Search results for: operational data
25755 Fast Robust Switching Control Scheme for PWR-Type Nuclear Power Plants
Authors: Piyush V. Surjagade, Jiamei Deng, Paul Doney, S. R. Shimjith, A. John Arul
Abstract:
In sophisticated and complex systems such as nuclear power plants, maintaining the system's stability in the presence of uncertainties and disturbances and obtaining a fast dynamic response are the most challenging problems. Thus, to ensure the satisfactory and safe operation of nuclear power plants, this work proposes a new fast, robust optimal switching control strategy for pressurized water reactor-type nuclear power plants. The proposed control strategy guarantees a substantial degree of robustness, fast dynamic response over the entire operational envelope, and optimal performance during the nominal operation of the plant. To improve the robustness, obtain a fast dynamic response, and make the system optimal, a bank of controllers is designed. Various controllers, like a baseline proportional-integral-derivative controller, an optimal linear quadratic Gaussian controller, and a robust adaptive L1 controller, are designed to perform distinct tasks in a specific situation. At any instant of time, the most suitable controller from the bank of controllers is selected using the switching logic unit that designates the controller by monitoring the health of the nuclear power plant or transients. The proposed switching control strategy optimizes the overall performance and increases operational safety and efficiency. Simulation studies have been performed considering various uncertainties and disturbances that demonstrate the applicability and effectiveness of the proposed switching control strategy over some conventional control techniques.Keywords: switching control, robust control, optimal control, nuclear power control
Procedia PDF Downloads 13725754 Corporate Governance of Enterprise IT: Research Study on IT Governance Maturity
Authors: Mario Spremic
Abstract:
Despite the financial crisis and ongoing need for cost cutting, companies all around the world heavily invest in information systems (IS) and underlying information technology (IT). Information systems (IS) play very important role in modern business organizations supporting its organizational efficiency or, under certain circumstances, fostering business model innovation and change. IS can influence organization competitiveness in two ways: supporting operational efficiency (IS as a main infrastructure for the current business), or differentiating business through business model innovation and business process change. In either way, IS becomes very important to the business and needs to be aligned with strategic objectives in order to justify massive investments. A number of studies showed that investments in IS and underlying IT resulted in added business value if they are truly connected with strategic business objectives. In that sense proliferation of governance of enterprise IT helps companies manage, or rather, governs IS as a primary business function with executive management involved in making a decision about IS and IT. The quality of IT governance is rising with the large number of decisions about IS made by executive management, not IT departments. The more executive management is engaged in making a decision about IS and IT, the IT governance is of better quality. In this paper, the practice of governing the enterprise IT will be investigated on a sample of the largest 100 Croatian companies. Research questions posed here will reveal if there are some formal IT governance mechanisms, are there any differences in perceived role of IS and IT between CIOs (Chief Information Officers) and CEOs (Chief Executive Officers) of the sampled companies and what are the mechanisms to govern massive investment in enterprise IT.Keywords: IT governance, governance of enterprise IT, information system auditing, operational efficiency
Procedia PDF Downloads 30525753 Assessing the Effectiveness of Warehousing Facility Management: The Case of Mantrac Ghana Limited
Authors: Kuhorfah Emmanuel Mawuli
Abstract:
Generally, for firms to enhance their operational efficiency of logistics, it is imperative to assess the logistics function. The cost of logistics conventionally represents a key consideration in the pricing decisions of firms, which suggests that cost efficiency in logistics can go a long way to improve margins. Warehousing, which is a key part of logistics operations, has the prospect of influencing operational efficiency in logistics management as well as customer value, but this potential has often not been recognized. It has been found that there is a paucity of research that evaluates the efficiency of warehouses. Indeed, limited research has been conducted to examine potential barriers to effective warehousing management. Due to this paucity of research, there is limited knowledge on how to address the obstacles associated with warehousing management. In order for warehousing management to become profitable, there is the need to integrate, balance, and manage the economic inputs and outputs of the entire warehouse operations, something that many firms tend to ignore. Management of warehousing is not solely related to storage functions. Instead, effective warehousing management requires such practices as maximum possible mechanization and automation of operations, optimal use of space and capacity of storage facilities, organization through "continuous flow" of goods, a planned system of storage operations, and safety of goods. For example, there is an important need for space utilization of the warehouse surface as it is a good way to evaluate the storing operation and pick items per hour. In the setting of Mantrac Ghana, not much knowledge regarding the management of the warehouses exists. The researcher has personally observed many gaps in the management of the warehouse facilities in the case organization Mantrac Ghana. It is important, therefore, to assess the warehouse facility management of the case company with the objective of identifying weaknesses for improvement. The study employs an in-depth qualitative research approach using interviews as a mode of data collection. Respondents in the study mainly comprised warehouse facility managers in the studied company. A total of 10 participants were selected for the study using a purposive sampling strategy. Results emanating from the study demonstrate limited warehousing effectiveness in the case company. Findings further reveal that the major barriers to effective warehousing facility management comprise poor layout, poor picking optimization, labour costs, and inaccurate orders; policy implications of the study findings are finally outlined.Keywords: assessing, warehousing, facility, management
Procedia PDF Downloads 6625752 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 37825751 Coherencing a Diametrical Interests between the State, Adat Community and Private Interests in Utilising the Land for Investment in Indonesia
Authors: L. M. Hayyan ul Haq, Lalu Sabardi
Abstract:
This research is aimed at exploring an appropriate regulatory model in coherencing a diametrical interest between the state, Adat legal community, and private interests in utilising and optimizing land in Indonesia. This work is also highly relevant to coherencing the obligation of the state to respect, to fulfill and to protect the fundamental rights of people, especially to protect the communal or adat community rights to the land. In visualizing those ideas, this research will use the normative legal research to elaborate the normative problem in land use, as well as redesigning and creating an appropriate regulatory model in bridging and protecting all interest parties, especially, the state, Adat legal community, and private parties. In addition, it will also employ an empirical legal research for identifying some operational problems in protecting and optimising the land. In detail, this research will not only identify the problems at the normative level, such as conflicted norms, the absence of the norms, and the unclear norm in land law, but also the problems at operational level, such as institutional relationship in managing the land use. At the end, this work offers an appropriate regulatory model at the systems level, which covers value and norms in land use, as well as the appropriate mechanism in managing the utilization of the land for the state, Adat legal community, and private sector. By manifesting this objective, the government will not only fulfill its obligation to regulate the land for people and private, but also to protect the fundamental rights of people, as mandated by the Indonesian 1945 Constitution.Keywords: adat community rights, fundamental rights, investment, land law, private sector
Procedia PDF Downloads 51525750 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review
Procedia PDF Downloads 16325749 The Relationship Between Soldiers’ Psychological Resilience, Leadership Style and Organisational Commitment
Authors: Rosita Kanapeckaite
Abstract:
The modern operational military environment is a combination of factors such as change, uncertainty, complexity and ambiguity. Stiehm (2002) refers to such situations as VUCA situations. VUCA is an acronym commonly used to describe the volatility, uncertainty, complexity and ambiguity of various situations and conditions. Increasingly fast-paced military operations require military personnel to demonstrate readiness and resilience under stressful conditions in order to maintain the optimum cognitive and physical performance necessary to achieve success. Military resilience can be defined as the ability to cope with the negative effects of setbacks and associated stress on military performance and combat effectiveness. In the volatile, uncertain, complex and ambiguous modern operational environment, both current and future operations require and place a higher priority on enhancing and maintaining troop readiness and resilience to win decisively in multidimensional combat. This paper explores the phenomenon of soldiers' psychological resilience, theories of leadership, and commitment to the organisation. The aim of the study is to examine the relationship between soldiers' psychological resilience, leadership style and commitment to the organisation. The study involved 425 professional soldiers, the research method was a questionnaire survey. The instruments used were measures of psychological resilience, leadership styles and commitment to the organisation. Results: transformational leadership style predicts higher psychological resilience, and psychologically resilient professional servicemen are more committed to the organisation. The study confirms the importance of soldiers' psychological resilience for their commitment to the organisation. The paper also discusses practical applications.Keywords: resilience, commitment, solders, leadership style
Procedia PDF Downloads 7425748 Digital Innovation and Business Transformation
Authors: Bisola Stella Sonde
Abstract:
Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.Keywords: business transformation, digital innovation, emerging technologies, organizational structures
Procedia PDF Downloads 6325747 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 40925746 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method
Procedia PDF Downloads 15525745 Building a Model for Information Literacy Education in School Settings
Authors: Tibor Koltay
Abstract:
Among varied new literacies, information literacy is not only the best-known one but displays numerous models and frameworks. Nonetheless, there is still a lack of its complex theoretical model that could be applied to information literacy education in public (K12) education, which often makes use of constructivist approaches. This paper aims to present the main features of such a model. To develop a complex model, the literature and practice of phenomenographic and sociocultural theories, as well as discourse analytical approaches to information literacy, have been reviewed. Besides these constructivist and expressive based educational approaches, the new model is intended to include the innovation of coupling them with a cognitive model that takes developing informational and operational knowledge into account. The convergences between different literacies (information literacy, media literacy, media and information literacy, and data literacy) were taken into account, as well. The model will also make use of a three-country survey that examined secondary school teachers’ attitudes to information literacy. The results of this survey show that only a part of the respondents feel properly prepared to teach information literacy courses, and think that they can teach information literacy skills by themselves, while they see a librarian as an expert in educating information literacy. The use of the resulting model is not restricted to enhancing theory. It is meant to raise the level of awareness about information literacy and related literacies, and the next phase of the model’s development will be a pilot study that verifies the usefulness of the methodology for practical information literacy education in selected Hungarian secondary schools.Keywords: communication, data literacy, discourse analysis, information literacy education, media and information literacy media literacy, phenomenography, public education, sociocultural theory
Procedia PDF Downloads 14925744 Analysis of Digital Transformation in Banking: The Hungarian Case
Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi
Abstract:
The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.Keywords: big data, digital transformation, dynamic capabilities, mobile banking
Procedia PDF Downloads 6825743 A Comparative Evaluation on the Quality of Products and Quality of Services of the Five Selected Fast Food Restaurants in Manila
Authors: M. Pagasa Nanette Rotairo
Abstract:
The research focuses on the effectiveness, responsiveness, adequacy, and appropriateness of customer service of selected fast food restaurant using William Dunn’s four evaluation criteria tantamount to the focus of the research. Due to efficiency the fast food restaurants offer and the increasing demand for acquiring its services, the researcher conducted a study on the effectiveness of customer service of five popular restaurants in Metro Manila. Using descriptive method, the research is furthered in par with evaluation and implementation of different instruments effective for data gathering to further scientific judgment. Results of this research indicate that consumers consider the quality service as the major reason in patronizing fast food restaurants while they consider cleanliness and customer satisfaction as their least concern. Details of this study provided support on how the proposed operational model can further improve the services of fast food restaurants.Keywords: customer satisfaction, customer service, restaurant management, business operations
Procedia PDF Downloads 21225742 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 23625741 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass
Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel
Abstract:
The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm
Procedia PDF Downloads 19625740 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students
Authors: Prasita Sooksamran, Wareerat Kaewurai
Abstract:
STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).Keywords: instructional model, STEM education, scientific mind, problem solving
Procedia PDF Downloads 19225739 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation
Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne
Abstract:
One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model
Procedia PDF Downloads 21725738 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia PDF Downloads 25425737 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software
Authors: Michael Williams
Abstract:
The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.Keywords: well control, fluid mechanics, safety, environment
Procedia PDF Downloads 17325736 Engaging Citizen, Sustaining Service Delivery of Rural Water Supply in Indonesia
Authors: Rahmi Yetri Kasri, Paulus Wirutomo
Abstract:
Citizen engagement approach has become increasingly important in the rural water sector. However, the question remains as to what exactly is meant by citizen engagement and how this approach can lead to sustainable service delivery. To understand citizen engagement, this paper argues that we need to understand basic elements of social life that consist of social structure, process, and culture within the realm of community’s living environment. Extracting from empirical data from Pamsimas villages in rural West Java, Indonesia, this paper will identify basic elements of social life and environment that influence and form the engagement of citizen and government in delivering and sustaining rural water supply services in Indonesia. Pamsimas or the Water Supply and Sanitation for Low Income Communities project is the biggest rural water program in Indonesia, implemented since 1993 in more than 27,000 villages. The sustainability of this sector is explored through a rural water supply service delivery life-cycle, starts with capital investment, operational and maintenance, asset expansion or renewal, strategic planning for future services and matching cost with financing. Using mixed-method data collection in case study research, this paper argues that increased citizen engagement contributes to a more sustainable rural water service delivery.Keywords: citizen engagement, rural water supply, sustainability, Indonesia
Procedia PDF Downloads 26925735 Surveillance of Super-Extended Objects: Bimodal Approach
Authors: Andrey V. Timofeev, Dmitry Egorov
Abstract:
This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.Keywords: C-OTDR monitoring system, bimodal processing, LPboost, SVM
Procedia PDF Downloads 47125734 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 23125733 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16825732 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 7625731 Development of a Geomechanical Risk Assessment Model for Underground Openings
Authors: Ali Mortazavi
Abstract:
The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering
Procedia PDF Downloads 14725730 A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt
Authors: H. Hafez, A. Mekkawy, R. Rostom
Abstract:
Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values.Keywords: rammed earth, thermal insulation, indoor air quality, design builder
Procedia PDF Downloads 14725729 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 20625728 Criticality of Adiabatic Length for a Single Branch Pulsating Heat Pipe
Authors: Utsav Bhardwaj, Shyama Prasad Das
Abstract:
To meet the extensive requirements of thermal management of the circuit card assemblies (CCAs), satellites, PCBs, microprocessors, any other electronic circuitry, pulsating heat pipes (PHPs) have emerged in the recent past as one of the best solutions technically. But industrial application of PHPs is still unexplored up to a large extent due to their poor reliability. There are several systems as well as operational parameters which not only affect the performance of an operating PHP, but also decide whether the PHP can operate sustainably or not. Functioning may completely be halted for some particular combinations of the values of system and operational parameters. Among the system parameters, adiabatic length is one of the important ones. In the present work, a simplest single branch PHP system with an adiabatic section has been considered. It is assumed to have only one vapour bubble and one liquid plug. First, the system has been mathematically modeled using film evaporation/condensation model, followed by the steps of recognition of equilibrium zone, non-dimensionalization and linearization. Then proceeding with a periodical solution of the linearized and reduced differential equations, stability analysis has been performed. Slow and fast variables have been identified, and averaging approach has been used for the slow ones. Ultimately, temporal evolution of the PHP is predicted by numerically solving the averaged equations, to know whether the oscillations are likely to sustain/decay temporally. Stability threshold has also been determined in terms of some non-dimensional numbers formed by different groupings of system and operational parameters. A combined analytical and numerical approach has been used, and it has been found that for each combination of all other parameters, there exists a maximum length of the adiabatic section beyond which the PHP cannot function at all. This length has been called as “Critical Adiabatic Length (L_ac)”. For adiabatic lengths greater than “L_ac”, oscillations are found to be always decaying sooner or later. Dependence of “L_ac” on some other parameters has also been checked and correlated at certain evaporator & condenser section temperatures. “L_ac” has been found to be linearly increasing with increase in evaporator section length (L_e), whereas the condenser section length (L_c) has been found to have almost no effect on it upto a certain limit. But at considerably large condenser section lengths, “L_ac” is expected to decrease with increase in “L_c” due to increased wall friction. Rise in static pressure (p_r) exerted by the working fluid reservoir makes “L_ac” rise exponentially whereas it increases cubically with increase in the inner diameter (d) of PHP. Physics of all such variations has been given a good insight too. Thus, a methodology for quantification of the critical adiabatic length for any possible set of all other parameters of PHP has been established.Keywords: critical adiabatic length, evaporation/condensation, pulsating heat pipe (PHP), thermal management
Procedia PDF Downloads 22725727 The Strategic Management Affect to Firm Performance: An Empirical Investigation of Businesses in Thailand
Authors: Kawinphat Lertpongmanee
Abstract:
The purpose of this research is to examine the relationships among business collaboration effectiveness, modern management excellence, proactive operational management, and firm performance to bring competitive advantage to the firm. Furthermore, the population and sample selected are exporters on textile businesses in Thailand in total of 566 companies. The data were collected by questionnaire survey and sent direct to the directors or managerial managers of each company which is appropriate as the key informant of this research. Moreover, the statistic to test hypothesis uses the hierarchical multiple regression analysis and provides those five hypotheses to testing. The results show direct effect that the business collaboration effectiveness has a significantly positive influence on firm performance, meaning that, the collaboration is an important factor in global business both internal and external of firms that reflect the linkage of business to create competitive advantage and gain benefits simultaneously of the firms efficiently also.Keywords: business collaboration effectiveness, firm performance, modern management excellence, strategic management
Procedia PDF Downloads 28125726 Relationship between Employee Welfare Practices and Performance of Non-Governmental Organizations in Kenya
Authors: Protus A. Lumiti, Susan O. Wekesa, Mary Omondi
Abstract:
Performance is a key pillar to the accomplishment of the goals of all organizations, whether private, public or non- profit. Employees are the intellectual assets of the organization and they are an avenue to the achievement of competitive advantage. An employee welfare service in an organization is vital in fostering employee motivation and improving their productivity. In view of this, the main goal of this research was to determine the relationship between employee welfare practices and the performance of non-governmental organizations in Kenya. The study was guided by four objectives, namely: to establish, determine, evaluate and assess the relationship between employee welfare practices and the performance of non-governmental organizations in Kenya. The study utilized a survey design using both qualitative and quantitative approaches. In this study, a purposive, stratified and simple random sampling technique was used to arrive at a sample of 355 respondents who comprised senior managers, middle level managers and operational employees out of the targeted population of 14,283 employees of non-governmental organizations working in Nairobi County. The primary data collection tools were questionnaires supplemented by an interview schedule, while secondary data was obtained from reviewed journals, published books and articles. Data analysis was done using Statistical Packages for Social Sciences Software version 23. The study utilized multiple linear regression and a structural equation model. The findings of the study were that: employee welfare practices had a positive and significant relationship with the performance of Non-governmental organizations in Kenya. In addition, there was also a linear relationship between the independent variables and the dependent variable and the study concluded that there was a relationship between the predictor variable and the dependent variable of the study. The study recommended that management of No-governmental organization boards in Kenya should come up with a comprehensive policy document on employee welfare practices in order to enhance the performance of non-governmental organizations in Kenya.Keywords: employee, economic, performance, welfare
Procedia PDF Downloads 182