Search results for: multidetector computed tomography
663 Animal Welfare through Stockmanship Competence and Its Relationship to Productivity and Economic Profitability: The Case of Backyard Goat Production in the Philippines
Authors: M. J. Alcedo, K. Ito, K. Maeda
Abstract:
A stockperson has a significant influence on the productivity and welfare of their animals. This influence may be good or bad depending on their stockmanship competence. In this study, stockmanship competence (SC) is defined as the capacity of the stockperson to ensure the welfare of their animals by providing their animal’s needs. The study was conducted to evaluate the stockmanship competence of backyard goat raisers and to examine its relationship to productivity and economic profitability. This was made possible by interviewing 101 backyard goat raisers who have undergone farmer livestock school on integrated goat management (FLS IGM) in Region I, Philippines on September 3-30, 2012 and March 4-17, 2013. Secondary data needed were gathered from the local government agencies involved. Data on stockmanship, goat productivity and farmer’s income before and after attending FLS-IGM were gathered through a semi-structured interview. Questions for stockamnship were based on the Philippine recommends on goat production, tips on goat raising and other scientific literature. Stockmanship competence index score (SCIS) was computed by summing the raw scores derived from each components of SC divided by the total number of components. Pearson correlation through SPSS was used to see the relationship between SC, productivity and income. Result showed that majority raised native and upgraded goats. The computed mean SCIS before and after undergoing FLS-IGM was 38.53% and 75.81%, respectively, an improvement of 49.17%. Both index scores resulted in significant differences in productivity and income. The median mature weight and mortality rate of goats before FLS-IGM, where SC was low, was 14 kg and 50% respectively. On the other hand, after stockmanship had improved, the median mature weight increased to 19 kgs and mortality rate decreased to 11.11%. Likewise, fewer goat diseases were observed by farmers as compared before. With regards to income, there was 127.34% difference on the median net income derived by farmers. Result implies that improved stockmanship competence can lead not only to increased productivity and income of backyard goat raisers but also welfare of the animal.Keywords: stockmanship, backyard goat production, animal welfare, Philippines
Procedia PDF Downloads 322662 Epigastric Pain in Emergency Room: Median Arcuate Ligament Syndrome
Authors: Demet Devrimsel Dogan, Ecem Deniz Kirkpantur, Muharrem Dogan, Ahmet Aykut, Ebru Unal Akoglu, Ozge Ecmel Onur
Abstract:
Introduction: Median Arcuate Ligament Syndrome (MALS) is a rare cause of chronic abdominal pain due to external compression of the celiac trunk by a fibrous arch that unites diaphragmatic crura on each side of the aortic hiatus. While 10-24% of the population may suffer from compression of celiac trunk, it rarely causes patients to develop symptoms. The typical clinical triad of symptoms includes postprandial epigastric pain, weight loss and vomiting. The diagnosis can be made using thin section multi-detector computed tomography (CT) scans which delineate the ligament and the compressed vessel. The treatment of MALS is aimed at relieving the compression of the celiac artery to restore adequate blood flow through the vessel and neurolysis to address chronic pain. Case: A 68-year-old male presented to our clinic with acute postprandial epigastric pain. This was patients’ first attack, and the pain was the worst pain of his life. The patient did not have any other symptoms like nausea, vomiting, chest pain or dyspnea. In his medical history, the patient has had an ischemic cerebrovascular stroke 5 years ago which he recovered with no sequel, and he was using 75 mg clopidogrel and 100 mg acetylsalicylic acid. He was not using any other medication and did not have a story of cardiovascular disease. His vital signs were stable (BP:113/72 mmHg, Spo2:97, temperature:36.3°C, HR:90/bpm). In his electrocardiogram, there was ST depression in leads II, III and AVF. In his physical examination, there was only epigastric tenderness, other system examinations were normal. Physical examination through his upper gastrointestinal system showed no bleeding. His laboratory results were as follows: creatinine:1.26 mg/dL, AST:42 U/L, ALT:17 U/L, amylase:78 U/L, lipase:26 U/L, troponin:10.3 pg/ml, WBC:28.9 K/uL, Hgb:12.7 gr/dL, Plt:335 K/uL. His serial high-sensitive troponin levels were also within normal limits, his echocardiography showed no segmental wall motion abnormalities, an acute myocardial infarction was excluded. In his abdominal ultrasound, no pathology was founded. Contrast-enhanced abdominal CT and CT angiography reported ‘thickened diaphragmatic cruras are compressing and stenosing truncus celiacus superior, this is likely compatible with MALS’. The patient was consulted to general surgery, and they admitted the patient for laparoscopic ligament release. Results: MALS is a syndrome that causes postprandial pain, nausea and vomiting as its most common symptoms. Affected patients are normally young, slim women between the ages of 30 and 50 who have undergone extensive examinations to find the source of their symptoms. To diagnose MALS, other underlying pathologies should initially be excluded. The gold standard is aortic angiography. Although diagnosis and treatment of MALS are unclear, symptom resolution has been achieved with multiple surgical modalities, including open, laparoscopic or robotic ligament release as well as celiac ganglionectomy, which often requires celiac artery revascularisation.Keywords: differential diagnosis, epigastric pain, median arcuate ligament syndrome, celiac trunk
Procedia PDF Downloads 261661 Magnesium Alloys for Biomedical Applications Processed by Severe Plastic Deformation
Authors: Mariana P. Medeiros, Amanda P. Carvallo, Augusta Isaac, Milos Janecek, Peter Minarik, Mayerling Martinez Celis, Roberto. R. Figueiredo
Abstract:
The effect of high pressure torsion processing on mechanical properties and corrosion behavior of pure magnesium and Mg-Zn, Mg-Zn-Ca, Mg-Li-Y, and Mg-Y-RE alloys is investigated. Micro-tomography and SEM characterization are used to estimate corrosion rate and evaluate non-uniform corrosion features. The results show the severe plastic deformation processing improves the strength of all magnesium alloys, but deformation localization can take place in the Mg-Zn-Ca and Mg-Y-RE alloys. The occurrence of deformation localization is associated with low strain rate sensitivity in these alloys and with severe corrosion localization. Pure magnesium and Mg-Zn and Mg-Li-Y alloys display good corrosion resistance with low corrosion rate and maintained integrity after 28 days of immersion in Hank`s solution.Keywords: magnesium alloys, severe plastic deformation, corrosion, biodegradable alloys
Procedia PDF Downloads 112660 Urban Impervious and its Impact on Storm Water Drainage Systems
Authors: Ratul Das, Udit Narayan Das
Abstract:
Surface imperviousness in urban area brings significant changes in storm water drainage systems and some recent studies reveals that the impervious surfaces that passes the storm water runoff directly to drainage systems through storm water collection systems, called directly connected impervious area (DCIA) is an effective parameter rather than total impervious areas (TIA) for computation of surface runoff. In the present study, extension of DCIA and TIA were computed for a small sub-urban area of Agartala, the capital of state Tripura. Total impervious surfaces covering the study area were identified on the existing storm water drainage map from landuse map of the study area in association with field assessments. Also, DCIA assessed through field survey were compared to DCIA computed by empirical relationships provided by other investigators. For the assessment of DCIA in the study area two methods were adopted. First, partitioning the study area into four drainage sub-zones based on average basin slope and laying of existing storm water drainage systems. In the second method, the entire study area was divided into small grids. Each grid or parcel comprised of 20m× 20m area. Total impervious surfaces were delineated from landuse map in association with on-site assessments for efficient determination of DCIA within each sub-area and grid. There was a wide variation in percent connectivity of TIA across each sub-drainage zone and grid. In the present study, total impervious area comprises 36.23% of the study area, in which 21.85% of the total study area is connected to storm water collection systems. Total pervious area (TPA) and others comprise 53.20% and 10.56% of the total area, respectively. TIA recorded by field assessment (36.23%) was considerably higher than that calculated from the available land use map (22%). From the analysis of recoded data, it is observed that the average percentage of connectivity (% DCIA with respect to TIA) is 60.31 %. The analysis also reveals that the observed DCIA lies below the line of optimal impervious surface connectivity for a sub-urban area provided by other investigators and which indicate the probable reason of water logging conditions in many parts of the study area during monsoon period.Keywords: Drainage, imperviousness, runoff, storm water.
Procedia PDF Downloads 351659 Soliton Solutions in (3+1)-Dimensions
Authors: Magdy G. Asaad
Abstract:
Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa
Procedia PDF Downloads 453658 Inverse Problem Method for Microwave Intrabody Medical Imaging
Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara
Abstract:
Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.Keywords: FDTD, time-reversed, medical imaging, microwave imaging
Procedia PDF Downloads 127657 Study the Influence of the Type of Cast Iron Chips on the Quality of Briquettes Obtained with Controlled Impact
Authors: Dimitar N. Karastoianov, Stanislav D. Gyoshev, Todor N. Penchev
Abstract:
Preparation of briquettes of metal chips with good density and quality is of great importance for the efficiency of this process. In this paper are presented the results of impact briquetting of grey cast iron chips with rectangular shape and dimensions 15x25x1 mm. Density and quality of briquettes of these chips are compared with those obtained in another work of the authors using cast iron chips with smaller sizes. It has been found that by using a rectangular chips with a large size are produced briquettes with a very low density and poor quality. From the photographs taken by X-ray tomography, it is clear that the reason for this is the orientation of the chip in the peripheral wall of the briquettes, which does not allow of the air to escape from it. It was concluded that in order to obtain briquettes of cast iron chips with a large size, these chips must first be ground, for example in a small ball mill.Keywords: briquetting, chips, impact, rocket engine
Procedia PDF Downloads 523656 Multimodal Ophthalmologic Evaluation Can Detect Retinal Injuries in Asymptomatic Patients With Primary Antiphospholipid Syndrome
Authors: Taurino S. R. Neto, Epitácio D. S. Neto, Flávio Signorelli, Gustavo G. M. Balbi, Alex H. Higashi, Mário Luiz R. Monteiro, Eloisa Bonfá, Danieli C. O. Andrade, Leandro C. Zacharias
Abstract:
Purpose: To perform a multimodal evaluation, including the use of Optical Coherence Angiotomography (OCTA), in patients with primary antiphospholipid syndrome (PAPS) without ocular complaints and to compare them with healthy individuals. Methods: A complete structural and functional ophthalmological evaluation using OCTA and microperimetry (MP) exam in patients with PAPS, followed at a tertiary rheumatology outpatient clinic, was performed. All ophthalmologic manifestations were recorded and then statistical analysis was performed for comparative purposes; p <0.05 was considered statistically significant. Results: 104 eyes of 52 subjects (26 patients with PAPS without ocular complaints and 26 healthy individuals) were included. Among PAPS patients, 21 were female (80.8%) and 21 (80.8%) were Caucasians. Thrombotic PAPS was the main clinical criteria manifestation (100%); 65.4% had venous and 34.6% had arterial thrombosis. Obstetrical criteria were present in 34.6% of all thrombotic PAPS patients. Lupus anticoagulant was present in all patients. 19.2% of PAPS patients presented ophthalmologic findings against none of the healthy individuals. The most common retinal change was paracentral acute middle maculopathy (PAMM) (3 patients, 5 eyes), followed by drusen-like deposits (1 patient, 2 eyes) and pachychoroid pigment epitheliopathy (1 patient, 1 eye). Systemic hypertension and hyperlipidaemia were present in 100% of the PAPS patients with PAMM, while only six patients (26.1%) with PAPS without PAMM presented these two risk factors together. In the quantitative OCTA evaluation, we found significant differences between PAPS patients and controls in both the superficial vascular complex (SVC) and deep vascular complex (DVC) in the high-speed protocol, as well as in the SVC in the high-resolution protocol. In the analysis of the foveal avascular zone (FAZ) parameters, the PAPS group had a larger area of FAZ in the DVC using the high-speed method compared to the control group (p=0.047). In the quantitative analysis of the MP, the PAPS group had lower central (p=0.041) and global (p<0.001) retinal sensitivity compared to the control group, as well as in the sector analysis, with the exception of the inferior sector. In the quantitative evaluation of fixation stability, there was a trend towards worse stability in the PAPS subgroup with PAMM in both studied methods. Conclusions: PAMM was observed in 11.5% of PAPS patients with no previous ocular complaints. Systemic hypertension concomitant with hyperlipidemia was the most commonly associated risk factor for PAMM in patients with PAPS. PAPS patients present lower vascular density and retinal sensitivity compared to the control group, even in patients without PAMM.Keywords: antiphospholipid syndrome, optical coherence angio tomography, optical coherence tomography, retina
Procedia PDF Downloads 80655 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method
Authors: M. O. Olayiwola
Abstract:
Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation
Procedia PDF Downloads 430654 Determining Components of Deflection of the Vertical in Owerri West Local Government, Imo State Nigeria Using Least Square Method
Authors: Chukwu Fidelis Ndubuisi, Madufor Michael Ozims, Asogwa Vivian Ndidiamaka, Egenamba Juliet Ngozi, Okonkwo Stephen C., Kamah Chukwudi David
Abstract:
Deflection of the vertical is a quantity used in reducing geodetic measurements related to geoidal networks to the ellipsoidal plane; and it is essential in Geoid modeling processes. Computing the deflection of the vertical component of a point in a given area is necessary in evaluating the standard errors along north-south and east-west direction. Using combined approach for the determination of deflection of the vertical component provides improved result but labor intensive without appropriate method. Least square method is a method that makes use of redundant observation in modeling a given sets of problem that obeys certain geometric condition. This research work is aimed to computing the deflection of vertical component of Owerri West local government area of Imo State using geometric method as field technique. In this method combination of Global Positioning System on static mode and precise leveling observation were utilized in determination of geodetic coordinate of points established within the study area by GPS observation and the orthometric heights through precise leveling. By least square using Matlab programme; the estimated deflections of vertical component parameters for the common station were -0.0286 and -0.0001 arc seconds for the north-south and east-west components respectively. The associated standard errors of the processed vectors of the network were computed. The computed standard errors of the North-south and East-west components were 5.5911e-005 and 1.4965e-004 arc seconds, respectively. Therefore, including the derived component of deflection of the vertical to the ellipsoidal model will yield high observational accuracy since an ellipsoidal model is not tenable due to its far observational error in the determination of high quality job. It is important to include the determined deflection of the vertical component for Owerri West Local Government in Imo State, Nigeria.Keywords: deflection of vertical, ellipsoidal height, least square, orthometric height
Procedia PDF Downloads 209653 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region
Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan
Abstract:
Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.Keywords: flood, HEC-HMS, prediction, rainfall, runoff
Procedia PDF Downloads 395652 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes
Authors: Siddharth Ahuja, T. M. Muruganandam
Abstract:
An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions
Procedia PDF Downloads 217651 Finite Element Analysis of Mini-Plate Stabilization of Mandible Fracture
Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski
Abstract:
The aim of the presented investigation is to recognize the possible mechanical issues of mini-plate connection used to treat mandible fractures and to check the impact of different factors for the stresses and displacements within the bone-stabilizer system. The mini-plate osteosynthesis technique is a common type of internal fixation using metal plates connected to the fractured bone parts by a set of screws. The selected two types of plate application methodology used by maxillofacial surgeons were investigated in the work. Those patterns differ in location and number of plates. The bone geometry was modeled on the base of computed tomography scans of hospitalized patient done just after mini-plate application. The solid volume geometry consisting of cortical and cancellous bone was created based on gained cloud of points. Temporomandibular joint and muscle system were simulated to imitate the real masticatory system behavior. Finite elements mesh and analysis were performed by ANSYS software. To simulate realistic connection behavior nonlinear contact conditions were used between the connecting elements and bones. The influence of the initial compression of the connected bone parts or the gap between them was analyzed. Nonlinear material properties of the bone tissues and elastic-plastic model of titanium alloy were used. The three cases of loading assuming the force of magnitude of 100N acting on the left molars, the right molars and the incisors were investigated. Stress distribution within connecting plate shows that the compression of the bone parts in the connection results in high stress concentration in the plate and the screws, however the maximum stress levels do not exceed material (titanium) yield limit. There are no significant differences between negative offset (gap) and no-offset conditions. The location of the external force influences the magnitude of stresses around both the plate and bone parts. Two-plate system gives generally lower von Misses stress under the same loading than the one-plating approach. Von Mises stress distribution within the cortical bone shows reduction of high stress field for the cases without the compression (neutral initial contact). For the initial prestressing there is a visible significant stress increase around the fixing holes at the bottom mini-plate due to the assembly stress. The local stress concentration may be the reason of bone destruction in those regions. The performed calculations prove that the bone-mini-plate system is able to properly stabilize the fractured mandible bone. There is visible strong dependency between the mini-plate location and stress distribution within the stabilizer structure and the surrounding bone tissue. The results (stresses within the bone tissues and within the devices, relative displacements of the bone parts at the interface) corresponding to different models of the connection provide a basis for the mechanical optimization of the mini-plate connections. The results of the performed numerical simulations were compared to clinical observation. They provide information helpful for better understanding of the load transfer in the mandible with the stabilizer and for improving stabilization techniques.Keywords: finite element modeling, mandible fracture, mini-plate connection, osteosynthesis
Procedia PDF Downloads 246650 Central Nervous System Lesion Differentiation in the Emergency Radiology Department
Authors: Angelis P. Barlampas
Abstract:
An 89 years old woman came to the emergency department complaining of long-lasting headaches and nausea. A CT examination was performed, and a homogeneous midline anterior cranial fossa lesion was revealed, which was situated near the base and measured 2,4 cm in diameter. The patient was allergic, and an i.v.c injection could not be done on the spot, and neither could an MRI exam because of metallic implants. How could someone narrow down the differential diagnosis? The interhemispheric meningioma is usually a silent midline lesion with no edema, and most often presents as a homogeneous, solid type, isodense, or slightly hyperdense mass ( usually the smallest lesions as this one ). Of them, 20-30% have some calcifications. Hyperostosis is typical for meningiomas that abut the base of the skull but is absent in the current case, presumably of a more cephalad location that is borderline away from the bone. Because further investigation could not be done, as the patient was allergic to the contrast media, some other differential options should be considered. Regarding the site of the lesion, the most common other entities to keep in mind are the following: Metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma, giant aneurysm of the anterior cerebral artery, midline lesion. Appearance will depend on whether the aneurysm is non-thrombosed, or partially, or completely thrombosed. Non-contrast: slightly hyperdense, well-defined round extra-axial mass, may demonstrate a peripheral calcified rim, olfactory neuroblastoma, midline lesion. The mass is of soft tissue attenuation and is relatively homogeneous. Focal calcifications are occasionally present. When an intracranial extension is present, peritumoral cysts between it and the overlying brain are often present. Final diagnosis interhemispheric meningioma (Known from the previous patient’s history). Meningiomas come from the meningocytes or the arachnoid cells of the meninges. They are usually found incidentally, have an indolent course, and their most common location is extra-axial, parasagittal, and supratentorial. Other locations include the sphenoid ridge, olfactory groove, juxtasellar, infratentorial, intraventricular, pineal gland area, and optic nerve meningioma. They are clinically silent entities, except for large ones, which can present with headaches, changes in personality status, paresis, or symptomatology according to their specific site and may cause edema of the surrounding brain tissue. Imaging findings include the presence of calcifications, the CSF cleft sign, hyperostosis of adjacent bone, dural tail, and white matter buckling sign. After i.v.c. injection, they enhance brightly and homogenously, except for large ones, which may exhibit necrotic areas or may be heavily calcified. Malignant or cystic variants demonstrate more heterogeneity and less intense enhancement. Sometimes, it is inevitable that the needed CT protocol cannot be performed, especially in the emergency department. In these cases, the radiologist must focus on the characteristic imaging features of the unenhanced lesion, as well as in previous examinations or a known lesion history, in order to come to the right report conclusion.Keywords: computed tomography, emergency radiology, metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma
Procedia PDF Downloads 69649 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar
Authors: Gary Peach, Furqan Hameed
Abstract:
Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey
Procedia PDF Downloads 244648 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 27647 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 340646 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles
Authors: Tudor Deaconescu, Andrea Deaconescu
Abstract:
The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.Keywords: pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke
Procedia PDF Downloads 346645 An Unusual Occurrence: Typhoid Retinitis with Kyrieleis' Vasculitis
Authors: Aditya Sethi, Vaibhav Sethi, Shenouda Girgis
Abstract:
We present a case of a 31-year-old female who presented with a three week history of left eye blurry vision following a fever. She was diagnosed with Typhoid fever, confirmed by a positive Widal test report. On examination, her best corrected visual acuity in the right eye was 20/20 and in the left eye was 20/60. Fundus examination of the right eye showed a focal area of retinitis with retinal haemorrhages along the superior arcade within the macula. There was also focal area of retinitis with superficial retinal haemorrhages along the superior arcade vessels. There was also presence of multiple yellowish white exudates within the adjacent retinal artery arranged in a beaded pattern, suggestive of Kyrieleis' vasculitis. Optical Coherence Tomography (OCT) of the left eye demonstrated cystoid macula edema with serous foveal detachment.Keywords: typhoid retinitis, Kyrieleis’ vasculitis, immune-mediated retinitis, post-fever retinitis, typhoid retinopathy, retinitis
Procedia PDF Downloads 178644 Two-Step Inversion Method for Multi-mode Surface Waves
Authors: Ying Zhang
Abstract:
Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution.Keywords: surface wave inversion, waveform separation, love waves, higher-mode interference
Procedia PDF Downloads 70643 Numerical Analysis of Mandible Fracture Stabilization System
Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski
Abstract:
The aim of the presented work is to recognize the impact of mini-plate application approach on the stress and displacement within the stabilization devices and surrounding bones. The mini-plate osteosynthesis technique is widely used by craniofacial surgeons as an improved replacement of wire connection approach. Many different types of metal plates and screws are used to the physical connection of fractured bones. Below investigation is based on a clinical observation of patient hospitalized with mini-plate stabilization system. Analysis was conducted on a solid mandible geometry, which was modeled basis on the computed tomography scan of the hospitalized patient. In order to achieve most realistic connected system behavior, the cortical and cancellous bone layers were assumed. The temporomandibular joint was simplified to the elastic element to allow physiological movement of loaded bone. The muscles of mastication system were reduced to three pairs, modeled as shell structures. Finite element grid was created by the ANSYS software, where hexahedral and tetrahedral variants of SOLID185 element were used. A set of nonlinear contact conditions were applied on connecting devices and bone common surfaces. Properties of particular contact pair depend on screw - mini-plate connection type and possible gaps between fractured bone around osteosynthesis region. Some of the investigated cases contain prestress introduced to the mini-plate during the application, what responds the initial bending of the connecting device to fit the retromolar fossa region. Assumed bone fracture occurs within the mandible angle zone. Due to the significant deformation of the connecting plate in some of the assembly cases the elastic-plastic model of titanium alloy was assumed. The bone tissues were covered by the orthotropic material. As a loading were used the gauge force of magnitude of 100N applied in three different locations. Conducted analysis shows significant impact of mini-plate application methodology on the stress distribution within the miniplate. Prestress effect introduces additional loading, which leads to locally exceed the titanium alloy yield limit. Stress in surrounding bone increases rapidly around the screws application region, exceeding assumed bone yield limit, what indicate the local bone destruction. Approach with the doubled mini-plate shows increased stress within the connector due to the too rigid connection, where the main path of loading leads through the mini-plates instead of plates and connected bones. Clinical observations confirm more frequent plate destruction of stiffer connections. Some of them could be an effect of decreased low cyclic fatigue capability caused by the overloading. The executed analysis prove that the mini-plate system provides sufficient support to mandible fracture treatment, however, many applicable solutions shifts the entire system to the allowable material limits. The results show that connector application with the initial loading needs to be carefully established due to the small material capability tolerances. Comparison to the clinical observations allows optimizing entire connection to prevent future incidents.Keywords: mandible fracture, mini-plate connection, numerical analysis, osteosynthesis
Procedia PDF Downloads 273642 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion
Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller
Abstract:
Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite
Procedia PDF Downloads 139641 Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis
Authors: Nathainail Bashir, Neil Anderson
Abstract:
The objective of this study site was to investigate the current state of the practice with regards to karst detection methods and recommend the best method and pattern of arrays to acquire the desire results. Proper site investigation in karst prone regions is extremely valuable in determining the location of possible voids. Two geophysical techniques were employed: multichannel analysis of surface waves (MASW) and electric resistivity tomography (ERT).The MASW data was acquired at each test location using different array lengths and different array orientations (to increase the probability of getting interpretable data in karst terrain). The ERT data were acquired using a dipole-dipole array consisting of 168 electrodes. The MASW data was interpreted (re: estimated depth to physical top of rock) and used to constrain and verify the interpretation of the ERT data. The ERT data indicates poorer quality MASW data were acquired in areas where there was significant local variation in the depth to top of rock.Keywords: dipole-dipole, ERT, Karst terrains, MASW
Procedia PDF Downloads 315640 PET/CT Patient Dosage Assay
Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk
Abstract:
A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses
Procedia PDF Downloads 521639 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 371638 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network
Authors: Moumita Chanda, Md. Fazlul Karim Patwary
Abstract:
Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection
Procedia PDF Downloads 84637 An Overview of the Wind and Wave Climate in the Romanian Nearshore
Authors: Liliana Rusu
Abstract:
The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.Keywords: numerical simulations, Romanian nearshore, waves, wind
Procedia PDF Downloads 344636 Septic Pulmonary Emboli as a Complication of Peripheral Venous Cannula Insertion
Authors: Ankita Baidya, Vanishri Ganakumar, Ranveer S. Jadon, Piyush Ranjan, Rita Sood
Abstract:
Septic embolism can have varied presentations and clinical considerations. Infected central venous catheters are commonly associated with septic emboli but peripheral vascular catheters are rarely implicated. We describe a rare case of septic pulmonary emboli related to infected peripheral venous cannulation caused by an unusual etiological agent. A young male presented with complaints of fever, productive cough, sudden onset shortness of breath and cellulitis in both the upper limbs. He was recently hospitalised for dengue fever and administered intravenous fluids through peripheral venous line. The patient was febrile, tachypneic and in respiratory distress, there were multiple pus filled bullae in left hand alongwith swelling and erythema involving right forearm that started at the site of cannulation. Chest examination showed active accessory muscles of respiration, stony dull percussion at the base of right lung and decreased breath sounds at right infrascapular, infraaxillary and mammary area. Other system examination was within normal limits. Chest X-ray revealed bilateral multiple patchy heterogenous peripheral opacities and infiltrates with right-sided pleural effusion. Contrast-enhanced computed tomography (CECT) chest showed feeding vessel sign confirming the diagnosis as septic emboli. Venous Doppler and 2D-echocardiogarm were normal. Laboratory findings showed marked leucocytosis (22000/mm3). Pus aspirate, blood sample, and sputum sample were sent for microbiological testing. The patient was started empirically on ceftriaxone, vancomycin, and clindamycin. The Pus culture and sputum culture showed Klebsiella pneumoniae sensitive to cefoperazone-sulbactum, piperacillin-tazobactum, meropenem and amikacin. The antibiotics were modified accordingly to antimicrobial sensitivity profile to Cefoperazone-sulbactum. Bronchoalveolar lavage (BAL) was done and sent for microbiological investigations. BAL culture showed Klebsiella pneumoniae with same antimicrobial resistance profile. On day 6 of starting cefoperazone-sulbactum, he became afebrile. The skin lesions improved significantly. He was administered 2 weeks of cefoperazone–sulbactum and discharged on oral faropenem for 4 weeks. At the time of discharge, TLC was 11200/mm3 with marked radiological resolution of infection and healed skin lesions. He was kept in regular follow up. Chest X-ray and skin lesions showed complete resolution after 8 weeks. Till date, only couple of case reports of septic emboli through peripheral intravenous line have been reported in English literature. This case highlights that a simple procedure of peripheral intravenous cannulation can lead to catastrophic complication of septic pulmonary emboli and widespread cellulitis if not done with proper care and precautions. Also, the usual pathogens in such clinical settings are gram positive bacteria, but with the history of recent hospitalization, empirical therapy should also cover drug resistant gram negative microorganisms. It also emphasise the importance of appropriate healthcare practices to be taken care during all procedures.Keywords: antibiotics, cannula, Klebsiella pneumoniae, septic emboli
Procedia PDF Downloads 160635 Two Strain Dengue Dynamics Incorporating Temporary Cross Immunity with ADE Effect
Authors: Sunita Gakkhar, Arti Mishra
Abstract:
In this paper, a nonlinear host vector model has been proposed and analyzed for the two strain dengue dynamics incorporating ADE effect. The model considers that the asymptomatic infected people are more responsible for secondary infection than that of symptomatic ones and differentiates between them. The existence conditions are obtained for various equilibrium points. Basic reproduction number has been computed and analyzed to explore the effect of secondary infection enhancement parameter on dengue infection. Stability analyses of various equilibrium states have been performed. Numerical simulation has been done for the stability of endemic state.Keywords: dengue, ade, stability, threshold, asymptomatic, infection
Procedia PDF Downloads 429634 Modified Montgomery for RSA Cryptosystem
Authors: Rupali Verma, Maitreyee Dutta, Renu Vig
Abstract:
Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence, efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.Keywords: RSA, montgomery modular multiplication, 4:2 compressor, FPGA
Procedia PDF Downloads 413