Search results for: groundwater fluoride contamination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1452

Search results for: groundwater fluoride contamination

1062 Occupational Exposure and Contamination to Antineoplastic Drugs of Healthcare Professionals in Mauritania

Authors: Antoine Villa, Moustapha Mohamedou, Florence Pilliere, Catherine Verdun-Esquer, Mathieu Molimard, Mohamed Sidatt Cheikh El Moustaph, Mireille Canal-Raffin

Abstract:

Context: In Mauritania, the activity of the National Center of Oncology (NCO) has steadily risen leading to an increase in the handling of antineoplastic drugs (AD) by healthcare professionals. In this context, the AD contamination of those professionals is a major concern for occupational physicians. It has been evaluated using biological monitoring of occupational exposure (BMOE). Methods: The intervention took place in 2015, in 2 care units, and evaluated nurses preparing and/or infusing AD and agents in charge of hygiene. Participants provided a single urine sample, at the end of the week, at the end of their shift. Five molecules were sought using specific high sensitivity methods (UHPLC-MS/MS) with very low limits of quantification (LOQ) (cyclophosphamide (CP), Ifosfamide (IF), methotrexate (MTX): 2.5ng/L; doxorubicin (Doxo): 10ng/L; α-fluoro-β-alanine (FBAL, 5-FU metabolite): 20ng/L). A healthcare worker was considered as 'contaminated' when an AD was detected at a urine concentration equal to or greater than the LOQ of the analytical method or at trace concentration. Results: Twelve persons participated (6 nurses, 6 agents in charge of hygiene). Twelve urine samples were collected and analyzed. The percentage of contamination was 66.6% for all participants (n=8/12), 100% for nurses (6/6) and 33% for agents in charge of hygiene (2/6). In 62.5% (n=5/8) of the contaminated workers, two to four of the AD were detected in the urine. CP was found in the urine of all contaminated workers. FBAL was found in four, MTX in three and Doxo in one. Only IF was not detected. Urinary concentrations (all drugs combined) ranged from 3 to 844 ng/L for nurses and from 3 to 44 ng/L for agents in charge of hygiene. The median urinary concentrations were 87 ng/L, 15.1 ng/L and 4.4 ng/L for FBAL, CP and MTX, respectively. The Doxo urinary concentration was found 218ng/L. Discussion: There is no current biological exposure index for the interpretation of AD contamination. The contamination of these healthcare professionals is therefore established by the detection of one or more AD in urine. These urinary contaminations are higher than the LOQ of the analytical methods, which must be as low as possible. Given the danger of AD, the implementation of corrective measures is essential for the staff. Biological monitoring of occupational exposure is the most reliable process to identify groups at risk, tracing insufficiently controlled exposures and as an alarm signal. These results show the necessity to educate professionals about the risks of handling AD and/or to care for treated patients.

Keywords: antineoplastic drugs, Mauritania, biological monitoring of occupational exposure, contamination

Procedia PDF Downloads 283
1061 Cement Mortar Lining as a Potential Source of Water Contamination

Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina

Abstract:

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Keywords: concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage

Procedia PDF Downloads 184
1060 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale

Authors: Sascha E. Oswald, Jan Busch

Abstract:

The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.

Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment

Procedia PDF Downloads 226
1059 Study on Breakdown Voltage Characteristics of Different Types of Oils with Contaminations

Authors: C. Jouhar, B. Rajesh Kamath, M. K. Veeraiah, M. Z. Kurian

Abstract:

Since long time ago, petroleum-based mineral oils have been used for liquid insulation in high voltage equipments. Mineral oils are widely used as insulation for transmission and distribution power transformers, capacitors and other high voltage equipment. Petroleum-based insulating oils have excellent dielectric properties such as high electric field strength, low dielectric losses and good long-term performance. Due to environmental consideration, an attempt to search the alternate liquid insulation is required. The influence of particles on the voltage breakdown in insulating oil and other liquids has been recognized for many years. Particles influence both AC and DC voltage breakdown in insulating oil. Experiments are conducted under AC voltage. The breakdown process starts with a microscopic bubble, an area of large distance where ions or electrons initiate avalanches. Insulating liquids drive their dielectric strength from the much higher density compare to gases. Experiments are carried out under High Voltage AC (HVAC) in different types of oils namely castor oil, vegetable oil and mineral oil. The Breakdown Voltage (BDV) with presence of moisture and particle contamination in different types of oils is studied. The BDV of vegetable oil is better when compared to other oils without contamination. The BDV of mineral oil is better when compared to other types of oils in presence of contamination.

Keywords: breakdown voltage, high voltage AC, insulating oil, oil breakdown

Procedia PDF Downloads 306
1058 Flexible, Hydrophobic and Mechanical Strong Poly(Vinylidene Fluoride): Carbon Nanotube Composite Films for Strain-Sensing Applications

Authors: Sudheer Kumar Gundati, Umasankar Patro

Abstract:

Carbon nanotube (CNT) – polymer composites have been extensively studied due to their exceptional electrical and mechanical properties. In the present study, poly(vinylidene fluoride) (PVDF) – multi-walled CNT composites were prepared by melt-blending technique using pristine (ufCNT) and a modified dilute nitric acid-treated CNTs (fCNT). Due to this dilute acid-treatment, the fCNTs were found to show significantly improved dispersion and retained their electrical property. The fCNT showed an electrical percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for ufCNT. The composites were made into films of thickness ~0.3 mm by compression-molding and the resulting composite films were subjected to various property evaluations. It was found that the water contact angle (WCA) of the films increased with CNT weight content in composites and the composite film surface became hydrophobic (e.g., WCA ~104° for 4 wt% ufCNT and 111.5° for 0.5 wt% fCNT composites) in nature; while the neat PVDF film showed hydrophilic behavior (WCA ~68°). Significant enhancements in the mechanical properties were observed upon CNT incorporation and there is a progressive increase in the tensile strength and modulus with increase in CNT weight fraction in composites. The composite films were tested for strain-sensing applications. For this, a simple and non-destructive method was developed to demonstrate the strain-sensing properties of the composites films. In this method, the change in electrical resistance was measured using a digital multimeter by applying bending strain by oscillation. It was found that by applying dynamic bending strain, there is a systematic change in resistance and the films showed piezo-resistive behavior. Due to the high flexibility of these composite films, the change in resistance was reversible and found to be marginally affected, when large number of tests were performed using a single specimen. It is interesting to note that the composites with CNT content notwithstanding their type near the percolation threshold (PT) showed better strain-sensing properties as compared to the composites with CNT contents well-above the PT. On account of the excellent combination of the various properties, the composite films offer a great promise as strain-sensors for structural health-monitoring.

Keywords: carbon nanotubes, electrical percolation threshold, mechanical properties, poly(vinylidene fluoride), strain-sensor, water contact angle

Procedia PDF Downloads 220
1057 Addressing Water Scarcity in Gomti Nagar, Lucknow, India: Assessing the Effectiveness of Rooftop Rainwater Harvesting Systems

Authors: Rajkumar Ghosh

Abstract:

Water scarcity is a significant challenge in urban areas, even in smart cities (Lucknow, Bangalore, Jaipur, etc.) where efficient resource management is prioritized. The depletion of groundwater resources in Gomti Nagar, Lucknow, Uttar Pradesh, India is particularly severe, posing a significant challenge for sustainable development in the region. This study focuses on addressing the water shortage by investigating the effectiveness of rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to bridge the gap between groundwater recharge and extraction. The aim of this study is to assess the effectiveness of RTRWHs in reducing aquifer depletion and addressing the water scarcity issue in the Gomti Nagar region. The research methodology involves the utilization of RTRWHs as the primary method for collecting rainwater. RTRWHs will be implemented in residential and commercial buildings to maximize the collection of rainwater. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. Statistical analysis and modelling techniques were employed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed using statistical analysis and modelling techniques to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. Widespread adoption of RTRWHs in all buildings and integration into urban planning and development processes are crucial for efficient water management in smart cities like Gomti Nagar. These findings can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis.

Keywords: water scarcity, urban areas, smart cities, resource management, groundwater depletion, rooftop rainwater harvesting systems, sustainable development, sustainable water management, mitigating water scarcity

Procedia PDF Downloads 48
1056 Antibacterial Effect of Silver Diamine Fluoride Incorporated in Fissure Sealants

Authors: Nélio Veiga, Paula Ferreira, Tiago Correia, Maria J. Correia, Carlos Pereira, Odete Amaral, Ilídio J. Correia

Abstract:

Introduction: The application of fissure sealants is considered to be an important primary prevention method used in dental medicine. However, the formation of microleakage gaps between tooth enamel and the fissure sealant applied is one of the most common reasons of dental caries development in teeth with fissure sealants. The association between various dental biomaterials may limit the major disadvantages and limitations of biomaterials functioning in a complementary manner. The present study consists in the incorporation of a cariostatic agent – silver diamine fluoride (SDF) – in a resin-based fissure sealant followed by the study of release kinetics by spectrophotometry analysis of the association between both biomaterials and assessment of the inhibitory effect on the growth of the reference bacterial strain Streptococcus mutans (S. mutans) in an in vitro study. Materials and Methods: An experimental in vitro study was designed consisting in the entrapment of SDF (Cariestop® 12% and 30%) into a commercially available fissure sealant (Fissurit®), by photopolymerization and photocrosslinking. The same sealant, without SDF was used as a negative control. The effect of the sealants on the growth of S. mutans was determined by the presence of bacterial inhibitory halos in the cultures at the end of the incubation period. In order to confirm the absence of bacteria in the surface of the materials, Scanning Electron Microscopy (SEM) characterization was performed. Also, to analyze the release profile of SDF along time, spectrophotometry technique was applied. Results: The obtained results indicate that the association of SDF to a resin-based fissure sealant may be able to increase the inhibition of S. mutans growth. However, no SDF release was noticed during the in vitro release studies and no statistical significant difference was verified when comparing the inhibitory halo sizes obtained for test and control group.  Conclusions: In this study, the entrapment of SDF in the resin-based fissure sealant did not potentiate the antibacterial effect of the fissure sealant or avoid the immediate development of dental caries. The development of more laboratorial research and, afterwards, long-term clinical data are necessary in order to verify if this association between these biomaterials is effective and can be considered for being used in oral health management. Also, other methodologies for associating cariostatic agents and sealant should be addressed.

Keywords: biomaterial, fissure sealant, primary prevention, silver diamine fluoride

Procedia PDF Downloads 236
1055 Heavy Metal Contamination in Ship Breaking Yard, A Case Study in Bangladesh

Authors: Mohammad Mosaddik Rahman

Abstract:

This study embarks on an exploratory journey to assess the pervasive issue of heavy metal contamination in the water bodies along Chittagong Coast, Bangladesh. Situated along the mesmerizing Bay of Bengal, known for its potential as an emerging tourist haven, economic zone, ship breaking yard, confronts significant environmental hurdles. The core of these challenges lies in the contamination from heavy metals such as lead, cadmium, chromium, and mercury, which detrimentally impact both the ecological integrity and public health of the region. This contamination primarily stems from industrial activities, particularly those involving metallurgical and chemical processes, which release these metals into the environment, leading to their accumulation in soil and water bodies. The study's primary aim is to conduct a thorough assessment of heavy metal pollution levels, alongside an analysis of nutrient variations, focusing on nitrates and nitrites. Methodologically, the study leverages systematic sampling and advanced analytical tools like the Hach 3900 spectrophotometer to ensure precise and reliable data collection. The implications of heavy metal presence are multifaceted, affecting microbial and aquatic life, and posing severe health risks to the local population, including respiratory problems, neurological disorders, and an increased risk of cancer. The results of this study highlight the urgent need for effective mitigation strategies and regulatory measures to address this critical issue. By providing a comprehensive understanding of the environmental and public health implications of heavy metal contamination in Chittagong Coast, this research endeavours to serve as a catalyst for change, emphasising the need for pollution control and advancements in water management policies. It is envisioned that the outcomes of this study will guide stakeholders in collaborating to develop and implement sustainable solutions, ultimately safeguarding the region’s environment and public health.

Keywords: heavy metal, environmental health, pollution control policies, shipbreaking yard

Procedia PDF Downloads 34
1054 Potential Ecological Risk Index of the Northern Egyptian Lagoons, South of Mediterranean Sea, Egypt

Authors: Mohamed El-Bady

Abstract:

The Northern Egyptian Lagoons are (from east to west) Bardawil Lagoon, Manzala Lagoon, Burullus Lagoon, Edku Lagoons and Mariute Lagoon. These lagoons have been received the bulk of drainage water from the lands of Delta and from the other coastal areas. Where, the heavy metals can occur in Lagoons environments through a variety of sources, including industries, wastewaters and domestic effluents. The potential ecological risk index (RI) calculation of the bottom sediments of the northern lagoons depends on contamination factor (CF), potential ecological risk factor and proposed toxic response factor (Tr). Each lagoon with special indices according to its conditions.

Keywords: Northern Lagoons, Nile Delta, ecological risk index, contamination factor

Procedia PDF Downloads 316
1053 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 77
1052 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column

Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura

Abstract:

Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.

Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column

Procedia PDF Downloads 211
1051 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 290
1050 Importance of Different Spatial Parameters in Water Quality Analysis within Intensive Agricultural Area

Authors: Marina Bubalo, Davor Romić, Stjepan Husnjak, Helena Bakić

Abstract:

Even though European Council Directive 91/676/EEC known as Nitrates Directive was adopted in 1991, the issue of water quality preservation in areas of intensive agricultural production still persist all over Europe. High nitrate nitrogen concentrations in surface and groundwater originating from diffuse sources are one of the most important environmental problems in modern intensive agriculture. The fate of nitrogen in soil, surface and groundwater in agricultural area is mostly affected by anthropogenic activity (i.e. agricultural practice) and hydrological and climatological conditions. The aim of this study was to identify impact of land use, soil type, soil vulnerability to pollutant percolation, and natural aquifer vulnerability to nitrate occurrence in surface and groundwater within an intensive agricultural area. The study was set in Varaždin County (northern Croatia), which is under significant influence of the large rivers Drava and Mura and due to that entire area is dominated by alluvial soil with shallow active profile mainly on gravel base. Negative agricultural impact on water quality in this area is evident therefore the half of selected county is a part of delineated nitrate vulnerable zones (NVZ). Data on water quality were collected from 7 surface and 8 groundwater monitoring stations in the County. Also, recent study of the area implied detailed inventory of agricultural production and fertilizers use with the aim to produce new agricultural land use database as one of dominant parameters. The analysis of this database done using ArcGIS 10.1 showed that 52,7% of total County area is agricultural land and 59,2% of agricultural land is used for intensive agricultural production. On the other hand, 56% of soil within the county is classified as soil vulnerable to pollutant percolation. The situation is similar with natural aquifer vulnerability; northern part of the county ranges from high to very high aquifer vulnerability. Statistical analysis of water quality data is done using SPSS 13.0. Cluster analysis group both surface and groundwater stations in two groups according to nitrate nitrogen concentrations. Mean nitrate nitrogen concentration in surface water – group 1 ranges from 4,2 to 5,5 mg/l and in surface water – group 2 from 24 to 42 mg/l. The results are similar, but evidently higher, in groundwater samples; mean nitrate nitrogen concentration in group 1 ranges from 3,9 to 17 mg/l and in group 2 from 36 to 96 mg/l. ANOVA analysis confirmed statistical significance between stations that are classified in the same group. The previously listed parameters (land use, soil type, etc.) were used in factorial correspondence analysis (FCA) to detect importance of each stated parameter in local water quality. Since stated parameters mostly cannot be altered, there is obvious necessity for more precise and more adapted land management in such conditions.

Keywords: agricultural area, nitrate, factorial correspondence analysis, water quality

Procedia PDF Downloads 241
1049 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 328
1048 Water Quality Assessment of Deep Wells in Western Misamis Oriental, Philippines

Authors: Girlie D. Leopoldo, Myrna S. Ceniza, Ronnie L. Besagas, Antonio Y. Asoy, Noel T. Dael, Romeo M. Del Rosario

Abstract:

The quality of groundwater from main deep well sources of seven (7) municipalities in Western Misamis Oriental, Philippines was examined. The study looks at the well waters’ physicochemical properties (temperture, pH, turbidity, conductivity, TDS, salinity, chlorides, TOC, and total hardness), the heavy metals and other metals (Pb, Cd, Al, As, Hg, Sb, Zn, Cu, Fe) and their microbiological (total coliform and E. coli) characteristics. The physicochemical properties of groundwater samples were found to be within the Philippine National Standards for Drinking Water (PNSDW)/US-EPA except for the TDS, chlorides, and hardness of some sources. Well waters from both Initao and Gitagum municipalities have TDS values of 643.2 mg/L and 578.4 mg/L, respectively, as compared to PNSDW/US-EPA standard limit of 500 mg/L. These same two municipalities Initao and Gitagum as well as the municipality of Libertad also have chloride levels beyond the 250 mg/L limit of PNSDW/US-EPA/EU with values at 360, 318 and 277 mg/L respectively. The Libertad sample also registered a total hardness of 407.5 mg/L CaCO3 as compared to the 300 mg/L PNSDW limit. These mentioned three (3) municipalities are noticed to have similar geologic structures. Although metal analyses revealed the presence of Zn, Cu and Fe in almost all well water sources, their concentrations are below allowable limit. All well waters from the seven municipalities failed in total coliform count. Escherichia coli were also found in well waters from four (4) municipalities including Laguindingan, Lugait, Gitagum, and Libertad. The presence of these pathogens in the well waters needs to be addressed to make the waters suitable for human consumption.

Keywords: groundwater, deep well, physico-chemical, heavy metal, microbiological

Procedia PDF Downloads 549
1047 Aquatic Sediment and Honey of Apis mellifera as Bioindicators of Pesticide Residues

Authors: Luana Guerra, Silvio C. Sampaio, Vladimir Pavan Margarido, Ralpho R. Reis

Abstract:

Brazil is the world's largest consumer of pesticides. The excessive use of these compounds has negative impacts on animal and human life, the environment, and food security. Bees, crucial for pollination, are exposed to pesticides during the collection of nectar and pollen, posing risks to their health and the food chain, including honey contamination. Aquatic sediments are also affected, impacting water quality and the microbiota. Therefore, the analysis of aquatic sediments and bee honey is essential to identify environmental contamination and monitor ecosystems. The aim of this study was to use samples of honey from honeybees (Apis mellifera) and aquatic sediment as bioindicators of environmental contamination by pesticides and their relationship with agricultural use in the surrounding areas. The sample collections of sediment and honey were carried out in two stages. The first stage was conducted in the Bituruna municipality region in the second half of the year 2022, and the second stage took place in the regions of Laranjeiras do Sul, Quedas do Iguaçu, and Nova Laranjeiras in the first half of the year 2023. In total, 10 collection points were selected, with 5 points in the first stage and 5 points in the second stage, where one sediment sample and one honey sample were collected for each point, totaling 20 samples. The honey and sediment samples were analyzed at the Laboratory of the Paraná Institute of Technology, with ten samples of honey and ten samples of sediment. The selected extraction method was QuEChERS, and the analysis of the components present in the sample was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The pesticides Azoxystrobin, Epoxiconazole, Boscalid, Carbendazim, Haloxifope, Fomesafen, Fipronil, Chlorantraniliprole, Imidacloprid, and Bifenthrin were detected in the sediment samples from the study area in Laranjeiras do Sul, Paraná, with Carbendazim being the compound with the highest concentration (0.47 mg/kg). The honey samples obtained from the apiaries showed satisfactory results, as they did not show any detection or quantification of the analyzed pesticides, except for Point 9, which had the fungicide tebuconazole but with a concentration Keywords: contamination, water research, agrochemicals, beekeeping activity

Procedia PDF Downloads 19
1046 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt

Authors: Abdallah M. Fayed

Abstract:

The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).

Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen

Procedia PDF Downloads 376
1045 Effect of Saline Ground Water on Economics of Bitter-Gourd (Momordica charantia L.) Cultivation and Soil Characteristics in Semi Arid Region

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Due to the declining freshwater availability to agriculture in many areas, the utilization of saline irrigation requires more consideration. For this purpose, the effects of saline irrigation on the economics of crop yield and soil salinity should be understood. A two-year field experiment was carried out during 2017-18 with three replications to investigate the effect of saline groundwater on the economics of bitter gourd production and soil salinity status after harvesting the crop. Two irrigation treatments, i.e., fresh quality irrigation water (IT₁ EC 0.56 dS.m⁻¹ (control) and other is saline groundwater ( IT₂ EC 2.56 dS.m⁻¹) were used under drip system of irrigation. Cost-benefit analysis is often used to assess adaptation approaches. In this study, it has been observed that the salts under IT₁ (fresh quality water) and IT₂ (saline groundwater) did not accumulate in the wetted zone. However, the salts were observed deposited at wetted periphery under both the treatments after the crop end at all the three sampling depths under drip system of irrigation. Moreover, the costs and benefits associated with different irrigation treatments for two consecutive seasons for bitter-gourd cultivation were also investigated, and it was found that the average gross returns per hectare in season 1 were USD 5008.22 and 4454.78 under irrigation treatment IT₁ and IT₂ respectively. Whereas in season 2 the average gross returns per hectare were 3713.47 and 3140.51 under IT₁ and IT₂ respectively.

Keywords: ground-water, soil salinity, drip irrigation, wetted zone, wetted periphery, cost benefit analysis

Procedia PDF Downloads 127
1044 Challenges to Ensure Food Safety through Sanitation and Hygiene Coverage in Bangladesh

Authors: Moshiur Rahman, Tahmida Jakia

Abstract:

Bangladesh, a densely populated South Asian country is home to more than 160 million people. In two decades ago, the people of this developing nation drank heavily contaminated surface water. Over the past thirty years, the country, and its development partners, has undertaken extensive efforts to provide microbiologically safe groundwater based drinking water through the use of tube-wells. About 85% of the people now drink tube-well water from about 11 million tube-wells/hand pumps. However, diarrhoeal and other water-related diseases are still reported among the major causes of morbidity and mortality among Bangladeshi children. This implies that the mode of transmission of pathogens through water and/or other modes continue. In addition, massive scale arsenic contamination has been recently reported in the ground water. Thirty five million people may be at risk of consuming arsenic contaminated water exceeding 0.05 mg/l in Bangladesh. Drinking of arsenic contaminated water has been linked with skin problems, cancer, cardiovascular diseases, neurological diseases, eye problems, cancer of the internal organs, and other diseases. In the study area, Narail district, recent investigations about existing water quality situations indicated presence of low to high levels of arsenic, salinity, iron, manganese and bacteriological contamination risks. As challenges for safe water exist; it is likely that sanitation and food hygiene practices are poor which lead threat to ensure food security.The main attempt of this study is to find out the challenges to ensure food security andprovide probable solutions to ensure food safety towards 0.7 million of people in study area. A survey has been conducted at Lohagara and Kalia sub district of Narail district with a pretested questionnaire. Primary data are collected through a questionnaire, while secondary data are collected from pertinent offices as well as academic journals. FGD has also been done to know the knowledge regarding water, sanitation as well as food preparation and consumption practice of community people in study area. The major focus of this study is to assess the state of sanitation and food hygiene condition of rural people. It is found that most of the villagers have lack of knowledge about food safety. Open defecation rate is high which lead threat to ensure food security.

Keywords: food safety, challenges, hygiene, Bangladesh

Procedia PDF Downloads 302
1043 Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb

Authors: Sebai Amal, Massuel Sylvain

Abstract:

Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model.

Keywords: Hydrodynamic modeling, lithological modeling, hydraulic, semi-arid, merguellil, central Tunisia

Procedia PDF Downloads 740
1042 The Superiority of 18F-Sodium Fluoride PET/CT for Detecting Bone Metastases in Comparison with Other Bone Diagnostic Imaging Modalities

Authors: Mojtaba Mirmontazemi, Habibollah Dadgar

Abstract:

Bone is the most common metastasis site in some advanced malignancies, such as prostate and breast cancer. Bone metastasis generally indicates fewer prognostic factors in these patients. Different radiological and molecular imaging modalities are used for detecting bone lesions. Molecular imaging including computed tomography, magnetic resonance imaging, planar bone scintigraphy, single-photon emission tomography, and positron emission tomography as noninvasive visualization of the biological occurrences has the potential to exact examination, characterization, risk stratification and comprehension of human being diseases. Also, it is potent to straightly visualize targets, specify clearly cellular pathways and provide precision medicine for molecular targeted therapies. These advantages contribute implement personalized treatment for each patient. Currently, NaF PET/CT has significantly replaced standard bone scintigraphy for the detection of bone metastases. On one hand, 68Ga-PSMA PET/CT has gained high attention for accurate staging of primary prostate cancer and restaging after biochemical recurrence. On the other hand, FDG PET/CT is not commonly used in osseous metastases of prostate and breast cancer as well as its usage is limited to staging patients with aggressive primary tumors or localizing the site of disease. In this article, we examine current studies about FDG, NaF, and PSMA PET/CT images in bone metastases diagnostic utility and assess response to treatment in patients with breast and prostate cancer.

Keywords: skeletal metastases, fluorodeoxyglucose, sodium fluoride, molecular imaging, precision medicine, prostate cancer (68Ga-PSMA-11)

Procedia PDF Downloads 88
1041 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 419
1040 Hydrogeological Appraisal of Karacahisar Coal Field (Western Turkey): Impacts of Mining on Groundwater Resources Utilized for Water Supply

Authors: Sukran Acikel, Mehmet Ekmekci, Otgonbayar Namkhai

Abstract:

Lignite coal fields in western Turkey generally occurs in tensional Neogene basins bordered by major faults. Karacahisar coal field in Mugla province of western Turkey is a large Neogene basin filled with alternation of silisic and calcerous layers. The basement of the basin is composed of mainly karstified carbonate rocks of Mesozoic and schists of Paleozoic age. The basement rocks are exposed at highlands surrounding the basin. The basin fill deposits forms shallow, low yield and local aquifers whereas karstic carbonate rock masses forms the major aquifer in the region. The karstic aquifer discharges through a spring zone issuing at intersection of two major faults. Municipal water demand in Bodrum city, a touristic attraction area is almost totally supplied by boreholes tapping the karstic aquifer. A well field has been constructed on the eastern edge of the coal basin, which forms a ridge separating two Neogene basins. A major concern was raised about the plausible impact of mining activities on groundwater system in general and on water supply well field in particular. The hydrogeological studies carried out in the area revealed that the coal seam is located below the groundwater level. Mining operations will be affected by groundwater inflow to the pits, which will require dewatering measures. Dewatering activities in mine sites have two-sided effects: a) lowers the groundwater level at and around the pit for a safe and effective mining operation, b) continuous dewatering causes expansion of cone of depression to reach a spring, stream and/or well being utilized by local people, capturing their water. Plausible effect of mining operations on the flow of the spring zone was another issue of concern. Therefore, a detailed representative hydrogeological conceptual model of the site was developed on the basis of available data and field work. According to the hydrogeological conceptual model, dewatering of Neogene layers will not hydraulically affect the water supply wells, however, the ultimate perimeter of the open pit will expand to intersect the well field. According to the conceptual model, the coal seam is separated from the bottom by a thick impervious clay layer sitting on the carbonate basement. Therefore, the hydrostratigraphy does not allow a hydraulic interaction between the mine pit and the karstic carbonate rock aquifer. However, the structural setting in the basin suggests that deep faults intersecting the basement and the Neogene sequence will most probably carry the deep groundwater up to a level above the bottom of the pit. This will require taking necessary measure to lower the piezometric level of the carbonate rock aquifer along the faults. Dewatering the carbonate rock aquifer will reduce the flow to the spring zone. All findings were put together to recommend a strategy for safe and effective mining operation.

Keywords: conceptual model, dewatering, groundwater, mining operation

Procedia PDF Downloads 375
1039 Experiment on Artificial Recharge of Groundwater Implemented Project: Effect on the Infiltration Velocity by Vegetation Mulch

Authors: Cheh-Shyh Ting, Jiin-Liang Lin

Abstract:

This study was conducted at the Wanglung Farm in Pingtung County to test the groundwater seepage influences on the implemented project for artificial groundwater recharge. The study was divided into three phases. The first phase, conducted on natural groundwater that was recharged through the local climate and growing conditions, observed the natural form of vegetation species. The original plants were flooded, and after 60 days it was observed that of the original plants only Goosegrass (Eleusine indica) and Black heart (Polygonum lapathifolium Linn.) remained. Direct infiltration tests were carried out, and calculations for the effect of vegetation on infiltration velocity of the recharge pool were noted. The second phase was an indoor test. Bahia grass and wild amaranth were selected as vegetation roots. After growth, the distribution of different grassroots was observed in order to facilitate a comparison permeability coefficient calculated by the amount of penetration and to explore the relationship between density and the efficiency to groundwater recharge. The third phase was the root tomography analysis, further observation of the development of plant roots using computed tomography technology. Computed Tomography, also known as (CT), is a diagnostic imaging examination, normally used in the medical field. In the first phase of the feasibility study, most non-aquatic plants wilted and died within seven days. In seven days, the remaining plants were used for experimental infiltration analysis. Results showed that in eight hours of infiltration test, Eleusine indica stems averaged 0.466 m/day and wild amaranth averaged 0.014 m/day. The second phase of the experiment was conducted on the remains of the plant a week in it had died and rotted, and the infiltration experiment was performed under these conditions. The results showed eight hours in end of the infiltration test, Eleusine indica stems averaged 0.033 m/day, and wild amaranth averaged 0.098 m/day. Non-aquatic plants died within two weeks, and their rotted remains clogged the pores of bottom soil particles, causing obstruction of recharge pool infiltration. Experiment results showed that eight hours in the test the average infiltration velocity for Eleusine indica stems was 0.0229 m/day and wild amaranth averaged 0.0117 m/day. Since the rotted roots of the plants blocked the pores of the soil in the recharge pool, which resulted in the obstruction of the artificial infiltration pond and showed an immediate impact on recharge efficiency. In order to observe the development of plant roots, the third phase used computed tomography imaging. Iodine developer was injected into the Black heart, allowing its cross-sectional images to be shown on CT and to be used to observe root development.

Keywords: artificial recharge of groundwater, computed tomography, infiltration velocity, vegetation root system

Procedia PDF Downloads 281
1038 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture

Procedia PDF Downloads 403
1037 Investigation of Irrigation Water Quality at Al-Wafra Agricultural Area, Kuwait

Authors: Mosab Aljeri, Ali Abdulraheem

Abstract:

The water quality of five water types at Al-Wuhaib farm, Al-Wafra area, was studies through onsite field measurements, including pH, temperature, electrical conductivity (EC), and dissolved oxygen (DO), for four different water types. Biweekly samples were collected and analyzed for two months to obtain data of chemicals, nutrients, organics, and heavy metals. The field and laboratory results were compared with irrigation standards of Kuwait Environmental Public Authority (KEPA). The pH values of the five samples sites were within the maximum and minimum limits of KEPA standards. Based on EC values, two groups of water types were observed. The first group represents freshwater quality originated from freshwater Ministry of Electricity & Water & Renewable Energy (MEWRE) line or from freshwater tanks or treated wastewater. The second group represents brackish water type originated from groundwater or treated water mixed with groundwater. The study indicated that all nitrogen forms (ammonia, Total Kjeldahl nitrogen (TKN), Total nitrogen (TN)), total phosphate concentrations and all tested heavy metals for the five water types were below KEPA standards. These macro and micro nutrients are essential for plant growth and can be used as fertilizers. The study suggest that the groundwater should be treated and disinfected in the farming area. Also, these type of studies shall be carried out routinely to all farm areas to ensure safe water use and safe agricultural produce.

Keywords: salinity, heavy metals, ammonia, phosphate

Procedia PDF Downloads 52
1036 Characterization of the State of Pollution by Nitrates in the Groundwater in Arid Zones Case of Eloued District (South-East of Algeria)

Authors: Zair Nadje, Attoui Badra, Miloudi Abdelmonem

Abstract:

This study aims to assess sensitivity to nitrate pollution and monitor the temporal evolution of nitrate contents in groundwater using statistical models and map their spatial distribution. The nitrate levels observed in the waters of the town of El-Oued differ from one aquifer to another. Indeed, the waters of the Quaternary aquifer are the richest in nitrates, with average annual contents varying from 6 mg/l to 85 mg/l, for an average of 37 mg/l. These levels are higher than the WHO standard (50 mg/l) for drinking water. At the water level of the Terminal Complex (CT) aquifer, the annual average nitrate levels vary from 14 mg/l to 37 mg/l, with an average of 18 mg/l. In the Terminal Complex, excessive nitrate levels are observed in the central localities of the study area. The spatial distribution of nitrates in the waters of the Quaternary aquifer shows that the majority of the catchment points of this aquifer are subject to nitrate pollution. This study shows that in the waters of the Terminal Complex aquifer, nitrate pollution evolves in two major areas. The first focus is South-North, following the direction of underground flow. The second is West-East, progressing towards the East zone. The temporal distribution of nitrate contents in the water of the Terminal Complex aquifer in the city of El-Oued showed that for decades, nitrate contents have suffered a decline after an increase. This evolution of nitrate levels is linked to demographic growth and the rapid urbanization of the city of El-Oued.

Keywords: anthropogenic activities, groundwater, nitrates, pollution, arid zones city of El-Oued, Algeria

Procedia PDF Downloads 27
1035 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria

Authors: Samuel Olajide Babawale, O. O. Ogunkoya

Abstract:

The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.

Keywords: anthropogenic activities, land use, temporal changes, water quality

Procedia PDF Downloads 115
1034 Electronic Equipment Failure due to Corrosion

Authors: Yousaf Tariq

Abstract:

There are many reasons which are involved in electronic equipment failure i.e. temperature, humidity, dust, smoke etc. Corrosive gases are also one of the factor which may involve in failure of equipment. Sensitivity of electronic equipment increased when “lead-free” regulation enforced on manufacturers. In data center, equipment like hard disk, servers, printed circuit boards etc. have been exposed to gaseous contamination due to increase in sensitivity. There is a worldwide standard to protect electronic industrial electronic from corrosive gases. It is well known as “ANSI/ISA S71.04 – 1985 - Environmental Conditions for Control Systems: Airborne Contaminants. ASHRAE Technical Committee (TC) 9.9 members also recommended ISA standard in their whitepaper on Gaseous and Particulate Contamination Guideline for data centers. TC 9.9 members represented some of the major IT equipment manufacturers e.g. IBM, HP, Cisco etc. As per standard practices, first step is to monitor air quality in data center. If contamination level shows more than G1, it means that gas-phase air filtration is required other than dust/smoke air filtration. It is important that outside fresh air entering in data center should have pressurization/re-circulated process in order to absorb corrosive gases and to maintain level within specified limit. It is also important that air quality monitoring should be conducted once in a year. Temperature and humidity should also be monitored as per standard practices to maintain level within specified limit.

Keywords: corrosive gases, corrosion, electronic equipment failure, ASHRAE, hard disk

Procedia PDF Downloads 309
1033 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: enrichment factor, geoaccumulation index, GIS, heavy metals, multivariate analysis

Procedia PDF Downloads 333