Search results for: longitudinal vibration transducer
1257 Comparative Investigation of Two Non-Contact Prototype Designs Based on a Squeeze-Film Levitation Approach
Authors: A. Almurshedi, M. Atherton, C. Mares, T. Stolarski, M. Miyatake
Abstract:
Transportation and handling of delicate and lightweight objects is currently a significant issue in some industries. Two common contactless movement prototype designs, ultrasonic transducer design and vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation, and this study aims to identify the limitations, and challenges of each. The designs are evaluated in terms of levitation capabilities, and characteristics. To this end, theoretical and experimental explorations are made. It is demonstrated that the ultrasonic transducer prototype design is better suited to the terms of levitation capabilities. However, the design has some operating and mechanical designing difficulties. For making accurate industrial products in micro-fabrication and nanotechnology contexts, such as semiconductor silicon wafers, micro-components and integrated circuits, non-contact oil-free, ultra-precision and low wear transport along the production line is crucial for enabling. One of the designs (design A) is called the ultrasonic chuck, for which an ultrasonic transducer (Langevin, FBI 28452 HS) comprises the main part. Whereas the other (design B), is a vibrating plate design, which consists of a plain rectangular plate made of Aluminium firmly fastened at both ends. The size of the rectangular plate is 200x100x2 mm. In addition, four rounded piezoelectric actuators of size 28 mm diameter with 0.5 mm thickness are glued to the underside of the plate. The vibrating plate is clamped at both ends in the horizontal plane through a steel supporting structure. In addition, the dynamic of levitation using the designs (A and B) has been investigated based on the squeeze film levitation (SFL). The input apparatus that is used with designs consist of a sine wave signal generator connected to an amplifier type ENP-1-1U (Echo Electronics). The latter has to be utilised to magnify the sine wave voltage that is produced by the signal generator. The measurements of the maximum levitation for three different semiconductor wafers of weights 52, 70 and 88 [g] for design A are 240, 205 and 187 [um], respectively. Whereas the physical results show that the average separation distance for a disk of 5 [g] weight for design B reaches 70 [um]. By using the methodology of squeeze film levitation, it is possible to hold an object in a non-contact manner. The analyses of the investigation outcomes signify that the non-contact levitation of design A provides more improvement than design B. However, design A is more complicated than design B in terms of its manufacturing. In order to identify an adequate non-contact SFL design, a comparison between two common such designs has been adopted for the current investigation. Specifically, the study will involve making comparisons in terms of the following issues: floating component geometries and material type constraints; final created pressure distributions; dangerous interactions with the surrounding space; working environment constraints; and complication and compactness of the mechanical design. Considering all these matters is essential for proficiently distinguish the better SFL design.Keywords: ANSYS, floating, piezoelectric, squeeze-film
Procedia PDF Downloads 1511256 Mechanical Qualification Test Campaign on the Demise Observation Capsule
Authors: B. Tiseo, V. Quaranta, G. Bruno, R. Gardi, T. Watts, S. Dussy
Abstract:
This paper describes the qualification test campaign performed on the Demise Observation Capsule DOC-EQM as part of the Future Launch Preparatory Program FLPP3. The mechanical environment experienced during launch ascent and separation phase was first identified and then replicated in terms of sine, random and shock vibration. The loads identification is derived by selecting the worst possible case. Vibration and shock qualification test performed at CIRA Space Qualification laboratory is herein described. Mechanical fixtures’ design and validation, carried out by means of FEM, is also addressed due to its fundamental role in the vibrational test campaign. The Demise Observation Capsule (DOC) successfully passed the qualification test campaign. Functional test and resonance search have not been point any fault and damages of the capsule.Keywords: capsule, demise, demise observation capsule, DOC, launch environment, re-ntry, qualification
Procedia PDF Downloads 1551255 Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review
Authors: Fazl E. Ahad, Shi Dongyan, Anees Ur Rehman
Abstract:
Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly.Keywords: mindlin plates, vibrations, arbitrary boundary conditions, mode shapes, natural frequency
Procedia PDF Downloads 3291254 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate
Authors: Mai A. Aljaberi
Abstract:
The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor
Procedia PDF Downloads 891253 Shield Tunnel Excavation Simulation of a Case Study Using a So-Called 'Stress Relaxation' Method
Authors: Shengwei Zhu, Alireza Afshani, Hirokazu Akagi
Abstract:
Ground surface settlement induced by shield tunneling is addressing increasing attention as shield tunneling becomes a popular construction technique for tunnels in urban areas. This paper discusses a 2D longitudinal FEM simulation of a tunneling case study in Japan (Tokyo Metro Yurakucho Line). Tunneling-induced field data was already collected and is used here for comparison and evaluating purposes. In this model, earth pressure, face pressure, backfilling grouting, elastic tunnel lining, and Mohr-Coulomb failure criterion for soil elements are considered. A method called ‘stress relaxation’ is also exploited to simulate the gradual tunneling excavation. Ground surface settlements obtained from numerical results using the introduced method are then compared with the measurement data.Keywords: 2D longitudinal FEM model, tunneling case study, stress relaxation, shield tunneling excavation
Procedia PDF Downloads 3351252 Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method
Authors: Pejman Daryabor, Kamal Mohammadi
Abstract:
In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature.Keywords: natural frequency, functionally graded material, finite element method, thick cylinder
Procedia PDF Downloads 4761251 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms
Authors: Yaping Zhao, Yimin Zhang
Abstract:
In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.Keywords: random vibration, cantilever beam, mean square response, white noise
Procedia PDF Downloads 3891250 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panelsKeywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling
Procedia PDF Downloads 3191249 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress
Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark
Abstract:
Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship
Procedia PDF Downloads 3981248 The Effect of Technology on Advanced Automotive Electronics
Authors: Abanob Nady Wasef Moawed
Abstract:
In more complicated systems, inclusive of automotive gearboxes, a rigorous remedy of the data is essential because there are several transferring elements (gears, bearings, shafts, and many others.), and in this way, there are numerous viable sources of mistakes and also noise. The fundamental goal of these elements are the detection of damage in car gearbox. The detection strategies used are the wavelet technique, the bispectrum, advanced filtering techniques (selective filtering) of vibrational alerts and mathematical morphology. Gearbox vibration assessments were achieved (gearboxes in proper circumstance and with defects) of a manufacturing line of a huge car assembler. The vibration indicators have acquired the use of five accelerometers in distinct positions of the sample. The effects acquired using the kurtosis, bispectrum, wavelet and mathematical morphology confirmed that it's far possible to identify the lifestyles of defects in automobile gearboxes.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioningautomotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 431247 Vibrations of Thin Bio Composite Plates
Authors: Timo Avikainen, Tuukka Verho
Abstract:
The use of natural fibers as reinforcements is growing increasingly in polymers which are involved in e.g. structural, vibration, and acoustic applications. The use of bio composites is being investigated as lightweight materials with specific properties like the ability to dissipate vibration energy and positive environmental profile and are thus considered as potential replacements for synthetic composites. The macro-level mechanical properties of the biocomposite material depend on several parameters in the detailed architecture and morphology of the reinforcing fiber structure. The polymer matrix phase is often applied to remain the fiber structure in touch. A big role in the packaging details of the fibers is related to the used manufacturing processes like extrusion, injection molding and treatments. There are typically big variances in the detailed parameters of the microstructure fibers. The study addressed the question of how the multiscale simulation methodology works in bio composites with short pulp fibers. The target is to see how the vibro – acoustic performance of thin–walled panels can be controlled by the detailed characteristics of the fiber material. Panels can be used in sound-producing speakers or sound insulation applications. The multiscale analysis chain is tested starting from the microstructural level and continuing via macrostructural material parameters to the product component part/assembly levels. Another application is the dynamic impact type of loading, exposing the material to the crack type damages that is in this study modeled as the Charpy impact tests.Keywords: bio composite, pulp fiber, vibration, acoustics, impact, FEM
Procedia PDF Downloads 881246 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction
Authors: M. D. Haneef, R. B. Randall, Z. Peng
Abstract:
Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction
Procedia PDF Downloads 3131245 Ergonomic Design of Speed Control Humps/Dips
Authors: Emad Khorshid, Habib Awada
Abstract:
Newly developed Ergonomic speed control hump/Dip designs are conducted. The numerical simulation for the driver-vehicle-hump dynamic system will be performed using computer software. The design problem for which the speed hump or dip should provide: (1) discomfort feeling to the driver if speed is over the specified limit, and (2) normal/good comfort level to the driver (and or other passengers) if the speed is within the limit. For comparison reasons, different vehicles suspension systems (active, semi-active and non-active suspension) are used in the simulation. The measuring of the acceptable range of vibration will be referenced to the British standard BS6841, ISO 2631/1 and the new ISO 2631/5. All these standards are related to human health and comfort level in terms of acceptable range of whole body vibration exposure.Keywords: speed hump, speed dip, ergonomic design, human health, vehicle modeling
Procedia PDF Downloads 3761244 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins
Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani
Abstract:
Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam
Procedia PDF Downloads 1781243 Comparative Study on Different Type of Shear Connectors in Composite Slabs
Authors: S. Subrmanian, A. Siva, R. Raghul
Abstract:
In modern construction industry, usage of cold form composite slab has its scope widely due to its light weight, high structural properties and economic factor. To enhance the structural integrity, mechanical interlocking or frictional interlocking was introduced. The role of mechanical interlocking or frictional interlocking is to increase the longitudinal shear between the profiled sheet and concrete. This paper deals with the experimental evaluation of three types of mechanical interlocking devices namely normal stud shear connector, J-Type shear connector, U-Type shear connector. An attempt was made to evolve the shear connector which can be suitable for the composite slab as an interlocking device. Totally six number of composite slabs have been experimented with three types of shear connectors and comparison study is made. The outcome was compared with numerical model was created by ABAQUS software and analyzed for comparative purpose. The result was U-Type shear connector provided better performance and resistance.Keywords: composite slabs, shear connector, end slip, longitudinal shear
Procedia PDF Downloads 3291242 Development and Characterization of Synthetic Non-Woven for Sound Absorption
Authors: P. Sam Vimal Rajkumar, K. Priyanga
Abstract:
Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient
Procedia PDF Downloads 3051241 Seismic Response Analysis of Frame Structures Based on Super Joint Element Model
Authors: Li Xu, Yang Hong, T. Zhao Wen
Abstract:
Experimental results of many RC beam-column subassemblage indicate that slippage of longitudinal beam rebar within the joint and the shear deformation of joint core have significant influence on seismic behavior of the subassemblage. However, rigid joint assumption has been generally used in the seismic response analysis of RC frames, in which two kinds of inelastic deformation of joint have been ignored. Based on OpenSees platform, ‘Super Joint Element Model’ with more detailed inelastic mechanism is used to simulate the inelastic response of joints. Two finite element models of typical RC plane frame, namely considering or ignoring the inelastic deformation of joint respectively, were established and analyzed under seven strong earthquake waves. The simulated global and local inelastic deformations of the RC plane frame is shown and discussed. The analyses also confirm the security of the earthquake-resistant frame designed according to Chinese codes.Keywords: frame structure, beam-column joint, longitudinal bar slippage, shear deformation, nonlinear analysis
Procedia PDF Downloads 4141240 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite element analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.Keywords: artificial ear, bone conducted vibration, occlusion measurement, finite element modeling
Procedia PDF Downloads 951239 MEMS based Vibration Energy Harvesting: An overview
Authors: Gaurav Prabhudesai, Shaurya Kaushal, Pulkit Dubey, B. D. Pant
Abstract:
The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones.Keywords: energy harvesting, WSN, MEMS, piezoelectrics
Procedia PDF Downloads 5061238 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates
Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes
Abstract:
The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration
Procedia PDF Downloads 2941237 Experimental Studies of Cyclic Load Resistance of Materials Samples Parts Manufactured by Powder Bed Fusion for Use in Aviation Gas Turbine Engines
Authors: L. Magerramova, M. Volkov, A. Stadnikov, A. Khakimov, D. Slugina, V. Isakov, I. Kabanov
Abstract:
The manufacture of parts of aviation gas turbine engines by additive methods is currently widespread due to the possibility of improving designs. However, the characteristics of the powder materials used in these technologies have not yet been sufficiently studied to our best knowledge. The issue of the resistance of such structures to vibration loads is particularly acute. This paper is devoted to the study of the characteristics of high cycle fatigue of objects (samples and parts) made using additive technologies from modern powder materials of titanium, nickel, and cobalt alloys under high cyclic loading, as well as typical blades of aviation gas turbine engines that experience vibration loads during operation.Keywords: additive manufacture, gas turbine engines, high cycle fatigue, experimental studies
Procedia PDF Downloads 181236 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 3321235 Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles
Authors: Nirmal Kant Singh, Anshuman Pratap Singh
Abstract:
In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number.Keywords: heat transfer, rectangular channel, longitudinal vortex generators, effect of blade angle
Procedia PDF Downloads 6471234 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation
Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi
Abstract:
This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control
Procedia PDF Downloads 1311233 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes
Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze
Abstract:
A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.Keywords: decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation
Procedia PDF Downloads 3141232 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys
Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri
Abstract:
We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.Keywords: full-potential KKR-green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect
Procedia PDF Downloads 2791231 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 1851230 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines
Authors: Cristobal García
Abstract:
The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.Keywords: SHM, vibrations, connections, floating offshore platform
Procedia PDF Downloads 1301229 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint
Authors: M. Najafi, F. Rahimi Dehgolan
Abstract:
In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.Keywords: non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method
Procedia PDF Downloads 3751228 A Metric to Evaluate Conventional and Electrified Vehicles in Terms of Customer-Oriented Driving Dynamics
Authors: Stephan Schiffer, Andreas Kain, Philipp Wilde, Maximilian Helbing, Bernard Bäker
Abstract:
Automobile manufacturers progressively focus on a downsizing strategy to meet the EU's CO2 requirements concerning type-approval consumption cycles. The reduction in naturally aspirated engine power is compensated by increased levels of turbocharging. By downsizing conventional engines, CO2 emissions are reduced. However, it also implicates major challenges regarding longitudinal dynamic characteristics. An example of this circumstance is the delayed turbocharger-induced torque reaction which leads to a partially poor response behavior of the vehicle during acceleration operations. That is why it is important to focus conventional drive train design on real customer driving again. The currently considered dynamic maneuvers like the acceleration time 0-100 km/h discussed by journals and car manufacturers describe longitudinal dynamics experienced by a driver inadequately. For that reason we present the realization and evaluation of a comprehensive proband study. Subjects are provided with different vehicle concepts (electrified vehicles, vehicles with naturally aspired engines and vehicles with different concepts of turbochargers etc.) in order to find out which dynamic criteria are decisive for a subjectively strong acceleration and response behavior of a vehicle. Subsequently, realistic acceleration criteria are derived. By weighing the criteria an evaluation metric is developed to objectify customer-oriented transient dynamics. Fully-electrified vehicles are the benchmark in terms of customer-oriented longitudinal dynamics. The electric machine provides the desired torque almost without delay. This advantage compared to combustion engines is especially noticeable at low engine speeds. In conclusion, we will show the degree to which extent customer-relevant longitudinal dynamics of conventional vehicles can be approximated to electrified vehicle concepts. Therefore, various technical measures (turbocharger concepts, 48V electrical chargers etc.) and drive train designs (e.g. varying the final drive) are presented and evaluated in order to strengthen the vehicle’s customer-relevant transient dynamics. As a rating size the newly developed evaluation metric will be used.Keywords: 48V, customer-oriented driving dynamics, electric charger, electrified vehicles, vehicle concepts
Procedia PDF Downloads 410