Search results for: improved tabu search
6033 Improved Performance Scheme for Joint Transmission in Downlink Coordinated Multi-Point Transmission
Authors: Young-Su Ryu, Su-Hyun Jung, Myoung-Jin Kim, Hyoung-Kyu Song
Abstract:
In this paper, improved performance scheme for joint transmission is proposed in downlink (DL) coordinated multi-point(CoMP) in case of constraint transmission power. This scheme is that serving transmission point (TP) request a joint transmission to inter-TP and selects one pre-coding technique according to channel state information(CSI) from user equipment(UE). The simulation results show that the bit error rate(BER) and throughput performances of the proposed scheme provide high spectral efficiency and reliable data at the cell edge.Keywords: CoMP, joint transmission, minimum mean square error, zero-forcing, zero-forcing dirty paper coding
Procedia PDF Downloads 5536032 Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors
Authors: Wei-Chou Hsu, Ching-Sung Lee, Han-Yin Liu
Abstract:
This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed.Keywords: AlGaN/GaN, Al2O3, hysteresis effect, drift effect, reliability, passivation, pH sensors
Procedia PDF Downloads 3256031 Journey to the East: The Story of Ghanaian Migrants in Guangzhou, China
Authors: Mark Kwaku Mensah Obeng
Abstract:
In the late 1990s and early 2000s, nationals of sub-Saharan Africa who had initially settled in the Middle East and other parts of south east Asia moved to Guangzhou in response to the 1997/8 Asian financial crisis in numbers never witnessed. They were later joined by many more as the Chinese economy improved and as the economic relationship between China and Africa improved. This paper tells the story of identifiable sets of Ghanaians in Guangzhou, China in the 21st century. It details out their respective characteristics and their activities in China, their migratory trajectories and the motivations for travelling to China. Also analyzed is how they are coping with life in the unknown destination. It finally attempt predicting the future of the Ghanaian community in China in terms of their level of community participation and integration.Keywords: Africa in China, Ghana, motivation, Guangzhou
Procedia PDF Downloads 4476030 A Review of the Fundamental Principles of the National Transport Policy and Developmental Implementation Programmes
Authors: Charles Asenime, Asaju Joel, Fagbenro Abiola, Adetoyese Oguntimehin, Agosu Rebecca
Abstract:
This paper examines the fundamental principles of the National Transport Policy (NTP) and determined its role in the execution of transport projects, and the establishment of ministries, departments, and agencies. Data used for the paper are from secondary sources of commissioned reports, studies, internet sources, and government releases. Results of the analysis show that the draft NTP has been used to establish transport schemes, master plans, and transport infrastructure. The paper concludes that though, the national transport Policy is still in a draft form, its production, however, has shaped the transport system in Nigeria and has shown how transport has improved the economy through the efficient utilisation of resources, improved mobility, and lifestyle.Keywords: principles, draft, system, resources
Procedia PDF Downloads 1416029 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction
Authors: Priyadarsini Samal, Rajesh Singla
Abstract:
Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.Keywords: brain computer interface, electroencephalogram, regression model, stress, word search
Procedia PDF Downloads 1876028 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 1786027 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning
Procedia PDF Downloads 3116026 Assessment of the Frontline Services of the National Museum of the Philippines: Basis for an Improved Client-Oriented Service Package
Authors: Geneva Oaferina
Abstract:
The Philippines is striving to deliver professional and improved public services. The country is committed to making more effective use of its resources to fulfill its sectoral and development goals. Within the heritage field, the museum needs to have a strong focus on seeking excellence in its services to its many publics. The National Museum of the Philippines is mandated as an educational, scientific, and cultural institution. It is important that the museum is more accessible, understandable, and relevant to the public, and at the same time, it provides a quality experience for an improved client-oriented service package. This study assessed the service delivery of the National Museum using the modified HISTOQUAL model. The HISTOQUAL dimensions (Responsiveness, Tangibles, Communications, Consumables, and Empathy) were adapted that identify the service quality features in the museum sector from the poorest to the most outstanding factor that will be subject to improvement, as well as those factors that represent strong points of the museum’s services and which are important to the museum visitors. This also identified the gaps encountered by the respondents that caused such inconvenience and default on achieving the sectoral and organizational goals of the museum. As an output of the study, the researcher formulated the service package and adapted the HISTOQUAL dimensions and statements from the assessment through documentary analysis and data analysis/interpretation.Keywords: museum, frontline, inclusivity, HISTOQUAL
Procedia PDF Downloads 1006025 Long-Term Treatment Efficiency of an Integrated Constructed Wetland System for the Removal of Pollutants Using Biomaterials/ Cork and Date Palm By-Product
Authors: Khadija Kraiem, Salma Bessadok, Dorra Tabassi, Atef Jaouani
Abstract:
This study investigated the long-term impact of incorporating biowaste (i.e., cork and date stones) as a natural and cost-effective alternative to traditional substrates (e.g., gravel) in constructed wetlands (CWs). Results showed that pollutant removal efficiency was significantly improved after the addition of biowaste under different hydraulic retention time (HRT) conditions. The addition of cork in vertical flow constructed wetlands (VFCWs) improved chemical oxygen demand (COD) removal from 64% to 86%. Similarly, in horizontal flow constructed wetlands (HFCWs), COD removal increased from 67% to 81% with cork and 85% with date seeds. In terms of ammonium removal, cork in VFCWs increased efficiency from 34% to 56%, while in HFCWs, it improved from 24% to 47% with cork and reached 44% with date stones. Furthermore, our data showed that the addition of biowastes improved the removal of micropollutants, such as bisphenol A (BPA) and diclofenac (DFC), with the highest removal of BPA of 86% and DFC of 89% observed in the date seeds wetland. However, no significant changes were observed in pathogens removal. The evaluation of the impact of biowaste addition on the contribution of plant species and its interaction with hydraulic retention time (HRT) was also conducted for pollutant removal. The addition of biowaste resulted in a decrease in the required HRT for effective contaminant elimination, but it had no notable impact on the contribution of plant species. To summarize, our findings indicate that utilizing biowastes in artificial wetlands for the treatment of wastewater with various pollutants can result in synergistic effects, presenting potential benefits in terms of both efficiency and cost-effectiveness.Keywords: constructed wetlands, cork, date stones, pollutant removal, wastewater
Procedia PDF Downloads 226024 Graph-Based Semantical Extractive Text Analysis
Authors: Mina Samizadeh
Abstract:
In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis
Procedia PDF Downloads 706023 A Graph-Based Retrieval Model for Passage Search
Authors: Junjie Zhong, Kai Hong, Lei Wang
Abstract:
Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model
Procedia PDF Downloads 1486022 Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection
Authors: Pedro M. A. Vitoriano, Tito. G. Amaral
Abstract:
Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system.Keywords: AOI, automated optical inspection, SMD, surface mounting devices, pattern matching, parallel execution
Procedia PDF Downloads 2996021 Theoretical Study of the Structural and Elastic Properties of Semiconducting Rare Earth Chalcogenide Sm1-XEuXS under Pressure
Authors: R. Dubey, M. Sarwan, S. Singh
Abstract:
We have investigated the phase transition pressure and associated volume collapse in Sm1– X EuX S alloy (0≤x≤1) which shows transition from discontinuous to continuous as x is reduced. The calculated results from present approach are in good agreement with experimental data available for the end point members (x=0 and x=1). The results for the alloy counter parts are also in fair agreement with experimental data generated from the vegard’s law. An improved interaction potential model has been developed which includes coulomb, three body interaction, polarizability effect and overlap repulsive interaction operative up to second neighbor ions. It is found that the inclusion of polarizability effect has improved our results.Keywords: elastic constants, high pressure, phase transition, rare earth compound
Procedia PDF Downloads 4196020 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.Keywords: fault tolerance, improved RSA, key agreement, proxy signature
Procedia PDF Downloads 4256019 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 1286018 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables
Procedia PDF Downloads 3736017 Experimental Determination of Water Productivity of Improved Cassava Varieties Propagation under Rain-Fed Condition in Tropical Environment
Authors: Temitayo Abayomi Ewemoje, Isaac Olugbemiga Afolayan, Badmus Alao Tayo
Abstract:
Researchers in developing countries have worked on improving cassava resistance to diseases and pests, high yielding and early maturity However, water management has received little or no attention as cassava cultivation in Sub-Saharan Africa depended on available precipitation (rain-fed condition). Therefore the need for water management in Agricultural crop production cannot be overemphasized. As other sectors compete with agricultural sector for fresh water (which is not readily available), there is need to increase water productivity in agricultural production. Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had highest number of nodes. Tuber stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions.Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had the highest number of nodes. Tuber, stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regionsKeywords: improved TMS varieties, leaf productivity, rain-fed cassava production, stem productivity, tuber productivity
Procedia PDF Downloads 3446016 On Algebraic Structure of Improved Gauss-Seide Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence
Procedia PDF Downloads 4646015 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem
Authors: Boumesbah Asma, Chergui Mohamed El-amine
Abstract:
Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search
Procedia PDF Downloads 916014 An Improved Many Worlds Quantum Genetic Algorithm
Authors: Li Dan, Zhao Junsuo, Zhang Wenjun
Abstract:
Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm.Keywords: quantum genetic algorithm, many worlds, quantum training operator, combinatorial optimization operator
Procedia PDF Downloads 7446013 The Therapeutic Rise of Turmeric: From Spice to Medicine
Authors: Merzak Siham, Benguerine Zohra, Si Tayeb Fatima, Bouzian Chaimaa Affaf, Jou Siham, Belkessam Nafissa
Abstract:
Introduction: Medicinal plants, particularly spices, are essential for pharmacological research due to their health benefits. This study focuses on Curcuma longa, a spice recognized for its therapeutic properties. Materials and Methods: This study is based on a thorough search conducted on Google Scholar, PubMed, and ScienceDirect. From an initial selection of 25 articles, five were chosen to extract relevant information on Curcuma longa. Results and Discussions: Clinical studies have indicated that curcumin is well tolerated at doses up to 12 g/day. Its anti-rheumatic efficacy was compared to phenylbutazone in 18 individuals. Each participant received a daily dose of either 1200 mg of curcumin or 300 mg of phenylbutazone for 2 weeks. Curcumin was well tolerated at this dose and demonstrated activity comparable to phenylbutazone. Additionally, a study on 62 patients showed that curcumin sustainably relieved symptoms without toxicity. Its effects included reduced itching, lesions, and pain. In ten volunteers, administering 500 mg of curcumin for seven days resulted in a 33% decrease in lipid peroxidation, a 29% increase in HDL cholesterol, and a 12% decrease in total cholesterol. It is important to note that curcumin is a potent, selective inhibitor of phosphorylase kinase, an increased marker in psoriasis. Conclusion: Curcumin is promising as a future drug for various diseases, but its bioavailability must be improved through techniques such as nano encapsulation. Additionally, exploring chemical derivatives of curcumin could lead to more potent and targeted molecules.Keywords: turmeric, spice, medicinal plants, pharmacological activities.
Procedia PDF Downloads 346012 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 2936011 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties
Authors: Roshank Haghighat, Laleh Maleknia
Abstract:
In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2
Procedia PDF Downloads 3496010 General Time-Dependent Sequenced Route Queries in Road Networks
Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost
Abstract:
Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.Keywords: trip planning, time dependent, sequenced route query, road networks
Procedia PDF Downloads 3216009 Towards Consensus: Mapping Humanitarian-Development Integration Concepts and Their Interrelationship over Time
Authors: Matthew J. B. Wilson
Abstract:
Disaster Risk Reduction relies heavily on the effective cooperation of both humanitarian and development actors, particularly in the wake of a disaster, implementing lasting recovery measures that better protect communities from disasters to come. This can be seen to fit within a broader discussion around integrating humanitarian and development work stretching back to the 1980s. Over time, a number of key concepts have been put forward, including Linking Relief, Rehabilitation, and Development (LRRD), Early Recovery (ER), ‘Build Back Better’ (BBB), and the most recent ‘Humanitarian-Development-Peace Nexus’ or ‘Triple Nexus’ (HDPN) to define these goals and relationship. While this discussion has evolved greatly over time, from a continuum to a more integrative synergistic relationship, there remains a lack of consensus around how to describe it, and as such, the reality of effectively closing this gap has yet to be seen. The objective of this research was twofold. First, to map these four identified concepts (LRRD, ER, BBB & HDPN) used in the literature since 1995 to understand the overall trends in how this relationship is discussed. Second, map articles reference a combination of these concepts to understand their interrelationship. A scoping review was conducted for each concept identified. Results were gathered from Google Scholar by firstly inputting specific boolean search phrases for each concept as they related specifically to disasters each year since 1995 to identify the total number of articles discussing each concept over time. A second search was then done by pairing concepts together within a boolean search phrase and inputting the results into a matrix to understand how many articles contained references to more than one of the concepts. This latter search was limited to articles published after 2017 to account for the more recent emergence of HDPN. It was found that ER and particularly BBB are referred to much more widely than LRRD and HDPN. ER increased particularly in the mid-2000’s coinciding with the formation of the ER cluster, and BBB, whilst emerging gradually in the mid-2000s due to its usage in the wake of the Boxing Day Tsunami, increased significantly from about 2015 after its prominent inclusion in Sendai Framework. HDPN has only just started to increase in the last 4-5 years. In regards to the relationship between concepts, it was found the vast majority of all concepts identified were referred to in isolation from each other. The strongest relationship was between LRRD and HDPN (8% of articles referring to both), whilst ER-BBB and ER-HDPN both were about 3%, LRRD-ER 2%, and BBB-HDPN 1% and BBB-LRRD 1%. This research identified a fundamental issue around the lack of consensus and even awareness of different approaches referred to within academic literature relating to integrating humanitarian and development work. More research into synthesizing and learning from a range of approaches could work towards better closing this gap.Keywords: build back better, disaster risk reduction, early recovery, linking relief rehabilitation and development, humanitarian development integration, humanitarian-development (peace) nexus, recovery, triple nexus
Procedia PDF Downloads 806008 Nutritional Quality Assessment and Safety Evaluation of Food Crops
Authors: Olawole Emmanuel Aina, Liziwe Lizbeth Mugivhisa, Joshua Oluwole Olowoyo, Chikwela Lawrence Obi
Abstract:
In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops.Keywords: food crops, fruits and vegetables, pathogens, nutrition, trace metals
Procedia PDF Downloads 806007 Intimate Partner Violence Concerns during COVID-19 Pandemic
Authors: Fatemeh Abdollahi, Munn-Sann Lye, Jamshid Yazdani Charati, Mehran Zarghami
Abstract:
Background: In March 2020, the World Health Organization (WHO) declared the outbreak of a new coronavirus disease, COVID-19, as a public health concern and pandemic. This situation is generating psychological consequences such as stress, anxiety, depression, and intimate partner violence (IPV) throughout the population. This is a brief note on the magnitude of this threat and different ways for abused women to minimize the effects of it in their daily life. Methods: A literature review was conducted using the MEDLINE, PSYCHINFO, and SCIENCE DIRECT databases. The keywords used included intimate partner violence, abuse, victims, pandemic, quarantine, coronavirus, and COVID-19. A Google search was also conducted using these words to identify reports published in non-indexed health care and social science journals. The literature search was restricted to English language studies. Results: The prevalence of IPV and its consequences are rising during such a pandemic. Having sufficient support from healthcare workers and acquaintances is critical for women in such circumstances. Conclusion: Community members, healthcare providers, governments, and policymakers should be informed of the increased risk of IPV during such a pandemic. They should provide a supporting structure for abused women. Social networking is also a good approach that could help abusive women during this situation.Keywords: covid-19, intimate partner violence, pandemic, women
Procedia PDF Downloads 646006 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks
Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi
Abstract:
In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward
Procedia PDF Downloads 5816005 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1316004 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 104