicity. The objective of this research was to synthesize Cu₂SnZnS₄ (CZTS) through of a low-cost hydrothermal method and evaluate it as a potential photo-catalyst in the photo-degradation process of Congo Red. The synthesis of the nanoparticle in suspension and film onto fluorine-doped tin oxide coated glass (FTO) was carried out using a mixture of: 2 mmol CuCl₂, 1 mmol ZnCl₂, 1 mmol SnCl₂ and 4 mmol CH4N₂S in a Teflon reactor at 180⁰C for 72 h. Characterization was performed through scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV VIS spectroscopy. Photo-degradation monitoring was carried out employing a UV VIS spectrophotometer. The results show that photodegradation of 55% of the dye can be obtained after 4h of exposure to polychromatic light, it should be noted that the Congo Red dye is being studied for the first time.

Keywords: CZTS, hydrothermal, photocatalysis, dye

Procedia PDF Downloads 98
1168 Antioxidant, Antibacterial and Functional Group Analysis of Ethanolic Extract of Hylocereus undatus and Garcinia indica by Using Fourier Transform Infrared Spectroscopy

Authors: Ajay Krishnamurthy, Mariyappan Mahesh Kumar, Sellamuthu Periyar Selvam

Abstract:

Fruits are considered as functional foods due to the presence of various bioactive compounds available such as polyphenols, which are beneficial to health when consumed as part of our diet. The primary objective of this study was to analyze the various functional groups present in ethanolic extracts of Hylocereus undatus and Garcinia indica and also measure their antibacterial and antioxidant potential respectively thereby affirming its nutraceutical potential. To fulfill our objective, a Fourier - transform Infrared Spectroscopy (FTIR) was conducted for functional group analysis, Total Phenolic Content and DPPH free radical scavenging activity for measuring it anti-oxidant potential and agar-well diffusion assay for antibacterial potential. On careful observation and analysis of the spectrum it was found that both the fruit extracts contain similar compounds viz. Phenols, Alkanes, Alkenes, Aldehydes, Ketones, Carboxylic Acid and Amines. Total phenolic content of H.undatus and G.indica was estimated to be (26.85 ± 1.84 mg GAE/100g) and (32.84 ± 1.63 mg GAE/100g) respectively which corresponds to an inhibition of 84% and 81% respectively. H.undatus shows an inhibition of (3.4 ± 2.1mm) in gram-positive and (4.2 ± 2.24mm) in gram-negative organism on the other hand G.indica shows (2.1 ± 0.98mm) in gram-positive and (3.1 ± 1.44mm) in gram negative. The presence of such diverse compounds in the fruits helps us to understand the necessity for the inclusion of fruits in our daily diet and also helps the pharmaceutical industry in realizing the importance of exotic fruits as a potential nutraceutical.

Keywords: DPPH, fourier-transform infrared spectroscopy (FTIR), Hylocereus undatus, Garcinia indica

Procedia PDF Downloads 160
1167 Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds

Authors: Boutemak Khalida, Dahmani Siham

Abstract:

Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries.

Keywords: Lepidium sativum L., cellulase, enzymatic pretreatment, antibacterial activity.

Procedia PDF Downloads 437
1166 Extracting the Antioxidant Compounds of Medicinal Plant Limoniastrum guyonianum

Authors: Assia Belfar, Mohamed Hadjadj, Messaouda Dakmouche, Zineb Ghiaba, Mahdi Belguidoum

Abstract:

Introduction: This study aims to phytochemical screening; Extracting the active compounds and estimate the effectiveness of antioxidant in Medicinal plants desert Limoniastrum guyonianum (Zeïta) from South Algeria. Methods: Total phenolic content and total flavonoid content using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The total antioxidant capacity was estimated by the following methods: DPPH (1.1-diphenyl-2-picrylhydrazyl radical) and reducing power assay. Results: Phytochemical screening of the plant part reveals the presence of phenols, saponins, flavonoids and tannins. While alkaloids and Terpenoids were absent. The Methanolic extract of L. guyonianum was extracted successively with ethyl acetate and butanol. Extraction of yield varied widely in the L. guyonianum ranging from (1.315 % to 4.218%). butanol fraction had the highest yield. The higher content of phenols was recorded in butanol fraction (311.81 ± 0.02mg GAE/g DW), the higher content of flavonoids was found in butanol fraction (9.58 ± 0.33mg QE/g DW). IC50 of inhibition of radical DPPH in ethyl acetate fraction was (0.05 ± 0.01µg/ml) Equal effectiveness with BHT, All extracts showed good activity of ferric reducing power, the higher power was in butanol fraction (16.16 ± 0.05mM). Conclusions: Demonstrated this study that the Methanolic extract of L. guyonianum contain a considerable quantity of phenolic compounds and possess a good antioxidant activity. It can be used as an easily accessible source of Natural Antioxidants and as a possible food supplement and in pharmaceutical industry.

Keywords: flavonoid compound, l. guyonianum, medicinal plants, phenolic compounds, phytochemical screening

Procedia PDF Downloads 281
1165 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications

Authors: Debajyoti Bose

Abstract:

Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.

Keywords: fungi, chitosan, enzyme, nanocapsule

Procedia PDF Downloads 476
1164 Chemically Modified Chitosan Derivatives with Ameliorated Properties Appropriate for Drug Delivery

Authors: Georgia M. Michailidou, Nina-Maria S. Ainali, Eleftheria C. Xanthopoulou, Dimitrios N. Bikiaris

Abstract:

Polysaccharides are polymeric materials derived from nature. They are extensively used in pharmaceutical technology due to their low cost, their ready availability and their low toxicity. Chitosan is the product derived from the deacetylation of chitin usually obtained from arthropods. It is a linear polysaccharide which is composed of repeated units of N-deacetylated amino groups and some N-acetylated groups residues. Due to its excellent biological properties, it is an attractive natural polymer. It is biocompatible with low toxicity and complete biodegradability. Although it has excellent properties, the chemical modification of its structure results in new derivatives with ameliorated and more improved properties compared to the initial polymer. This is the exact purpose of the present study in which chitosan was modified with three different monomers, namely trans-aconitic acid, succinic anhydride and 2-hydroxyethyl acrylate. In chitosan’s modification with trans aconitic acid, EDC was utilized as an activator of the carboxylic groups of the monomer, and then a coupling reaction with the amino groups took place. Succinic anhydride reacted with chitosan through a ring opening reaction while 2-hydroxyethyl acrylate reacted through the addition of chitosan’s amino group to the double bond of the monomer. Through FTIR and NMR measurements the success of each reaction was confirmed, and the new structures of the derivatives were verified. X-ray diffraction was utilized in order to examine the effect of the modifications in chitosan’s crystallinity. Finally, swelling tests were conducted in order to assess the improved ability of the new polymeric materials to absorb water. Our results support the successful modification of chitosan’s macromolecular chains in all three reactions. Furthermore, the new derivatives appear to be amorphous concerning their crystallinity and have great ability in absorbing water.

Keywords: chitosan, derivatives, modification, polysaccharide

Procedia PDF Downloads 89
1163 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 126
1162 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 73
1161 Cybersecurity Awareness Among Applied Sciences Student Population

Authors: Sanja Bracun, Nikolina Kasunic

Abstract:

After graduation, the student population of applied sciences will become the population of employees on IT experts’ positions or "just" business users of certain IT technologies for which the level of awareness of existing cybersecurity risks is extremely important. This research results define the current cybersecurity awareness level of students at Zagreb University of Applied Sciences (TVZ), what can be useful not only for teaching staff to form a curriculum related to cybersecurity more accurately but also to employers to know what to expect from their future employees regarding cybersecurity awareness level.

Keywords: student population cybersecurity awareness, cybersecurity awareness, cybersecurity, applied sciences students

Procedia PDF Downloads 226
1160 Community Pharmacist's Perceptions, Attitude and Role in Oral Health Promotion and Diseases Prevention

Authors: Bushra Alghamdi, Alla Alsharif, Hamzah Aljohani, Saba Kassim

Abstract:

Introduction: Collaborative work has always been acknowledged as a fundamental concept in delivering oral health care. Aim: This study aimed to assess the perception and attitude of pharmacists in oral health promotion and to determine the confident levels of pharmacists in delivering advice on oral health problems. Methods: An observational cross-sectional survey, using self-administered anonymous questionnaires, was conducted between March and April 2017. The study recruited a convenience sample of registered community pharmacists who were working in local private pharmaceutical stores in the urban area of Madinah, Kingdom of Saudi Arabia (KSA). A preliminary descriptive analysis was performed. Results: Thirty-five pharmacists have completed the surveys. All participants were males, with a mean age of 35.5 ( ± 6.92) years. Eighty-six percent of the participants reported that pharmacists should have a role in oral health promotion. Eighty percent have reported adequate level of confident when giving advice on most of the common oral health problems that include; oral health related risk behaviors such as tobacco cessation (46%), bleeding gums (63%) and sensitive teeth (60%). However, higher percentages of pharmacists have reported low confident levels when giving advice in relation to specific domain of dentistry, such as lost dental fillings (57%), loose crowns (60%), trauma to teeth (40%), denture-related problems (51%) and oral cancer (6.9%). Conclusion: Community pharmacists recognized their potential role in promoting oral health in KSA. Community pharmacists had varying levels of ability and confidence to offer support for oral health. The study highlighted that inner professional collaboration between pharmacists and dental care healthcare should be enhanced.

Keywords: community, oral health, promotion, pharmacist

Procedia PDF Downloads 175
1159 Assessment of Some Biological Activities of Methanolic Crude Extract from Polygonum maritimum L.

Authors: Imad Abdelhamid El-Haci, Wissame Mazari, Fayçal Hassani, Fawzia Atik Bekkara

Abstract:

Much attention has been paid to the antioxidants, which are expected to prevent food and living systems from peroxidative damage. Incorporation of synthetic antioxidants in food products is under strict regulation due to the potential health hazards caused by such compounds. The use of plants as traditional health remedies is very popular and important for 80% of the world’s population in African, Asian, Latin America and Middle Eastern Countries. Their use is reported to have minimal side effects. In recent years, pharmaceutical companies have spent considerable time and money in developing therapeutics based upon natural products extracted from plants. In other part, due to the continuous emergence of antibiotic-resistant strains there is continual demand for new antibiotics. Chemical compounds from medicinal plant especially are targeted by many researches. In this light, genus Polygonum (Polygonaceae), comprising about 45 genera (300 species), is distributed worldwide, mostly in north temperate regions. They have been reported to have uses in traditional medicine, such as anti-inflammation, promoting blood circulation, dysentery, diuretic, haemorrhage and many other uses. In our study, Polygonum maritimum (from Algerian coast) was extracted with 80% methanol to obtain a crude extract. P. maritimum extract (PME) had a very high content of total phenol, which was 352.49 ± 18.03 mg/g dry weight, expressed as gallic acid equivalent. PME exhibited excellent antioxidant activity, as measured using DPPH and H2O2 scavenging assays. It also showed a high antibacterial activity against gram positive bacterial strains: Bacillus cereus, Bacillus subtilis and Staphylococcus aureus with an MIC 0,12 mg/mL.

Keywords: Polygonum maritimum, crude extract, antioxidant activity, antibacterial activity

Procedia PDF Downloads 296
1158 Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview

Authors: Andres Diaz Garcia

Abstract:

The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export.

Keywords: biochemical engineering, liquid fermentation, plant growth promoting, scale-up process

Procedia PDF Downloads 96
1157 Personality Traits of NEO Five Factors and Statistics Anxiety among Social Sciences University Students

Authors: Oluyinka Ojedokun, S. E. Idemudia

Abstract:

In Nigeria, statistics is a compulsory course required from all social sciences students as part of their academic training. However, a rising number of social sciences undergraduates usually express statistics anxiety. The prevalence of statistics anxiety among undergraduates in social sciences has created a growing concern for educators and researchers in the higher education institutions, mainly because this statistics anxiety adversely affects their performance in statistics and research methods courses. From a societal perspective it is important to reverse this trend. Although scholars and researchers have highlighted some psychosocial factors that influence statistics anxiety in students but few empirical studies exist on the association between personality traits of NEO five factors and statistics anxiety. It is in the light of this situation that this study was designed to assess the extent to which the personality traits of NEO five factors influence statistics anxiety of students in social sciences courses. The participants were 282 undergraduates in the faculty of social sciences at a state owned public university in Nigeria. The findings demonstrate that the personality traits contributing to statistics anxiety include openness to experience, conscientious, extraversion, and neuroticism. These results imply that statistics anxiety is related to individual differences in personality traits and suggest that certain aspects of statistics anxiety may be relatively stable and resistant to change. An effective and simple method to reduce statistics anxiety among social sciences students is to create awareness of the statistical and methodological requirements of the social sciences courses before commencement of their programmes.

Keywords: personality traits, statistics anxiety, social sciences, students

Procedia PDF Downloads 515
1156 Surface Functionalized Biodegradable Polymersome for Targeted Drug Delivery

Authors: Susmita Roy, Madhavan Nallani

Abstract:

In recent years' polymersomes, self-assembled polymeric vesicles emerge from block copolymers, have been widely investigated due to their enhance stability and unique advantageous properties compared to their phospholipid counterpart, liposomes, dendrimers, and micelles. It provides a distinctive platform for advanced therapeutics and the creation of complex (bio) catalytically active systems for research in Nanomedicine and synthetic biology. Inspired by nature, where compartmentalization of biological components is all ubiquitous, we are interested in developing a platform technology of self-assembled multifunctional compartments with applications in areas from targeted drug/gene delivery, biosensing, pharmaceutical to cosmetics. Polymersome surfaces can be a proper choice of derivatization with a controlled amount of functional groups. To achieve site-specific targeting of polymersomes, biological recognition motives can be attached to the polymersomes surface by standard bioconjugation techniques, (like esterification, amidation, thiol-maleimide coupling, click-chemistry routes or other coupling methods). Herein, we are developing easy going, one-step bioconjugation strategies for site-specific surface functionalized biodegradable polymeric and/or polymer-lipid hybrid vesicles for targeted drug delivery. Biodegradable polymer, polycaprolactone-b-polyethylene glycol (PCL-PEG), polylactic acid-b-polyethylene glycol (PLA-PEG) and phospholipid, 1-palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine (POPC) has been widely used for numerous vesicle formulations. Some of these drug-loaded formulations are being tested on mice for controlled release. These surface functionalized polymersomes are also appropriate for membrane protein reconstitution/insertion, antibodies conjugation and various bioconjugation with diverse targeted molecules for controlled drug delivery.

Keywords: drug delivery, membrane protein, polymersome, surface modification

Procedia PDF Downloads 136
1155 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet

Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin

Abstract:

Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.

Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets

Procedia PDF Downloads 368
1154 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications

Authors: Maria Bercea, Monica Diana Olteanu

Abstract:

Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.

Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications

Procedia PDF Downloads 329
1153 Optimisation of Dyes Decolourisation by Bacillus aryabhattai

Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.

Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design

Procedia PDF Downloads 202
1152 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 370
1151 Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)

Authors: Dawang D. N., Dasat G. S., Nden D.

Abstract:

Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance.

Keywords: endophyte, fungal extract, antimicrobial, potato

Procedia PDF Downloads 88
1150 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques

Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti

Abstract:

Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.

Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS

Procedia PDF Downloads 183
1149 Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation

Authors: Avinash Vellore Sunder, Shikha Shah, Pramod P. Wangikar

Abstract:

The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis.

Keywords: biocatalysis, isonicotinic acid, iminodiacetic acid, mandelic acid, nitrilase

Procedia PDF Downloads 213
1148 A Prospective Study on the Evaluation of Statins Usage on HbA1c Control among Type 2 Diabetes Mellitus in an Outpatients Setting

Authors: Mohamed A. Hammad, Dzul Azri Mohamed Noor, Syed Azhar Syed Sulaiman, Abeer Kharshid, Nor Azizah Aziz, Tarek M. Elsayed

Abstract:

Medication safety is always an issue. In 2015, the National Pharmaceutical Control Bureau released a statement requesting all statins manufacturers in Malaysia to include the risk of diabetes information in the drug information leaflet in response to United States Food and Drug Administration (U.S. FDA) report. However, the data regarding this warning label in Malaysia is limited, so there is still some uncertainty whether such risk can also be observed in the Malaysian population or not. The study aims to determine the effect of statins on HbA1c% in type 2 diabetic outpatients in endocrine clinics at Hospital Pulau Pinang between June 2015 and May 2016 in Malaysia. In a prospective cohort study, records of 400 type 2 diabetic patients (control group 104 patients not using statin and treatment group 296 patients using statin) were reviewed to identify demographic criteria and lab tests. The prevalence of glycemic control (Glycated hemoglobin, HbA1C ≤ 7% for patient < 65 years, and < 8% for patient ≥ 65 years) was estimated, according to American Diabetes Association guidelines 2015. The results were presented as descriptive statistics. From 296 patients with Type 2 diabetes using statins cohort with a mean age of 57.52 ± 12.2 years, only 81 (27.4%) cases had controlled glycemia, and 215 (72.6%) had uncontrolled glycemia, CI: 95% (6.3–11.1). While the control group 104 diabetic patients had a mean age 46.1 ± 18 years and distributed among 59 (56.7%) patients with controlled diabetes and 45 (43.3%) cases, had uncontrolled glycemia, CI: 95% (5.2–10.3). The relative risk (RR) of uncontrolled glycemia in diabetic patients used statins was 1.68, and the excessive relative risk (ERR) was 68%. The absolute risk (AR) was 29.3%, and the number needed to harm (NNH) was 4. Diabetic patients using statins have more risk of uncontrolled glycemia than the patients with Type 2 diabetes non-using statins.

Keywords: diabetes mellitus, HbA1c, Malaysia, outpatients, statin, type 2, uncontrolled glycemia

Procedia PDF Downloads 259
1147 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 82
1146 Ethnobotanical Study on the Usage of Toxic Plants in Traditional Medicine in the City Center of Tlemcen, Algeria

Authors: Nassima Elyebdri, Asma Boumediou, Soumia Addoun

Abstract:

Traditional medicine has been part of the Algerian culture for decades. In particular, the city of Tlemcen still retains practices based on phytotherapy to the present day, as this kind of medicine fulfills the needs of its followers among the local population. The toxic plants contain diverse natural substances which supplied a lot of medicine in the pharmaceutical industry. In order to explore new medicinal sources among toxic plants, an ethnobotanical study was carried out on the use of these plants by the population, at Emir Abdelkader Square of the city of Tlemcen, a rather busy place with a high number of traditional health practitioners and herbalists. This is a descriptive and transversal study aimed at estimating the frequency of using toxic plants among the studied population, for a period of 4 months. The information was collected, using self-anonymous questionnaires, and analyzed by the IBM SPSS Statistics software used for statistical analysis. A sample of 200 people, including 120 women and 80 men, were interviewed. The mean age was 41 ± 16 years. Among those questioned, 83.5% used plants; 8% of them used toxic plants and 35% used plants that can be toxic under certain conditions. Some improvements were observed in 88% of the cases where toxic plants were used. 80 medicinal plants, belonging to 36 botanical families, were listed, identified and classified. The most frequent indications for these plants were for respiratory diseases in 64.7% of cases, and for digestive disorders in 51.5% of cases. 11% of these plants are toxic, 26% could be toxic under certain conditions. Among toxics plants, the most common ones are Berberis vulgaris with 5.4%, indicated in the treatment of uterine fibroids and thyroid, Rhamnus alaternus with 4.8% for hepatic jaundice, Nerium oleander with 3% for hemorrhoids, Ruta chalepensis with 1.2%, indicated for digestive disorders and dysmenorrhea, and Viscum album with 1.2%, indicated for respiratory diseases. The most common plants that could be toxic are Mentha pulegium (15.6%), Eucalyptus globulus (11.4%), and Pimpinella anisum (10.2%). This study revealed interesting results on the use of toxic plants, which are likely to serve as a basis for further ethno-pharmacological investigations in order to get new drug sources.

Keywords: ethnobotany, phytotherapy, Tlemcen, toxic plants

Procedia PDF Downloads 298
1145 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol

Authors: Poonam Malik, Ravi Bhushan

Abstract:

This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).

Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis

Procedia PDF Downloads 135
1144 Experimental and Theoretical Studies: Biochemical Properties of Honey on Type 2 Diabetes

Authors: Said Ghalem

Abstract:

Honey is primarily composed of sugars: glucose and fructose. Depending honey, it's either fructose or glucose predominates. More the fructose concentration and the less the glycemic index (GI) is high. Thus, changes in the insulin response shows a decrease of the amount of insulin secreted at an increased fructose honey. Honey is also a compound that can reduce the lipid in the blood. Several studies on animals, but which remain to be checked in humans, have shown that the honey can have interesting effects when combined with other molecules: associated with Metformin (a medicine taken by diabetics), it shows the benefits and effects of diabetes preserves the tissue; associated ginger, it increases the antioxidant activity and thus avoids neurologic complications, neuropathic. Molecular modeling techniques are widely used in chemistry, biology, and the pharmaceutical industry. Most of the currently existing drugs target enzymes. Inhibition of DPP-4 is an important approach in the treatment of type 2 diabetes. We have chosen for the inhibition of DPP-4 the following molecules: Linagliptin (BI1356), Sitagliptin (Januvia), Vildagliptin, Saxagliptin, Alogliptin, and Metformin (Glucophage), that are involved in the disease management of type 2 diabetes and added to honey. For this, we used software Molecular Operating Environment. A Wistar rat study was initiated in our laboratory with a well-studied protocol; after sacrifice, according to international standards and respect for the animal This theoretical approach predicts the mode of interaction of a ligand with its target. The honey can have interesting effects when combined with other molecules, it shows the benefits and effects of honey preserves the tissue, it increases the antioxidant activity, and thus avoids neurologic complications, neuropathic or macrovascular. The organs, especially the kidneys of Wistar, shows that the parameters to renal function let us conclude that damages caused by diabetes are slightly perceptible than those observed without the addition of a high concentration of fructose honey.

Keywords: honey, molecular modeling, DPP4 enzyme, metformin

Procedia PDF Downloads 77
1143 Review and Analysis of Parkinson's Tremor Genesis Using Mathematical Model

Authors: Pawan Kumar Gupta, Sumana Ghosh

Abstract:

Parkinson's Disease (PD) is a long-term neurodegenerative movement disorder of the central nervous system with vast symptoms related to the motor system. The common symptoms of PD are tremor, rigidity, bradykinesia/akinesia, and postural instability, but the clinical symptom includes other motor and non‐motor issues. The motor symptoms of the disease are consequence of death of the neurons in a region of the midbrain known as substantia nigra pars compacta, leading to decreased level of a neurotransmitter known as dopamine. The cause of this neuron death is not clearly known but involves formation of Lewy bodies, an abnormal aggregation or clumping of the protein alpha-synuclein in the neurons. Unfortunately, there is no cure for PD, and the management of this disease is challenging. Therefore, it is critical for a patient to be diagnosed at early stages. A limited choice of drugs is available to improve the symptoms, but those become less and less effective over time. Apart from that, with rapid growth in the field of science and technology, other methods such as multi-area brain stimulation are used to treat patients. In order to develop advanced techniques and to support drug development for treating PD patients, an accurate mathematical model is needed to explain the underlying relationship of dopamine secretion in the brain with the hand tremors. There has been a lot of effort in the past few decades on modeling PD tremors and treatment effects from a computational point of view. These models can effectively save time as well as the cost of drug development for the pharmaceutical industry and be helpful for selecting appropriate treatment mechanisms among all possible options. In this review paper, an effort is made to investigate studies on PD modeling and analysis and to highlight some of the key advances in the field over the past centuries with discussion on the current challenges.

Keywords: Parkinson's disease, deep brain stimulation, tremor, modeling

Procedia PDF Downloads 123