Search results for: liquid penetration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2420

Search results for: liquid penetration

2030 Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation

Authors: Mohamad Saberi, Arash Sohrabi

Abstract:

Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.

Keywords: TLD, seismic table, structural system, Hunzer linear behaviour

Procedia PDF Downloads 357
2029 The Contact between a Rigid Substrate and a Thick Elastic Layer

Authors: Nicola Menga, Giuseppe Carbone

Abstract:

Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.

Keywords: contact mechanics, adhesion, friction, thick layer

Procedia PDF Downloads 487
2028 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of laser in the Liquid Argon Time Projection Chamber. The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432 pb. The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, particle physics

Procedia PDF Downloads 330
2027 Particle Migration in Shear Thinning Viscoelastic Fluid

Authors: Shamik Hazra, Sushanta Mitra, Ashis Sen

Abstract:

Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel.

Keywords: lateral migration, microparticle, polyethylene oxide, shear thinning, viscoelasticity

Procedia PDF Downloads 125
2026 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool

Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt

Abstract:

Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.

Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength

Procedia PDF Downloads 128
2025 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions

Authors: Ozan Kahraman, Hao Feng

Abstract:

Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.

Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization

Procedia PDF Downloads 153
2024 Adsorptive Desulfurization of Tire Pyrolytic Oil Using Cu(I)–Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demands researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for removal of organosulfur compounds (OSC) present in TPO. The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion-exchange between Na-Y zeolite with a Cu(NO3)2 aqueous solution of 0.5M for 48 hours followed by reduction of Cu2+ to Cu+. Batch studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene (TH), benzothiophene (BTH), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophe (4,6-DMDBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of multiple operating conditions such as adsorbent dosage, reaction time and temperature were studied to optimize the process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order 4,6-DMDBT> DBT> BTH> TH. Interpretation of the results was justified using the molecular orbital theory and calculations. Langmuir and Freundlich isotherms were used to predict adsorption of the reaction mixture. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 214
2023 Field Theories in Chiral Liquid Crystals: A Theory for Helicoids and Skyrmions

Authors: G. De Matteis, L. Martina, V. Turco

Abstract:

The work is focused on determining and comparing special nonlinear static configurations in cholesteric liquid crystals (CLCs), confined between two parallel plates and in the presence of an external static electric/magnetic field. The solutions are stabilised by topological and non-topological conservation laws since they are described in terms of integrable or partially integrable nonlinear boundary value problems. In cholesteric liquid crystals which are subject to geometric frustration; anchoring conditions at boundaries, i.e., homeotropic conditions, are incompatible with the cholesteric twist. This aspect turns out to be essential in the admissible classes of solutions, allowing also for disclination type singularities. Within the framework of Frank-Oseen theory, we study the static configurations for CLCs. First, we find numerical solutions for isolated axisymmetric states in confined CLCs with weak homeotropic anchoring at the boundaries. These solutions describe 3-dimensional modulations, namely spherulites or cholesteric bubbles, actually observed in these systems, of standard baby skyrmions. Relations with well-known nonlinear integrable systems are found and are used to explore the asymptotic behavior of the solutions. Then we turn our attention to extended periodic static configurations called Helicoids or cholesteric fingers, described by an elliptic sine-Gordon model with appropriate boundary conditions, showing how their period and energies are determined by both the thickness of the cell and the intensity of the external electric/magnetic field. We explicitly show that helicoids with π or 2π of rotations of the molecular director are different in many aspects and are not simply algebraically related. The behaviour of the solutions, their energy and the properties of the associated disclinations are discussed in detail, both analytically and numerically.

Keywords: cholesteric liquid crystals, geometric frustration, helicoids, skyrmions

Procedia PDF Downloads 113
2022 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis

Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks

Abstract:

Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.

Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol

Procedia PDF Downloads 504
2021 Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy

Authors: A. P. Srivastava, D. Srivastava, D. J. Browne

Abstract:

Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed.

Keywords: DMA, glass transition, metallic glass, thermoplastic forming

Procedia PDF Downloads 279
2020 Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations

Authors: Ming-Kwei Lee, Chih-Feng Yen

Abstract:

The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V.

Keywords: liquid phase deposition, SiON, GaAs, PMA, (NH4)2S

Procedia PDF Downloads 621
2019 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination

Authors: Sinem O. Aktan, Musa Y. Akkurt

Abstract:

Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.

Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty

Procedia PDF Downloads 129
2018 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels

Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand

Abstract:

The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.

Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution

Procedia PDF Downloads 500
2017 Experimental Analysis of Tuned Liquid Damper (TLD) for High Raised Structures

Authors: Mohamad Saberi, Arash Sohrabi

Abstract:

Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article, we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.

Keywords: TLD, seismic table, structural system, Hunzer linear behaviour

Procedia PDF Downloads 316
2016 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 71
2015 Development of Bioactive Medical Textiles by Immobilizing Nanoparticles at Cotton Fabric

Authors: Munir Ashraf, Shagufta Riaz

Abstract:

Personal protective equipment (PPE) and bioactive textiles are highly important for the health care of front line hospital workers, patients, and the general population to be safe from highly infectious diseases. This was even more critical in the wake of COVID-19 outbreak. Most of the medical textiles are inactive against various viruses and bacteria, hence there is a need to wash them frequently to avoid the spread of microorganisms. According to survey conducted by the world health organization, more than 500 million people get infected from hospitals, and more than 13 million died due to these hospitals’ acquired deadly diseases. The market available PPE are though effective against the penetration of pathogens and to kill bacteria but, they are not breathable and active against different viruses. Therefore, there was a great need to develop textiles that are not only effective against bacteria, fungi, and viruses but also are comfortable to the medical personnel and patients. In the present study, waterproof breathable, and biologically active textiles were developed using antiviral and antibacterial nanomaterials. These nanomaterials like TiO₂, ZnO, Cu, and Ag were immobilized at the surface of cotton fabric by using different silane coupling agents and electroless deposition that they retained their functionality even after 30 industrial laundering cycles. Afterwards, the treated fabrics were coated with a waterproof breathable film to prevent the permeation of liquid droplets, any particle or microorganisms greater than 80 nm. The developed cotton fabric was highly active against bacteria and viruses. The good durability of nanomaterials at the cotton surface after several industrial washing cycles makes this fabric an ideal candidate for bioactive textiles used in the medical field.

Keywords: antibacterial, antiviral, cotton, durable

Procedia PDF Downloads 148
2014 A Combined CFD Simulation of Plateau Borders including Films and Transitional Areas of Liquid Foams

Authors: Abdolhamid Anazadehsayed, Jamal Naser

Abstract:

An integrated computational fluid dynamics model is developed for a combined simulation of Plateau borders, films, and transitional areas between the film and the Plateau borders to reduce the simplifications and shortcomings of available models for foam drainage in micro-scale. Additionally, the counter-flow related to the Marangoni effect in the transitional area is investigated. The results of this combined model show the contribution of the films, the exterior Plateau borders, and Marangoni flow in the drainage process more accurately since the inter-influence of foam's elements is included in this study. The exterior Plateau borders flow rate can be four times larger than the interior ones. The exterior bubbles can be more prominent in the drainage process in cases where the number of the exterior Plateau borders increases due to the geometry of container. The ratio of the Marangoni counter-flow to the Plateau border flow increases drastically with an increase in the mobility of air-liquid interface. However, the exterior bubbles follow the same trend with much less intensity since typically, the flow is less dependent on the interface of air-liquid in the exterior bubbles. Moreover, the Marangoni counter-flow in a near-wall transition area is less important than an internal one. The influence of air-liquid interface mobility on the average velocity of interior foams is attained with more accuracy with more realistic boundary condition. Then it has been compared with other numerical and analytical results. The contribution of films in the drainage is significant for the mobile foams as the velocity of flow in the film has the same order of magnitude as the velocity in the Plateau border. Nevertheless, for foams with rigid interfaces, film's contribution in foam drainage is insignificant, particularly for the films near the wall of the container.

Keywords: foam, plateau border, film, Marangoni, CFD, bubble

Procedia PDF Downloads 327
2013 A New Correlation Between SPT-N and SSPT-N values for Various Soil Types in Peninsular Malaysia

Authors: Abdull Halim

Abstract:

The Standard Penetration Test (SPT-N) is the most common in situ test for soil investigations. The Shearing Seismic Standard Penetration Test (SSPT-N), on the other hand, is a new method using shearing wave with propagation exponent equation between the shearing wave, Vs., and hardness, N values without any need for borehole data. Due to the fast and accurate results that can be obtained, the SSPT has found many applications such as in the field rectification buried pipe line, the acid tank settlement and foundation design analyses, and the quality control assessment. Many geotechnical regimes and properties have attempted to correlate both the SSPT and the SPT-N values. Various foundation design methods have been developed based on the outcomes of these tests. Hence, it is pertinent to correlate these tests so that either one of the test can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationship between the SSPT-N and SPT-N values for different types of cohesive soil in Peninsular Malaysia. Data were collected from four different sites, and the correlations were established between the hardness N values, principal stress-strain Mohr circle curve, cohesion, friction angle and vertical effective stress. A positive exponent relationship was found between the shearing wave, sVs., and the hardness N values of the soil. In general, the SSPT-N value was slightly lower than the SPT-N value due to the upper limit boundary of the soil layer.

Keywords: InsituSoil determination; shearing wave; hardness; correlation, SSPT-N, SPT-N

Procedia PDF Downloads 163
2012 A Remotely Piloted Aerial Application System to Control Rangeland Grasshoppers

Authors: Daniel Martin, Roberto Rodriguez, Derek Woller, Chris Reuter, Lonnie Black, Mohamed Latheef

Abstract:

The grasshoppers comprised of heterogeneous assemblages of Acrididae (Family: Orthoptera) species periodically reach outbreak levels by their gregarious behavior and voracious feeding habits, devouring stems and leaves of food crops and rangeland pasture. Cattle consume about 1.5-2.5% of their body weight in forage per day, so pound for pound, a grasshopper will eat 12-20 times as much plant material as a steer and cause serious economic damage to the cattle industry, especially during a drought when forage is already scarce. Grasshoppers annually consume more than 20% of rangeland forages in the western United States at an estimated loss of $1.25 billion per year in forage. A remotely piloted aerial application system with both a spreader and spray application system was used to apply granular insect bait and a liquid formulation of Carbaryl for control of grasshopper infestations on rangeland in New Mexico, United States. Pattern testing and calibration of both the granular and liquid application systems were conducted to determine proper application rate set up and distribution pattern. From these tests, an effective swath was calculated. Results showed that 14 days after application, granular baits were only effective on those grasshopper species that accepted the baits. The liquid formulation at 16 ounces per acre was highly successful at controlling all grasshopper species. Results of this study indicated that a remotely piloted aerial application system can be used to effectively deliver grasshopper control products in both granular and liquid form. However, the spray application treatment proved to be most effective and efficient for all grasshopper species present.

Keywords: Carbaryl, Grasshopper, Insecticidal Efficacy, Remotely Piloted Aerial Application System

Procedia PDF Downloads 196
2011 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials

Procedia PDF Downloads 566
2010 Numerical Study of Partial Penetration of PVDs In Soft Clay Soils Treatment Along With Surcharge Preloading (Bangkok Airport Case Study)

Authors: Mohammad Mehdi Pardsouie, Mehdi Mokhberi, Seyed Mohammad Ali Zomorodian, Seyed Alireza Nasehi

Abstract:

One of the challenging parts of every project, including prefabricated vertical drains (PVDs), is the determination of the depth of installation and its configuration. In this paper, Geostudio 2018 was used for modeling and verification of the full-scale test embankments (TS1, TS2, and TS3), which were constructed to study the effectiveness of PVDs for accelerating the consolidation and dissipation of the excess pore-pressures resulting from fill placement at Bangkok airport. Different depths and scenarios were modeled and the results were compared and analyzed. Since the ultimate goal is attaining pre-determined settlement, the settlement curve under soil embankment was used for the investigation of the results. It was shown that nearly in all cases, the same results and efficiency might be obtained by partial depth installation of PVDs instead of complete full constant length installation. However, it should be mentioned that because of distinct soil characteristics of clay soils and layers properties of any project, further investigation of full-scale test embankments and modeling is needed prior to finalizing the ultimate design by competent geotechnical consultants.

Keywords: partial penetration, surcharge preloading, excess pore water pressure, Bangkok test embankments

Procedia PDF Downloads 178
2009 Impact of Bio Preparations on Agro-Chemical Indexes and Fruit Mineral Composition of Mandarin (Citrus Reticulata) Orchard

Authors: Nunu Nakashidze, Shota Lominadze, Darejan Jashi

Abstract:

Citrus culture used to be one of the leading fields of sub-tropical agriculture in Georgia and especially in Adjara region, but the citrus production has been significantly decreased in recent years due to deterioration of quality index of fruit and reduction of sale markets. The fact severely affected both the economy of Republic and population. Intensive technologies of citrus fruit production are widely implemented in the world practices, which include the following: variety of species, consumption of fertilizers and chemicals, proper use of fruit production and etc. However working on technologies which ensure getting of high quality and plentiful product is very much important if taking into consideration modern, global ecological problems. Using of bio-preparations for plant nourishment is considered as one of the activities. The present work discusses liquid organic fertilizer 'Biorag' produced in Georgia and influence of its growth stimulation (Gakhokidze N1, N2, N3) on agrochemical index of soils and mineral composition of fruit of Citrus Unshiu orchards cultivated in the sub-tropical zone of Black Sea in Adjara region. It was ascertained that liquid organic fertilizers used in the orchard of citrus 'Unshiu' and influence of growth stimulators on the quality index of fruit are not clearly shown in comparison with control one. A small priority is noticed in case of growth stimulators. In conditions of red soils, liquid organic fertilizers and growth stimulators added in the nutrition of the citrus more or less influence the dry material of fruit and the composition of ash and nutrition elements. Agro-chemical index of the soil, except exchange acidity, is somehow enlarged which is one of the positive results in this case.

Keywords: growth stimulator, liquid fertilizer, plant, fruit, soil

Procedia PDF Downloads 264
2008 Effect of Nitriding and Shot Peening on Corrosion Behavior and Surface Properties of Austenite Stainless Steel 316L

Authors: Khiaira S. Hassan, Abbas S. Alwan, Muna K. Abbass

Abstract:

This research aims to study the effect of the liquid nitriding and shot peening on the hardness, surface roughness, residual stress, microstructure and corrosion behavior of austenite stainless steel 316 L. Chemical surface heat treatment by liquid nitriding process was carried out at 500 °C for 1 h and followed by shot peening with using ball steel diameter of 1.25 mm in different exposure time of 10 and 20 min. Electrochemical corrosion test was applied in sea water (3.5% NaCl solution) by using potentostat instrument. The results showed that the nitride layer consists of a compound layer (white layer) and diffusion zone immediately below the alloy layer. It has been found that the mechanical treatment (shot peening) has led to the formation of compressive residual stresses in layer surface that increased the hardness of stainless steel surface. All surface treatment (nitriding and shot peening) processes have led to the formation of carbide of CrN in hard surface layer. It was shown that both processes caused an increase in surface hardness and roughness which increases with shot peening time. Also, the corrosion results showed that the liquid nitriding and shot peening processes increase the corrosion rate to values more than that of not treated stainless steel.

Keywords: stainless steel 316L, shot peening, nitriding, corrosion, hardness

Procedia PDF Downloads 448
2007 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 254
2006 Thermal Performance of Fully Immersed Naturally Cooled Server

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in a dielectric liquid is studied numerically. In the present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid which can be modeled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide-range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over-relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increases, the average Nusselt number of the upper unit increases sharply, whereas the lower one keeps on the same level.

Keywords: convective cooling of server, Darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 382
2005 Scale-Up Study of Gas-Liquid Two Phase Flow in Downcomer

Authors: Jayanth Abishek Subramanian, Ramin Dabirian, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Downcomers are important conduits for multiphase flow transfer from offshore platforms to the seabed. Uncertainty in the predictions of the pressure drop of multiphase flow between platforms is often dominated by the uncertainty associated with the prediction of holdup and pressure drop in the downcomer. The objectives of this study are to conduct experimental and theoretical scale-up study of the downcomer. A 4-in. diameter vertical test section was designed and constructed to study two-phase flow in downcomer. The facility is equipped with baffles for flow area restriction, enabling interchangeable annular slot openings between 30% and 61.7%. Also, state-of-the-art instrumentation, the capacitance Wire-Mesh Sensor (WMS) was utilized to acquire the experimental data. A total of 76 experimental data points were acquired, including falling film under 30% and 61.7% annular slot opening for air-water and air-Conosol C200 oil cases as well as gas carry-under for 30% and 61.7% opening utilizing air-Conosol C200 oil. For all experiments, the parameters such as falling film thickness and velocity, entrained liquid holdup in the core, gas void fraction profiles at the cross-sectional area of the liquid column, the void fraction and the gas carry under were measured. The experimental results indicated that the film thickness and film velocity increase as the flow area reduces. Also, the increase in film velocity increases the gas entrainment process. Furthermore, the results confirmed that the increase of gas entrainment for the same liquid flow rate leads to an increase in the gas carry-under. A power comparison method was developed to enable evaluation of the Lopez (2011) model, which was created for full bore downcomer, with the novel scale-up experiment data acquired from the downcomer with the restricted area for flow. Comparison between the experimental data and the model predictions shows a maximum absolute average discrepancy of 22.9% and 21.8% for the falling film thickness and velocity, respectively; and a maximum absolute average discrepancy of 22.2% for fraction of gas carried with the liquid (oil).

Keywords: two phase flow, falling film, downcomer, wire-mesh sensor

Procedia PDF Downloads 147
2004 Design, Modeling, Fabrication, and Testing of a Scaled down Hybrid Rocket Engine

Authors: Pawthawala Nancy Manish, Syed Alay Hashim

Abstract:

A hybrid rocket is a rocket engine which uses propellants in two different states of matter- one is in solid and the other either gas or liquid. A hybrid rocket exhibit advantages over both liquid rockets and solid rockets especially in terms of simplicity, stop-start-restart capabilities, safety and cost. This paper deals the design and development of a hybrid rocket having paraffin wax as solid fuel and liquid oxygen as oxidizer. Due to variation of pressure in combustion chamber there is significantly change in mass flow rate, burning rate and uneven regression along the length of the grain. This project describes the working model of a hybrid propellant rocket motor. We have designed a hybrid rocket thrust chamber based on the predetermined combustion chamber pressure and the properties of hybrid propellant. This project is all ready in working condition with normal oxygen injector. Now we have planned to modify the injector design to improve the combustion property. We will use spray type injector for injecting the oxidizer. This idea will increase the performance followed by the regression rate of the solid fuel. By employing mass conservation law, oxygen mass flux, oxidizer/fuel ratio and regression rate the thrust coefficient can be obtained for our current design. CATIA V5 R20 is our design software for the complete setup. This project is fully based on experimental evaluation and the collection of combustion and flow parameters. The thrust chamber is made of stainless steel and the duration of test is around 15-20 seconds (Maximum). These experiments indicates that paraffin based fuel provides the opportunity to satisfy a broad range of mission requirements for the next generation of the hybrid rocket system.

Keywords: burning rate, liquid oxygen, mass flow rate, paraffin wax and sugar

Procedia PDF Downloads 310
2003 Experimental Investigation of Air-Water Two-Phase Flow Pattern in T-Junction Microchannel

Authors: N. Rassoul-ibrahim, E. Siahmed, L. Tadrist

Abstract:

Water management plays a crucial role in the performance and durability of PEM fuel cells. Whereas the membrane must be hydrated enough, liquid droplets formed by water in excess can block the flow in the gas distribution channels and hinder the fuel cell performance. The main purpose of this work is to increase the understanding of liquid transport and mixing through mini- or micro-channels for various engineering or medical process applications including cool-ing of equipment according to the operations considered. For that purpose and as a first step, a technique was devel-oped to automatically detect and characterize two-phase flow patterns that may appear in such. The investigation, mainly experimental, was conducted on transparent channel with a 1mm x 1mm square cross section and a 0.3mm x 0.3 mm water injection normal to the gas channel. Three main flow patterns were identified liquid slug, bubble flow and annular flow. A flow map has been built accord-ing to the flow rate of both phases. As a sample the follow-ing figures show representative images of the flow struc-tures observed. An analysis and discussion of the flow pattern, in mini-channel, will be provided and compared to the case old micro-channel. . Keywords: Two phase flow, Clean Energy, Minichannels, Fuel Cells. Flow patterns, Maps.

Keywords: two phase flox, T-juncion, Micro and minichannels, clean energy, flow patterns, maps

Procedia PDF Downloads 56
2002 Aflatoxins Characterization in Remedial Plant-Delphinium denudatum by High-Performance Liquid Chromatography–Tandem Mass Spectrometry

Authors: Nadeem A. Siddique, Mohd Mujeeb, Kahkashan

Abstract:

Introduction: The objective of the projected work is to study the occurrence of the aflatoxins B1, B2, G1and G2 in remedial plants, exclusively in Delphinium denudatum. The aflatoxins were analysed by high-performance liquid chromatography–tandem quadrupole mass spectrometry with electrospray ionization (HPLC–MS/MS) and immunoaffinity column chromatography were used for extraction and purification of aflatoxins. PDA media was selected for fungal count. Results: A good quality linear relationship was originated for AFB1, AFB2, AFG1 and AFG2 at 1–10 ppb (r > 0.9995). The analyte precision at three different spiking levels was 88.7–109.1 %, by means of low per cent relative standard deviations in each case. Within 5 to7 min aflatoxins can be separated using an Agilent XDB C18-column. We found that AFB1 and AFB2 were not found in D. denudatum. This was reliable through exceptionally low figures of fungal colonies observed after 6 hr of incubation. The developed analytical method is straightforward, be successfully used to determine the aflatoxins. Conclusion: The developed analytical method is straightforward, simple, accurate, economical and can be successfully used to find out the aflatoxins in remedial plants and consequently to have power over the quality of products. The presence of aflatoxin in the plant extracts was interrelated to the least fungal load in the remedial plants examined.

Keywords: aflatoxins, delphinium denudatum, liquid chromatography, mass spectrometry

Procedia PDF Downloads 188
2001 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 235