Search results for: free vibration response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8768

Search results for: free vibration response

8378 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 495
8377 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 42
8376 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method

Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer

Abstract:

This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.

Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper

Procedia PDF Downloads 324
8375 LWD Acquisition of Caliper and Drilling Mechanics in a Geothermal Well, A Case Study in Sorik Marapi Field – Indonesia

Authors: Vinda B. Manurung, Laila Warkhaida, David Hutabarat, Sentanu Wisnuwardhana, Christovik Simatupang, Dhani Sanjaya, Ashadi, Redha B. Putra, Kiki Yustendi

Abstract:

The geothermal drilling environment presents many obstacles that have limited the use of directional drilling and logging-while-drilling (LWD) technologies, such as borehole washout, mud losses, severe vibration, and high temperature. The case study presented in this paper demonstrates a practice to enhance data logging in geothermal drilling by deploying advanced telemetry and LWD technologies. This operation is aiming continuous improvement in geothermal drilling operations. The case study covers a 12.25-in. hole section of well XX-05 in Pad XX of the Sorik Marapi Geothermal Field. LWD string consists of electromagnetic (EM) telemetry, pressure while drilling (PWD), vibration (DDSr), and acoustic calliper (ACAL). Through this tool configuration, the operator acquired drilling mechanics and caliper logs in real-time and recorded mode, enabling effective monitoring of wellbore stability. Throughout the real-time acquisition, EM-PPM telemetry had provided a three times faster data rate to the surface unit. With the integration of Caliper data and Drilling mechanics data (vibration and ECD -equivalent circulating density), the borehole conditions were more visible to the directional driller, allowing for better control of drilling parameters to minimize vibration and achieve optimum hole cleaning in washed-out or tight formation sequences. After reaching well TD, the recorded data from the caliper sensor indicated an average of 8.6% washout for the entire 12.25-in. interval. Washout intervals were compared with loss occurrence, showing potential for the caliper to be used as an indirect indicator of fractured intervals and validating fault trend prognosis. This LWD case study has given added value in geothermal borehole characterization for both drilling operation and subsurface. Identified challenges while running LWD in this geothermal environment need to be addressed for future improvements, such as the effect of tool eccentricity and the impact of vibration. A perusal of both real-time and recorded drilling mechanics and caliper data has opened various possibilities for maximizing sensor usage in future wells.

Keywords: geothermal drilling, geothermal formation, geothermal technologies, logging-while-drilling, vibration, caliper, case study

Procedia PDF Downloads 100
8374 Effector and Memory Immune Responses Induced by Total Extracts of Naegleria fowleri Co-Administered with Cholera Toxin

Authors: Q. B. Maria de la Luz Ortega Juárez, Saúl Rojas Hernández, Itzel Berenice Rodríguez Mera, María Maricela Carrasco Yépez, Mara Gutierrez Sánchez

Abstract:

Naegleria fowleri is a free-living amoeba found mainly in temperate freshwater and is the etiologic agent of primary amebic meningoencephalitis (PAM), a fatal acute disease with a mortality rate greater than 95%. At present, there are no treatments available for MAP, and the development of effective vaccines that generate long-term immunological memory allowing protection against MAP would be of great importance. The objective of this work was to analyze the effector and memory immune response in BALB/c mice immunized with total extract of N. fowleri co-administered with cholera toxin. In this study, BALB/c mice were immunized four times intranasally with ET of N. fowleri adjuvanted with CT with or without booster at three months and were challenged or not with the lethal dose of N. fowleri, determining survival, the humoral, effector and memory response, by ELISA and flow cytometry techniques. The results obtained showed that the survival of mice immunized with booster had 60% protection compared to the group without booster, which obtained 20% protection. Evaluating the humoral response, it was found that both IgG and IgA levels were higher in sera than in nasal washes in both treatments. In the cellular response, the increase in the percentage of positive cells was found for effector T and B lymphocytes in the nasal passages (NP) in the group with boost and nasopharynx-associated lymphoid tissue (NALT) in the group without boost and lymphocytes only. B in both treatments, as well as in memory cells treatment with boost T lymphocytes in PN and NALT and without boost in cervical lymph nodes (CG) with respect to B lymphocytes, in PN, GC and NALT in treatment with boost and NALT in treatment without booster. Therefore, the involvement of the effector immune response and memory play a fundamental role for protection against N. fowleri and for the development of vaccine candidates.

Keywords: immune response, immunological memory, naegleria fowleri, primary amebic meningoencephalitis

Procedia PDF Downloads 51
8373 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 385
8372 Automating and Optimization Monitoring Prognostics for Rolling Bearing

Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe

Abstract:

This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.

Keywords: bearings, automatization, optimization, prognosis, classification, defect detection

Procedia PDF Downloads 100
8371 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method

Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine

Abstract:

This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.

Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR

Procedia PDF Downloads 39
8370 Quality Standards for Emergency Response: A Methodological Framework

Authors: Jennifer E. Lynette

Abstract:

This study describes the development process of a methodological framework for quality standards used to measure the efficiency and quality of response efforts of trained personnel at emergency events. This paper describes the techniques used to develop the initial framework and its potential application to professions under the broader field of emergency management. The example described in detail in this paper applies the framework specifically to fire response activities by firefighters. Within the quality standards framework, the fire response process is chronologically mapped. Individual variables within the sequence of events are identified. Through in-person data collection, questionnaires, interviews, and the expansion of the incident reporting system, this study identifies and categorizes previously unrecorded variables involved in the response phase of a fire. Following a data analysis of each variable using a quantitative or qualitative assessment, the variables are ranked pertaining to the magnitude of their impact to the event outcome. Among others, key indicators of quality performance in the analysis involve decision communication, resource utilization, response techniques, and response time. Through the application of this framework and subsequent utilization of quality standards indicators, there is potential to increase efficiency in the response phase of an emergency event; thereby saving additional lives, property, and resources.

Keywords: emergency management, fire, quality standards, response

Procedia PDF Downloads 291
8369 A Distribution Free Test for Censored Matched Pairs

Authors: Ayman Baklizi

Abstract:

This paper discusses the problem of testing hypotheses about the lifetime distributions of a matched pair based on censored data. A distribution free test based on a runs statistic is proposed. Its null distribution and power function are found in a simple convenient form. Some properties of the test statistic and its power function are studied.

Keywords: censored data, distribution free, matched pair, runs statistics

Procedia PDF Downloads 263
8368 Consideration for a Policy Change to the South African Collective Bargaining Process: A Reflection on National Union of Metalworkers of South Africa v Trenstar (Pty) (2023) 44 ILJ 1189 (CC)

Authors: Carlos Joel Tchawouo Mbiada

Abstract:

At the back of the apartheid era, South Africa embarked on a democratic drive of all its institution underpinned by a social justice perspective to eradicate past injustices. These democratic values based on fundamental human rights and equality informed all rights enshrined in the Constitution of the Republic of South Africa, 1996. This means that all rights are therefore infused by social justice perspective and labour rights are no exception. Labour law is therefore regulated to the extent that it is viewed as too rigid. Hence a call for more flexibility to enhance investment and boost job creation. This view articulated by the Free Market Foundation fell on deaf ears as the opponents believe in what is termed regulated flexibility which affords greater protection to vulnerable workers while promoting business opportunities and investment. The question that this paper seeks to examine is to what extent the regulation of labour law will go to protect employees. This question is prompted by the recent Constitutional Court’s judgment of National Union of Metalworkers of South Africa v Trenstar which barred the employer from employing labour replacement in response to the strike action by its employees. The question whether employers may use replacement labour and have recourse to lock-outs in response to strike action is considered in the context of the dichotomy between the Free market foundation and social justice perspectives which are at loggerheads in the South African collective bargaining process. With the current unemployment rate soaring constantly, the aftermath of the Covid 19 pandemic, the effects of the war in Ukraine and lately the financial burden of load shedding on companies to run their businesses, this paper argues for a policy shift toward deregulation or a lesser state and judiciary intervention. This initiative will relieve the burden on companies to run a viable business while at the same time protecting existing jobs.

Keywords: labour law, replacement labour, right to strike, free market foundation perspective, social justice perspective

Procedia PDF Downloads 71
8367 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 119
8366 Quinoa Choux Cream Gluten Free

Authors: Autumporn Buranapongphan, Ketsirin Meethong, Phukan Pahaphom

Abstract:

The objectives of this research is aim to study the standard formula of choux cream recipe. Formulation of choux cream were used gluten free as a replacer with flour in choux dough, quinoa milk in cream and shelf life on product. The results showed the acceptance test using 30 target consumers revealed that liking of choux dough with water 34%, egg 30% flour 19% butter 16% baking powder 1% and cream with milk 68% sugar 13% butter 6.8% egg 4.5% and vanilla 0.9%. The gluten free exhibited the formulation of dough is rice flour 12% potato starch 26% tapioca 7.7% and quinoa flour 4.3%. The ratio of corn flour at 40% had significant effects on liking of viscosity for quinoa cream. During storage by Total viable count (TVA) were kept in room temperature for 8 hours and chilled for 18 hours.

Keywords: choux cream, gluten free, quinoa, dough

Procedia PDF Downloads 377
8365 The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter

Authors: Kaihong Yu, Tetsui Yamashita, Shigeaki Shingyochi, Kazuo Matsumoto, Makoto Ohta

Abstract:

During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes.

Keywords: cardiac ablation, electrode cooling, lesion size, tissue temperature

Procedia PDF Downloads 351
8364 Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat

Authors: Saurabh Chanana, Monika Arora

Abstract:

Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand.

Keywords: demand response, home energy management, programmable communicating thermostat, thermostatically controlled appliances

Procedia PDF Downloads 582
8363 Advantages of Vibration in the GMAW Process for Improving the Quality and Mechanical Properties

Authors: C. A. C. Castro, D. C. Urashima, E. P. Silva, P. M. L. Silva

Abstract:

Since 1920, the industry has almost completely changed the rivets production techniques for the manufacture of permanent welding join production of structures and manufacture of other products. The welding arc is the process more widely used in industries. This is accomplished by the heat of an electric arc which melts the base metal while the molten metal droplets are transferred through the arc to the welding pool, protected from the atmosphere by a gas curtain. The GMAW (Gas metal arc welding) process is influenced by variables such as: Current, polarity, welding speed, electrode, extension, position, moving direction; type of joint, welder's ability, among others. It is remarkable that the knowledge and control of these variables are essential for obtaining satisfactory quality welds, knowing that are interconnected so that changes in one of them requiring changes in one or more of the other to produce the desired results. The optimum values are affected by the type of base metal, the electrode composition, the welding position and the quality requirements. Thus, this paper proposes a new methodology, adding the variable vibration through a mechanism developed for GMAW welding, in order to improve the mechanical and metallurgical properties which does not affect the ability of the welder and enables repeatability of the welds made. For confirmation metallographic analysis and mechanical tests were made.

Keywords: vibration, joining, weldability, GMAW

Procedia PDF Downloads 404
8362 External Validation of Established Pre-Operative Scoring Systems in Predicting Response to Microvascular Decompression for Trigeminal Neuralgia

Authors: Kantha Siddhanth Gujjari, Shaani Singhal, Robert Andrew Danks, Adrian Praeger

Abstract:

Background: Trigeminal neuralgia (TN) is a heterogenous pain syndrome characterised by short paroxysms of lancinating facial pain in the distribution of the trigeminal nerve, often triggered by usually innocuous stimuli. TN has a low prevalence of less than 0.1%, of which 80% to 90% is caused by compression of the trigeminal nerve from an adjacent artery or vein. The root entry zone of the trigeminal nerve is most sensitive to neurovascular conflict (NVC), causing dysmyelination. Whilst microvascular decompression (MVD) is an effective treatment for TN with NVC, all patients do not achieve long-term pain relief. Pre-operative scoring systems by Panczykowski and Hardaway have been proposed but have not been externally validated. These pre-operative scoring systems are composite scores calculated according to a subtype of TN, presence and degree of neurovascular conflict, and response to medical treatments. There is discordance in the assessment of NVC identified on pre-operative magnetic resonance imaging (MRI) between neurosurgeons and radiologists. To our best knowledge, the prognostic impact for MVD of this difference of interpretation has not previously been investigated in the form of a composite scoring system such as those suggested by Panczykowski and Hardaway. Aims: This study aims to identify prognostic factors and externally validate the proposed scoring systems by Panczykowski and Hardaway for TN. A secondary aim is to investigate the prognostic difference between a neurosurgeon's interpretation of NVC on MRI compared with a radiologist’s. Methods: This retrospective cohort study included 95 patients who underwent de novo MVD in a single neurosurgical unit in Melbourne. Data was recorded from patients’ hospital records and neurosurgeon’s correspondence from perioperative clinic reviews. Patient demographics, type of TN, distribution of TN, response to carbamazepine, neurosurgeon, and radiologist interpretation of NVC on MRI, were clearly described prospectively and preoperatively in the correspondence. Scoring systems published by Panczykowski et al. and Hardaway et al. were used to determine composite scores, which were compared with the recurrence of TN recorded during follow-up over 1-year. Categorical data analysed using Pearson chi-square testing. Independent numerical and nominal data analysed with logistical regression. Results: Logistical regression showed that a Panczykowski composite score of greater than 3 points was associated with a higher likelihood of pain-free outcome 1-year post-MVD with an OR 1.81 (95%CI 1.41-2.61, p=0.032). The composite score using neurosurgeon’s impression of NVC had an OR 2.96 (95%CI 2.28-3.31, p=0.048). A Hardaway composite score of greater than 2 points was associated with a higher likelihood of pain-free outcome 1 year post-MVD with an OR 3.41 (95%CI 2.58-4.37, p=0.028). The composite score using neurosurgeon’s impression of NVC had an OR 3.96 (95%CI 3.01-4.65, p=0.042). Conclusion: Composite scores developed by Panczykowski and Hardaway were validated for the prediction of response to MVD in TN. A composite score based on the neurosurgeon’s interpretation of NVC on MRI, when compared with the radiologist’s had a greater correlation with pain-free outcomes 1 year post-MVD.

Keywords: de novo microvascular decompression, neurovascular conflict, prognosis, trigeminal neuralgia

Procedia PDF Downloads 54
8361 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System

Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel

Abstract:

Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.

Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics

Procedia PDF Downloads 238
8360 Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients

Authors: Pratik Gandhi, Kavitha Chandra, Charles Thompson

Abstract:

A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated.

Keywords: acoustic room impulse response, frequency dependent reflection coefficients, Green's function, image model

Procedia PDF Downloads 207
8359 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 405
8358 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria

Procedia PDF Downloads 177
8357 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu

Abstract:

This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.

Keywords: tooling condition, machining stability, milling machine, chatter

Procedia PDF Downloads 410
8356 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 239
8355 Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems

Authors: Aleksandrs Kovalcuks

Abstract:

Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this study was to determine which factor, laying hen housing system or hen diet, has a primary influence on bioactive compound content in egg yolk oil. The egg yolk oil was extracted from eggs obtained from 4 different hen housing systems: cage, barn and two groups of free range. All hens were fed with commercially produced compound feed except one group of free range hens which get free diet – pastured hens. Extracted egg yolk oils were analyzed for fatty acids, oil soluble vitamins and β-carotene content. α-tocopherol, ergocalcipherol and polyunsaturated fatty acid content in egg yolk oil was higher from eggs obtained from all housing systems where hens were fed with commercial compound feed. β-carotene and retinol content in egg yolk oils from free range free diet eggs was significantly (p>0.05) higher that from other eggs because hens have access to green forage. Hen physical activity in free range housing systems decreases content of some bioactive compound in egg yolk oil.

Keywords: egg yolk oil, vitamins, caged eggs, free range

Procedia PDF Downloads 442
8354 Transpersonal Model of an Individual's Creative Experiencef

Authors: Anatoliy Kharkhurin

Abstract:

Modifications that the prefix ‘trans-‘ refers to start within a person. This presentation focuses on the transpersonal that goes beyond the individual (trans-personal) to encompass wider aspects of humanities, specifically peak experience as a culminating stage of the creative act. It proposes a model according to which the peak experience results from a harmonious vibration of four spheres, which transcend an individual’s capacities and bring one to a qualitatively different level of experience. Each sphere represents an aspect of creative activity: superconscious, intellectual, emotive and active. Each sphere corresponds to one of four creative functions: authenticity, novelty, aesthetics, and utility, respectively. The creative act starts in the superconscious sphere: the supreme pleasure of Creation is reflected in creative pleasure, which is realized in creative will. These three instances serve as a source of force axes, which penetrate other spheres, and in place of infiltration establish restrictive, expansive, and integrative principles, respectively; the latter balances the other two and ensures a harmonious vibration within a sphere. This Hegelian-like triad is realized within each sphere in the form of creative capacities. The intellectual sphere nurtures capacities to invent and to elaborate, which are integrated by capacity to conceptualize. The emotive sphere nurtures satiation and restrictive capacities integrated by capacity to balance. The active sphere nurtures goal orientation and stabilization capacities integrated by capacity for self-expression. All four spheres vibrate within each other – the superconscious sphere being in the core of the structure followed by intellectual, emotive, and active spheres, respectively – thereby reflecting the path of creative production. If the spheres vibrate in-phase, their amplitudes amplify the creative energy; if in antiphase – the amplitudes reduce the creative energy. Thus, creative act is perceived as continuum with perfectly harmonious vibration within and between the spheres on one side and perfectly disharmonious vibration on the other.

Keywords: creativity, model, transpersonal, peak experience

Procedia PDF Downloads 324
8353 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings

Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller

Abstract:

Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.

Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram

Procedia PDF Downloads 242
8352 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 118
8351 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 331
8350 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 386
8349 Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures

Authors: Mohammad Parsaeimaram, Fang Congqi

Abstract:

In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures.

Keywords: response modification factor, base isolation system, pushover analysis, lead rubber bearing, bi-linear hysteretic

Procedia PDF Downloads 295