Search results for: multivariate logistic regression
3414 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization
Authors: K. Umbleja, M. Ichino, H. Yaguchi
Abstract:
In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data
Procedia PDF Downloads 1683413 Association of Vulnerability and Behavioural Outcomes of FSWs Linked with TI Prevention HIV Program: An Evidence from Cross-Sectional Behavioural Study in Thane District of Maharashtra
Authors: Jayanta Bora, Sukhvinder Kaur, Ashok Agarwal, Sangeeta Kaul
Abstract:
Background: It is important for targeted interventions to consider vulnerabilities of female sex workers (FSWs) such as poverty, work-related mobility and literacy for effective human immunodeficiency virus (HIV) prevention. This paper examines the association between vulnerability and behavioural outcomes among FSWs in Thane district, Maharashtra under USAID PHFI-PIPPSE project. Methods: Data were used from the Behavioural Tracking Survey, a cross-sectional behavioural study conducted in 2015 with 503 FSWs randomly selected from 12 TI-NGOs which were functioning and providing services to FSWs in Thane district prior to April 2014 in Thane district of Maharashtra. We have created the “vulnerability index”, a composite index of literacy, factors of dependence (alternative livelihood options, current debt), and aspects of sex work (mobility and duration in sex work) as a dependent variable. The key independent measures used were program exposure to intervention, service uptake, self-confidence, and self-identity. Bi-variate and multivariate logistic regressions were used to examine the study objectives. Results: A higher proportion of FSWs who were in the age-group 18–25 years from brothel/street /home/ lodge-based were categorized as highly vulnerable to HIV risk as compared to bar-based sex worker (74.1% versus 59.8%, P,0.002); regression analysis highlighted lower odds of vulnerability among FSWs who were aware of services and visited NGO clinic for medical check-up and counselling for STI [AOR= 0.092, 95% CI 0.018-0.460; P,0.004], However, lower odds of vulnerability on confident in supporting fellow sex worker in crisis [AOR= 0.601, 95% CI 0.476-0.758; P, 0.000] and were able to turn away clients when they refused to use a condom during sex [AOR= 0.524, 95% CI 0.342-0.802; P, 0.003]. Conclusion: The results highlight that FSWs associated with TIs and getting services are less vulnerable and highly empowered. As a result of behavioural change communication and other services provided by TIs, FSWs were able to successfully negotiate about condom use with their clients and manage solidarity in the crisis situation for fellow FSWs. Therefore, it is evident from study paper that TI prevention programs may transform the lives of masses considerably and may open a window of opportunity to infuse the information and awareness about HIV risk.Keywords: female sex worker, HIV prevention, HIV service uptake, vulnerability
Procedia PDF Downloads 2533412 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 2763411 Maternal Death Review and Contextualization of Maternal Death in West Bengal
Authors: M. Illias Kanchan
Abstract:
The death of a woman during pregnancy and childbirth is not only a health issue, but also a matter of social injustice. This study makes an attempt to explore the association between maternal death and associated factors in West Bengal using the approaches of facility-based and community-based maternal death review. Bivariate and binary logistic regression analysis have been performed to understand the causes and circumstances of maternal deaths in West Bengal. Delay in seeking care was the major contributor in maternal deaths, near about one-third women died due to this factor. The most common cause of maternal death is found to be hypertensive disorders of pregnancy or eclampsia. We believe that these deaths can be averted by reducing hypertensive disorders of pregnancy or eclampsia.Keywords: maternal death, facility-based, community-based, review, west Bengal, eclampsia
Procedia PDF Downloads 4293410 Relationship between Different Heart Rate Control Levels and Risk of Heart Failure Rehospitalization in Patients with Persistent Atrial Fibrillation: A Retrospective Cohort Study
Authors: Yongrong Liu, Xin Tang
Abstract:
Background: Persistent atrial fibrillation is a common arrhythmia closely related to heart failure. Heart rate control is an essential strategy for treating persistent atrial fibrillation. Still, the understanding of the relationship between different heart rate control levels and the risk of heart failure rehospitalization is limited. Objective: The objective of the study is to determine the relationship between different levels of heart rate control in patients with persistent atrial fibrillation and the risk of readmission for heart failure. Methods: We conducted a retrospective dual-centre cohort study, collecting data from patients with persistent atrial fibrillation who received outpatient treatment at two tertiary hospitals in central and western China from March 2019 to March 2020. The collected data included age, gender, body mass index (BMI), medical history, and hospitalization frequency due to heart failure. Patients were divided into three groups based on their heart rate control levels: Group I with a resting heart rate of less than 80 beats per minute, Group II with a resting heart rate between 80 and 100 beats per minute, and Group III with a resting heart rate greater than 100 beats per minute. The readmission rates due to heart failure within one year after discharge were statistically analyzed using propensity score matching in a 1:1 ratio. Differences in readmission rates among the different groups were compared using one-way ANOVA. The impact of varying levels of heart rate control on the risk of readmission for heart failure was assessed using the Cox proportional hazards model. Binary logistic regression analysis was employed to control for potential confounding factors. Results: We enrolled a total of 1136 patients with persistent atrial fibrillation. The results of the one-way ANOVA showed that there were differences in readmission rates among groups exposed to different levels of heart rate control. The readmission rates due to heart failure for each group were as follows: Group I (n=432): 31 (7.17%); Group II (n=387): 11.11%; Group III (n=317): 90 (28.50%) (F=54.3, P<0.001). After performing 1:1 propensity score matching for the different groups, 223 pairs were obtained. Analysis using the Cox proportional hazards model showed that compared to Group I, the risk of readmission for Group II was 1.372 (95% CI: 1.125-1.682, P<0.001), and for Group III was 2.053 (95% CI: 1.006-5.437, P<0.001). Furthermore, binary logistic regression analysis, including variables such as digoxin, hypertension, smoking, coronary heart disease, and chronic obstructive pulmonary disease as independent variables, revealed that coronary heart disease and COPD also had a significant impact on readmission due to heart failure (p<0.001). Conclusion: The correlation between the heart rate control level of patients with persistent atrial fibrillation and the risk of heart failure rehospitalization is positive. Reasonable heart rate control may significantly reduce the risk of heart failure rehospitalization.Keywords: heart rate control levels, heart failure rehospitalization, persistent atrial fibrillation, retrospective cohort study
Procedia PDF Downloads 723409 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models
Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan
Abstract:
This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk
Procedia PDF Downloads 983408 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1273407 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis
Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal
Abstract:
This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.Keywords: e-wastes, Delhi, desktops, estimation
Procedia PDF Downloads 2573406 Association between Occupational Characteristics and Well-Being: An Exploratory Study of Married Working Women in New Delhi, India
Authors: Kanchan Negi
Abstract:
Background: Modern and urban occupational culture have driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and wellbeing in a sample of women living in the metropolitan hub of Delhi. Method: This study is based on the data collected from 360 currently married women between age 29 and 49 years, working in the urban capital hub of India, i.e., Delhi. The women interviewed were professionals from the education, health, banking and information and technology (IT) sector. Bivariate analysis was done to study the characteristics of the sample. Logistic regression analysis was used to estimate the physical and psychological wellbeing across occupational characteristics. Results: Most of the working women were below age 35 years; around 30% of women worked in the education sector, 23% in health, 21% in banking and 26% in the IT sector. Over 55% of women were employed in the private sector and only 36% were permanent employees. Nearly 30% of women worked for more than the standard 8 hours a day. The findings from logistic regression showed that compared to women working in the education sector, those who worked in the banking and IT sector more likely to have physical and psychological health issues (OR 2.07-4.37, CI 1.17-4.37); women who bear dual burden of responsibilities had higher odds of physical and psychological health issues than women who did not (OR 1.19-1.85 CI 0.96-2.92). Women who worked for more than 8 hours a day (OR 1.15, CI 1.01-1.30) and those who worked for more than five days a week (OR 1.25, CI 1.05-1.35) were more likely to have physical health issues than women who worked for 6-8 hours a day and five days e week, respectively. Also, not having flexible work timings and compensatory holidays increased the odds of having physical and psychological health issues among working women (OR 1.17-1.29, CI 1.01-1.47). Women who worked in the private sector, those employed temporarily and who worked in the non-conducive environments were more likely to have psychological health issues as compared to women in the public sector, permanent employees and those who worked in a conducive environment, respectively (OR 1.33-1.67, CI 1.09-2.91). Women who did not have poor work-life balance had reduced the odds of psychological health issues than women with poor work-life balance (OR 0.46, CI 0.25-0.84). Conclusion: Poor wellbeing significantly linked to strenuous and rigid work patterns, suggesting that modern and urban work culture may contribute to the poor wellbeing of working women. Noticing the recent decline in female workforce participation in Delhi, schemes like Flexi-timings, compensatory holidays, work-from-home and daycare facilities for young ones must be welcomed; these policies already exist in some private sector firms, and the public sectors companies should also adopt such changes to ease the dual burden as homemaker and career maker. This could encourage women in the urban areas to readily take up the jobs with less juggle to manage home and work.Keywords: occupational characteristics, urban India, well-being, working women
Procedia PDF Downloads 2053405 Youthful Population Sexual Activity in Malawi: A Health Scenario
Authors: A. Sathiya Susuman, N. Wilson
Abstract:
Background: The sexual behaviour of youths is believed to play an important role in the spread of sexually transmitted infections (STIs). Method: The data from the Malawi Demographic and Health Survey 2010 and a sample of 16,217 youth’s age 15 to 24 years (with each household 27.2% female and 72.8% male) was the basis for analysis. Bivariate and logistic regression analysis was performed. Results: The result shows married youth were not interested in condom use (94.2%, p<0.05). Those who were living together were 69 times (OR=1.69, 95% CI, 1.26–2.26) more likely to be involved in early sexual activity compared to those who were not living together. Conclusion: This scientific paper will help other researchers, policy makers, and planners to create strategies to encourage these youths to make use of contraception.Keywords: sexually transmitted infections (STIs), reproductive tract infections (RTIs), condom use, sexual partners, early sexual debut, youths
Procedia PDF Downloads 4353404 Risk Factors for Maternal and Neonatal Morbidities Associated with Operative Vaginal Deliveries
Authors: Maria Reichenber Arcilla
Abstract:
Objective: To determine the risk factors for maternal and neonatal complications associated with operative vaginal deliveries. Methods: A retrospective chart review of 435 patients who underwent operative vaginal deliveries was done. Patient profiles – age, parity, AOG, duration of labor – and outcomes – birthweight, maternal and neonatal complications - were tabulated and multivariable analysis and logistic regression were performed using SPSS® Statistics Base. Results and Conclusion: There was no significant difference in the incidence of maternal and neonatal complications between those that underwent vacuum and forceps extraction. Among the variables analysed, parity and duration of labor reached statistical significance. The odds of maternal complications were 3 times higher among nulliparous patients. Neonatal complications were seen in those whose labor lasted more than 9 hours.Keywords: operative vaginal deliveries, maternal, neonatal, morbidity
Procedia PDF Downloads 4053403 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models
Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini
Abstract:
The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion
Procedia PDF Downloads 1373402 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)
Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg
Abstract:
One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.Keywords: arsenic, fluoride, groundwater contamination, logistic regression
Procedia PDF Downloads 3463401 The Associations of Family Support with Sexual Behaviour and Repeat Induced Abortion among Chinese Adolescents
Authors: Jiashu Shen
Abstract:
Background: The abortion rate has increased significantly, which is harmful especially to adolescents, making repeat induced abortion (RIA) among adolescents a social problem. This study aims to investigate the associations of family support with sexual behavior and repeat induced abortion among Chinese adolescents Methods: This study based on a national hospital-based sample with 945 girls aged 15-19 who underwent induced abortion in 43 hospitals. Multivariate logistic regressions were performed to estimated odds ratio for the risk factors. Results: Adolescences living with parents were less inclined to undergo RIA, especially if they were rural (adjusted odds ratio=0.48 95%CI 0.31-0.72) and local (adjusted odds ratio =0.39 95%=0.23-0.66). Those with parental financial support were likely to have less sexual partnersand take contraceptives more regularly. Those with higher self-perceived importance in family were more likely to take contraceptives during the first sexual intercourse in higher age, and with higher first abortion age and less sexual partners. Conclusion: In mainland China, living with parents, parental financial support, high self-perceived importance in family and adequate family sexuality communications may contribute to lower incidence of RIA.Keywords: Chinese adolescent, family support, repeat induced abortion, sexual behavior
Procedia PDF Downloads 1193400 A Generation Outside: Afghan Refugees in Greece 2003-2016
Authors: Kristina Colovic, Mari Janikian, Nikolaos Takis, Fotini-Sonia Apergi
Abstract:
A considerable number of Afghan asylum seekers in Greece are still waiting for answers about their future and status for personal, social and societal advancement. Most have been trapped in a stalemate of continuously postponed or temporarily progressed levels of integration into the EU/Greek process of asylum. Limited quantitative research exists investigating the psychological effects of long-term displacement among Afghans refugees in Greece. The purpose of this study is to investigate factors that are associated with and predict psychological distress symptoms among this population. Data from a sample of native Afghan nationals (N > 70) living in Greece for approximately the last ten years will be collected from May to July 2016. Criteria for participation include the following: being 18 years of age or older, and emigration from Afghanistan to Greece from 2003 onwards (i.e., long-term refugees or part of the 'old system of asylum'). Snowball sampling will be used to recruit participants, as this is considered the most effective option when attempting to study refugee populations. Participants will complete self-report questionnaires, consisting of the Afghan Symptom Checklist (ASCL), a culturally validated measure of psychological distress, the World Health Organization Quality of Life scale (WHOQOL-BREF), an adapted version of the Comprehensive Trauma Inventory-104 (CTI-104), and a modified Psychological Acculturation Scale. All instruments will be translated in Greek, through the use of forward- and back-translations by bilingual speakers of English and Greek, following WHO guidelines. A pilot study with 5 Afghan participants will take place to check for discrepancies in understanding and for further adapting the instruments as needed. Demographic data, including age, gender, year of arrival to Greece and current asylum status will be explored. Three different types of analyses (descriptive statistics, bivariate correlations, and multivariate linear regression) will be used in this study. Descriptive findings for respondent demographics, psychological distress symptoms, traumatic life events and quality of life will be reported. Zero-order correlations will assess the interrelationships among demographic, traumatic life events, psychological distress, and quality of life variables. Lastly, a multivariate linear regression model will be estimated. The findings from the study will contribute to understanding the determinants of acculturation, distress and trauma on daily functioning for Afghans in Greece. The main implications of the current study will be to advocate for capacity building and empower communities through effective program evaluation and design for mental health services for all refugee populations in Greece.Keywords: Afghan refugees, evaluation, Greece, mental health, quality of life
Procedia PDF Downloads 2883399 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 5233398 Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems
Authors: Debjani Chakraborty, Abhijit Chatterjee, Aishwaryaprajna
Abstract:
Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem.Keywords: geometric programming problem, multivariate optimisation technique, posynomial, spatial interpolation
Procedia PDF Downloads 3693397 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 1103396 A Descriptive Study on Comparison of Maternal and Perinatal Outcome of Twin Pregnancies Conceived Spontaneously and by Assisted Conception Methods
Authors: Aishvarya Gupta, Keerthana Anand, Sasirekha Rengaraj, Latha Chathurvedula
Abstract:
Introduction: Advances in assisted reproductive technology and increase in the proportion of infertile couples have both contributed to the steep increase in the incidence of twin pregnancies in past decades. Maternal and perinatal complications are higher in twins than in singleton pregnancies. Studies comparing the maternal and perinatal outcomes of ART twin pregnancies versus spontaneously conceived twin pregnancies report heterogeneous results making it unclear whether the complications are due to twin gestation per se or because of assisted reproductive techniques. The present study aims to compare both maternal and perinatal outcomes in twin pregnancies which are spontaneously conceived and after assisted conception methods, so that targeted steps can be undertaken in order to improve maternal and perinatal outcome of twins. Objectives: To study perinatal and maternal outcome in twin pregnancies conceived spontaneously as well as with assisted methods and compare the outcomes between the two groups. Setting: Women delivering at JIPMER (tertiary care institute), Pondicherry. Population: 380 women with twin pregnancies who delivered in JIPMER between June 2015 and March 2017 were included in the study. Methods: The study population was divided into two cohorts – one conceived by spontaneous conception and other by assisted reproductive methods. Association of various maternal and perinatal outcomes with the method of conception was assessed using chi square test or Student's t test as appropriate. Multiple logistic regression analysis was done to assess the independent association of assisted conception with maternal outcomes after adjusting for age, parity and BMI. Multiple logistic regression analysis was done to assess the independent association of assisted conception with perinatal outcomes after adjusting for age, parity, BMI, chorionicity, gestational age at delivery and presence of hypertension or gestational diabetes in the mother. A p value of < 0.05 was considered as significant. Result: There was increased proportion of women with GDM (21% v/s 4.29%) and premature rupture of membranes (35% v/s 22.85%) in the assisted conception group and more anemic women in the spontaneous group (71.27% v/s 55.1%). However assisted conception per se increased the incidence of GDM among twin gestations (OR 3.39, 95% CI 1.34 – 8.61) and did not influence any of the other maternal outcomes. Among the perinatal outcomes, assisted conception per se increased the risk of having very preterm (<32 weeks) neonates (OR 3.013, 95% CI 1.432 – 6.337). The mean birth weight did not significantly differ between the two groups (p = 0.429). Though there were higher proportion of babies admitted to NICU in the assisted conception group (48.48% v/s 36.43%), assisted conception per se did not increase the risk of admission to NICU (OR 1.23, 95% CI 0.76 – 1.98). There was no significant difference in perinatal mortality rates between the two groups (p = 0.829). Conclusion: Assisted conception per se increases the risk of developing GDM in women with twin gestation and increases the risk of delivering very preterm babies. Hence measures should be taken to ensure appropriate screening methods for GDM and suitable neonatal care in such pregnancies.Keywords: assisted conception, maternal outcomes, perinatal outcomes, twin gestation
Procedia PDF Downloads 2093395 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 4423394 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 1343393 An Analysis of the Effect of Sharia Financing and Work Relation Founding towards Non-Performing Financing in Islamic Banks in Indonesia
Authors: Muhammad Bahrul Ilmi
Abstract:
The purpose of this research is to analyze the influence of Islamic financing and work relation founding simultaneously and partially towards non-performing financing in Islamic banks. This research was regression quantitative field research, and had been done in Muammalat Indonesia Bank and Islamic Danamon Bank in 3 months. The populations of this research were 15 account officers of Muammalat Indonesia Bank and Islamic Danamon Bank in Surakarta, Indonesia. The techniques of collecting data used in this research were documentation, questionnaire, literary study and interview. Regression analysis result shows that Islamic financing and work relation founding simultaneously has positive and significant effect towards non performing financing of two Islamic Banks. It is obtained with probability value 0.003 which is less than 0.05 and F value 9.584. The analysis result of Islamic financing regression towards non performing financing shows the significant effect. It is supported by double linear regression analysis with probability value 0.001 which is less than 0.05. The regression analysis of work relation founding effect towards non-performing financing shows insignificant effect. This is shown in the double linear regression analysis with probability value 0.161 which is bigger than 0.05.Keywords: Syariah financing, work relation founding, non-performing financing (NPF), Islamic Bank
Procedia PDF Downloads 4293392 Evaluating the Impact of Nursing Protocols on External Ventricular Drain Infection Control in Adult Neurosurgery Patients with External Ventricular Drainage at Directorate General of Khoula Hospital ICU, Oman: A Cluster-Randomized Trial
Authors: Shamsa Al Sharji, Athar Al Jabri, Haitham Al Dughaishi, Mirfat Al Barwani, Raja Al Rawahi, Raiya Al Rajhi, Shurooq Al Ruqaishi, Thamreen Al Zadjali, Iman Al Humaidi
Abstract:
Background: External Ventricular Drains (EVDs) are critical in managing traumatic brain injuries and hydrocephalus by controlling intracranial pressure, but they carry a high risk of infection. Infection rates vary globally, ranging from 5% to 45%, leading to increased morbidity, prolonged hospital stays, and higher healthcare costs. Nursing protocols play a pivotal role in reducing these infection rates. This study investigates the impact of a structured nursing protocol on EVD-associated infections in adult neurosurgery patients at the Directorate General of Khoula Hospital, Oman, from January to September 2024. Methods: A cluster-randomized trial was conducted across neurosurgery wards and the ICU. The intervention group followed a comprehensive nursing protocol, including strict sterile insertion, standardized dressing changes, infection control training, and regular clinical audits. The control group received standard care. The primary outcome was the incidence of EVD-associated infections, with secondary outcomes including protocol compliance, infection severity, recovery times, length of stay, and 30-day mortality. Statistical analysis was conducted using Chi-square tests, paired t-tests, and logistic regression to assess the differences between groups. Results: The study involved 75 patients, with an overall infection rate of 13.3%. The intervention group showed a reduced infection rate of 8.9% compared to 20% in the control group. Compliance rates for key nursing actions were high, with 89.7% for hand hygiene and 86.2% for wound dressing. The relative risk of infection was 0.44 in the intervention group, reflecting a 55.6% reduction. Logistic regression identified obesity as a significant predictor of EVD infections. Although mortality rates were slightly higher in the intervention group, the number needed to treat (NNT) of 9 suggests that the nursing protocol may improve survival outcomes. Conclusion: This study demonstrates that structured nursing protocols can reduce EVD-related infections and improve patient outcomes in neurosurgery. While the findings are promising, further research with larger sample sizes is needed to confirm these results and optimize infection control strategies in neurosurgical care.Keywords: EVD, CSF, nursing protocol, EVD infection
Procedia PDF Downloads 193391 A Study on Inference from Distance Variables in Hedonic Regression
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban area, several landmarks may affect housing price and rents, hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.Keywords: landmarks, hedonic regression, distance variables, collinearity, multicollinerity
Procedia PDF Downloads 4513390 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China
Procedia PDF Downloads 4923389 Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data
Authors: Rajeshwar Singh
Abstract:
The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents.Keywords: conflicting claim on credit of discovery of ridge regression, multicollinearity, principal components and ridge regressions, variance inflation factor
Procedia PDF Downloads 4163388 Maternal Health Care Mirage: A Study of Maternal Health Care Utilization for Young Married Muslim Women in India
Authors: Saradiya Mukherjee
Abstract:
Background: Indian Muslims, compared to their counterparts in other religions, generally do not fare well on many yardsticks related to socio-economic progress and the same is true with maternal health care utilization. Due to low age at marriage a major percentage of child birth is ascribed to young (15-24 years) Muslim mothers in, which pose serious concerns on the maternal health care of Young Married Muslim women (YMMW). A thorough search of past literature on Muslim women’s health and health care reveals that studies in India have mainly focused on religious differences in fertility levels and contraceptive use while the research on the determinants of maternal health care utilization among Muslim women are lacking in India. Data and Methods: Retrieving data from the National Family Health Survey -3 (2005-06) this study attempts to assess the level of utilization and factors effecting three key maternal health indicators (full ANC, safe delivery and PNC) among YMMW (15-24 years) in India. The key socio-economic and demographic variables taken as independent or predictor variables in the study was guided by existing literature particularly for India. Bi-variate analysis and chi square test was applied and variables which were found to be significant were further included in binary logistic regression. Results: The findings of the study reveal abysmally low levels of utilization for all three indicators i.e. full ANC, safe delivery and PNC of maternal health care included in the study. Mother’s education, mass media exposure, women’s autonomy, birth order, economic status wanted status of child and region of residence were found to be significant variables effecting maternal health care utilization among YMMW. Multivariate analysis reveals that no mass media exposure, lower autonomy, education, poor economic background, higher birth order and unintended pregnancy are some of the reasons behind low maternal health care utilization. Conclusion: Considering the low level of safe maternal health care utilization and its proximate determinants among YMMW the study suggests educating Muslim girls, promoting family planning use, involving media and collaboration between religious leader and health care system could be some important policy level interventions to address the unmet need of maternity services among YMMW.Keywords: young Muslim women, religion, socio-economic condition, antenatal care, delivery, post natal care
Procedia PDF Downloads 3353387 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2833386 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 1563385 Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing
Authors: A. Bekbaev, M. Dzhamanbaev, R. Abitaeva, A. Karbozova, G. Nabyeva
Abstract:
In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.Keywords: power lines, line wire dancing, dancing intensity, regression equation, dancing area intensity
Procedia PDF Downloads 310