Search results for: earthquake sign marks
874 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations
Authors: Oleg Kabantsev, Karomatullo Umarov
Abstract:
The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis
Procedia PDF Downloads 207873 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 73872 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone
Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi
Abstract:
The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.Keywords: system identification, tuned mass damper, wall buildings, seismic protection
Procedia PDF Downloads 126871 An Investigation on Overstrength Factor (Ω) of Reinforced Concrete Buildings in Turkish Earthquake Draft Code (TEC-2016)
Authors: M. Hakan Arslan, I. Hakkı Erkan
Abstract:
Overstrength factor is an important parameter of load reduction factor. In this research, the overstrength factor (Ω) of reinforced concrete (RC) buildings and the parameters of Ω in TEC-2016 draft version have been explored. For this aim, 48 RC buildings have been modeled according to the current seismic code TEC-2007 and Turkish Building Code-500-2000 criteria. After modelling step, nonlinear static pushover analyses have been applied to these buildings by using TEC-2007 Section 7. After the nonlinear pushover analyses, capacity curves (lateral load-lateral top displacement curves) have been plotted for 48 RC buildings. Using capacity curves, overstrength factors (Ω) have been derived for each building. The obtained overstrength factor (Ω) values have been compared with TEC-2016 values for related building types, and the results have been interpreted. According to the obtained values from the study, overstrength factor (Ω) given in TEC-2016 draft code is found quite suitable.Keywords: reinforced concrete buildings, overstrength factor, earthquake, static pushover analysis
Procedia PDF Downloads 357870 Practical Experiences as Part of Project Management Course
Authors: H. Hussain, N. H. Mohamad
Abstract:
Practical experiences have been one of the successful criteria for the Project Management course for the art and design students. There are series of events that the students have to undergo as part of their practical exercises in the learning context for Project Management courses. These series have been divided into few mini programs that involved the whole individual in each group. Therefore, the events have been one of the bench marks for these students. Through the practical experience, the task that has been given to individual has been performed according to the needs of professional practice and ethics.Keywords: practical experience, project management, art and design students, events, programs
Procedia PDF Downloads 558869 Comparison of Steel and Composite Analysis of a Multi-Storey Building
Authors: Çiğdem Avcı Karataş
Abstract:
Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.Keywords: composite analysis, earthquake, steel, multi-storey building
Procedia PDF Downloads 572868 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction
Authors: Sudikshya Bhandari, Jonathan K. London
Abstract:
The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.Keywords: earthquake, Nepal, reconstruction, settlement, transformation
Procedia PDF Downloads 118867 Extraction of Urban Building Damage Using Spectral, Height and Corner Information
Authors: X. Wang
Abstract:
Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.Keywords: building damage, corner, earthquake, height, very high resolution (VHR)
Procedia PDF Downloads 213866 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data
Authors: Prayas Sharma
Abstract:
This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution
Procedia PDF Downloads 157865 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation
Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou
Abstract:
Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.Keywords: cooling water system, earthquake, integrity, pipe and valve
Procedia PDF Downloads 112864 Failure Mechanisms of Isolated vs. in Aggregate Historical Buildings: A Case Study for Timisoara, Romania
Authors: I. Apostol, M. Mosoarca
Abstract:
Romania is a seismic country, with two major seismic zones, Vrancea and Banat. One of the most important cities from Banat seismic area is Timisoara, where a lot of valuable historical buildings were built before any design codes, but still they kept their stability during past earthquakes. This article presents the influence of the adjacent buildings during an earthquake and the way that the specific failure mechanism is changed when the building is part of an aggregate. The investigation was made using nonlinear analysis based on Tremuri software, first analyzing the buildings as isolated and second, considering the entire aggregate of buildings. There were noticed significant differences through the two situations regarding the specific failure mechanism activated for each building, showing the fact that in some situations, the presence of the adjacent buildings has positive or negative contribution for the seismic behavior of the analyzed one. The difference between the failure mechanism of the same buildings considered isolated and in aggregate aims to provide explications for the good structural state of the existing historical areas of Timisoara, as part of a larger multidisciplinary study, which will help local authorities to prioritize the consolidation works for the historical buildings in order to assure that the history of the city will be kept alive for the next generations.Keywords: failure mechanism, analysis, aggregate, masonry, earthquake
Procedia PDF Downloads 146863 Comparing Repaired and Undamaged Specimens Test Results of Post-Tensioned Beam to Column Connections
Authors: Mustafa Kaya
Abstract:
After the 1999 Marmara earthquake in Turkey research by the Turkish Precast Union stated that 24.50% of the precast structures were damaged with some of this damage being observed in the beam to column connections of the structures. Since it is essential to provide those rendered homeless by the earthquake with safe, habitable accommodation repairing medium and slight levels of damage at the connection parts should be undertaken. In order to prove that a repaired connection was sufficiently strong, a precast beam to column post tensioned connection was tested in three phases. In phase one, the middle level damage was observed at 6% drift at these connections. As a result of the extra loads applied, little damage was observed. In the last phase, the four connections tested in the first phase were repaired using epoxy resin and then retested. The results from the tests on the repaired precast and the undamaged specimens showed that the repaired specimens were sufficiently strong, thus proving that repair to damaged precast beam to column post tensioned connections can be undertaken.Keywords: precast beam to column connection, moment-resisting connection, post-tensioned connections, repair of precast connections
Procedia PDF Downloads 446862 Investigation of the Possible Correlation of Earthquakes with a Red Tide Occurrence in the Persian Gulf and Oman Sea
Authors: Hadis Hosseinzadehnaseri
Abstract:
The red tide is a kind of algae blooming, caused different problems at different sizes for the human life and the environment, so it has become one of the serious global concerns in the field of Oceanography in few recent decades. This phenomenon has affected on Iran's water, especially the Persian Gulf's since last few years. Collecting data associated with this phenomenon and comparison in different parts of the world is significant as a practical way to study this phenomenon and controlling it. Effective factors to occur this phenomenon lead to the increase of the required nutrients of the algae or provide a good environment for blooming. In this study, we examined the probability of relation between the earthquake and the harmful algae blooming in the Persian Gulf's water through comparing the earthquake data and the recorded Red tides. On the one hand, earthquakes can cause changes in seawater temperature that is effective in creating a suitable environment and the other hand, it increases the possibility of water nutrients, and its transportation in the seabed, so it can play a principal role in the development of red tide occurrence. Comparing the distribution spatial-temporal maps of the earthquakes and deadly red tides in the Persian Gulf and Oman Sea, confirms the hypothesis, why there is a meaningful relation between these two distributions. Comparing the number of earthquakes around the world as well as the number of the red tides in many parts of the world indicates the correlation between these two issues. This subject due to numerous earthquakes, especially in recent years and in the southern part of the country should be considered as a warning to the possibility of re-occurrence of a critical state of red tide in a large scale, why in the year 2008, the number of recorded earthquakes have been more than near years. In this year, the distribution value of the red tide phenomenon in the Persian Gulf got measured about 140,000 square kilometers and entire Oman Sea, with 10 months Survival in the area, which is considered as a record among the occurred algae blooming in the world. In this paper, we could obtain a logical and reasonable relation between the earthquake frequency and this phenomenon occurrence, through compilation of statistics relating to the earthquakes in the southern Iran, from 2000 to the end of the first half of 2013 and also collecting statistics on the occurrence of red tide in the region as well as examination of similar data in different parts of the world. As shown in Figure 1, according to a survey conducted on the earthquake data, the most earthquakes in the southern Iran ranks first in the fourth Gregorian calendar month In April, coincided with Ordibehesht and Khordad in Persian calendar and then in the tenth Gregorian calendar month In October, coincided in Aban and Azar in Persian calendar.Keywords: red tide, earth quake, persian gulf, harmful algae bloom
Procedia PDF Downloads 500861 Local Community's Response on Post-Disaster and Role of Social Capital towards Recovery Process: A Case Study of Kaminani Community in Bhaktapur Municipality after 2015 Gorkha Nepal Earthquake
Authors: Lata Shakya, Toshio Otsuki, Saori Imoto, Bijaya Krishna Shrestha, Umesh Bahadur Malla
Abstract:
2015 Gorkha Nepal earthquake have damaged the human settlements in 14 districts of Nepal. Historic core areas of three principal cities namely Kathmandu, Lalitpur and Bhaktapur including numerous traditional ‘newari’ settlements in the peripheral areas have been either collapsed or severely damaged. Despite Government of Nepal and (international) non-government organisations’ attempt towards disaster risk management through the preparation of policies and guidelines and implementation of community-based activities, the recent ‘Gorkha’ earthquake has demonstrated the inadequate preparedness, poor implementation of a legal instrument, resource constraints, and managerial weakness. However, the social capital through community based institutions, self-help attitude, and community bond has helped a lot not only in rescue and relief operation but also in a post-disaster temporary shelter living thereby exhibiting the resilient power of the local community. Conducting a detailed case study of ‘Kaminani’ community with 42 houses at ward no. 16 of Bhaktapur municipality, this paper analyses the local community’s response and activities on the Gorkha earthquake in rescue and relief operation as well as in post disaster work. Leadership, the existence of internal/external aid, physical and human support are also analyzed. Social resource and networking are also explained through critical review of the existing community organisation and their activities. The research methodology includes literature review, field survey, and interview with community leaders and residents based on a semi-structured questionnaire. The study reveals that community carried their recovery process in four different phases: (i) management of emergency evacuation, (ii) constructing community owed temporary shelter for individuals, (iii) demolishing upper floors of the damaged houses, and (iv) planning for collaborative housing reconstruction. As territorial based organization, religion based agency and aim based institution exist in the survey area from pre-disaster time, it can be assumed that the community activists including leaders are well experienced to create aim-based group and manage teamwork to deal with various issues and problems collaboratively. Physical and human support including partial financial aid from external source as a result of community leader’s personal networking is extended to the community members. Thus, human/social resource and personal/social network play a crucial role in the recovery process. And to build such social capital, community should have potential from pre-disaster time.Keywords: Gorkha Nepal earthquake, local community, recovery process, social resource, social network
Procedia PDF Downloads 257860 Disaster Management Approach for Planning an Early Response to Earthquakes in Urban Areas
Authors: Luis Reynaldo Mota-Santiago, Angélica Lozano
Abstract:
Determining appropriate measures to face earthquakesarea challenge for practitioners. In the literature, some analyses consider disaster scenarios, disregarding some important field characteristics. Sometimes, software that allows estimating the number of victims and infrastructure damages is used. Other times historical information of previous events is used, or the scenarios’informationis assumed to be available even if it isnot usual in practice. Humanitarian operations start immediately after an earthquake strikes, and the first hours in relief efforts are important; local efforts are critical to assess the situation and deliver relief supplies to the victims. A preparation action is prepositioning stockpiles, most of them at central warehouses placed away from damage-prone areas, which requires large size facilities and budget. Usually, decisions in the first 12 hours (standard relief time (SRT)) after the disaster are the location of temporary depots and the design of distribution paths. The motivation for this research was the delay in the reaction time of the early relief efforts generating the late arrival of aid to some areas after the Mexico City 7.1 magnitude earthquake in 2017. Hence, a preparation approach for planning the immediate response to earthquake disasters is proposed, intended for local governments, considering their capabilities for planning and for responding during the SRT, in order to reduce the start-up time of immediate response operations in urban areas. The first steps are the generation and analysis of disaster scenarios, which allow estimatethe relief demand before and in the early hours after an earthquake. The scenarios can be based on historical data and/or the seismic hazard analysis of an Atlas of Natural Hazards and Risk as a way to address the limited or null available information.The following steps include the decision processes for: a) locating local depots (places to prepositioning stockpiles)and aid-giving facilities at closer places as possible to risk areas; and b) designing the vehicle paths for aid distribution (from local depots to the aid-giving facilities), which can be used at the beginning of the response actions. This approach allows speeding up the delivery of aid in the early moments of the emergency, which could reduce the suffering of the victims allowing additional time to integrate a broader and more streamlined response (according to new information)from national and international organizations into these efforts. The proposed approachis applied to two case studies in Mexico City. These areas were affectedby the 2017’s earthquake, having limited aid response. The approach generates disaster scenarios in an easy way and plans a faster early response with a short quantity of stockpiles which can be managed in the early hours of the emergency by local governments. Considering long-term storage, the estimated quantities of stockpiles require a limited budget to maintain and a small storage space. These stockpiles are useful also to address a different kind of emergencies in the area.Keywords: disaster logistics, early response, generation of disaster scenarios, preparation phase
Procedia PDF Downloads 110859 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network
Authors: Harshit Mittal, Neeraj Garg
Abstract:
Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network
Procedia PDF Downloads 66858 Spoken Rhetoric in Arabic Heritage
Authors: Ihab Al-Mokrani
Abstract:
The Arabic heritage has two types of spoken rhetoric: the first type which al-Jaahiz calls “the rhetoric of the sign,” which means body language, and the rhetoric of silence which is of no less importance than the rhetoric of the sign, the speaker’s appearance and movements, etc. The second type is the spoken performance of utterances which bears written rhetoric arts like metaphor, simile, metonymy, etc. Rationale of the study: First: in spite of the factual existence of rhetorical phenomena in the Arabic heritage, there has been no contemporary study handling the spoken rhetoric in the Arabic heritage. Second: Arabic Civilization is originally a spoken one. Comparing the Arabic culture and civilization, from one side, to the Greek, roman or Pharaonic cultures and civilizations, from the other side, shows that the latter cultures and civilizations started and flourished written while the former started among illiterate people who had no interest in writing until recently. That sort of difference on the part of the Arabic culture and civilization created a rhetoric different from rhetoric in the other cultures and civilizations. Third: the spoken nature of the Arabic civilization influenced the Arabic rhetoric in the sense that specific rhetorical arts have been introduced matching that spoken nature. One of these arts is the art of concision which compensates for the absence of writing’s means of preserving the text. In addition, this interprets why many of the definitions of the Arabic rhetoric were defining rhetoric as the art of concision. Also, this interprets the fact that the literary genres known in the Arabic culture were limited by the available narrow space like poetry, anecdotes, and stories, while the literary genres in the Greek culture were of wide space as epics and drama. This is not of any contrast to the fact that some Arabic poetry would exceed 100 lines of poetry as Arabic poetry was based on the line organic unity, which means that every line could stand alone with a full meaning that is not dependent on the rest of the poem; and that last aspect has never happened in any culture other than the Arabic culture.Keywords: Arabic rhetoric, spoken rhetoric, Arabic heritage, culture
Procedia PDF Downloads 773857 Bridges Seismic Isolation Using CNT Reinforced Polymer Bearings
Authors: Mohamed Attia, Vissarion Papadopoulos
Abstract:
There is no doubt that there is a continuous deterioration of structures as a result of multiple hazards which can be divided into natural hazards (e.g., earthquakes, floods, winds) and other hazards due to human behavior (e.g., ship collisions, excessive traffic, terrorist attacks). There have been numerous attempts to address the catastrophic consequences of these hazards and traditional solutions through structural design and safety factors within the design codes, but there has not been much research addressing solutions through the use of new materials that have high performance and can be more effective than usual materials such as reinforced concrete and steel. To illustrate the effect of one of the new high-performance materials, carbon nanotube-reinforced polymer (CNT/polymer) bearings with different weight fractions were simulated as structural components of seismic isolation using ABAQUS in the connection between a bridge superstructure and the substructure. The results of the analyzes showed a significant increase in the time period of the bridge and a clear decrease in the bending moment at the base of the bridge piers at each time step of the time-history analysis in the case of using CNT/polymer bearings compared to the case of direct contact between the superstructure of the bridge and the substructure.Keywords: seismic isolation, bridges damage, earthquake hazard, earthquake resistant structures
Procedia PDF Downloads 197856 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)
Authors: Tauhidur Rahman, Dhrubajyoti Thakuria
Abstract:
In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control
Procedia PDF Downloads 404855 Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake
Authors: Jie Su, Zhenghua Zhou, Yushi Wang, Yongyi Li
Abstract:
The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect.Keywords: hanging-wall and foot-wall effect, peak ground acceleration, rupture directivity effect, strong ground motion
Procedia PDF Downloads 351854 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 584853 Bilingual Books in British Sign Language and English: The Development of E-Book
Authors: Katherine O'Grady-Bray
Abstract:
For some deaf children, reading books can be a challenge. Frank Barnes School (FBS) provides guided reading time with Teachers of the Deaf, in which they read books with deaf children using a bilingual approach. The vocabulary and context of the story is explained to deaf children in BSL so they develop skills bridging English and BSL languages. However, the success of this practice is only achieved if the person is fluent in both languages. FBS piloted a scheme to convert an Oxford Reading Tree (ORT) book into an e-book that can be read using tablets. Deaf readers at FBS have access to both languages (BSL and English) during lessons and outside the classroom. The pupils receive guided reading sessions with a Teacher of the Deaf every morning, these one to one sessions give pupils the opportunity to learn how to bridge both languages e.g. how to translate English to BSL and vice versa. Generally, due to our pupils’ lack of access to incidental learning, gaining new information about the world around them is limited. This highlights the importance of quality time to scaffold their language development. In some cases, there is a shortfall of parental support at home due to poor communication skills or an unawareness of how to interact with deaf children. Some families have a limited knowledge of sign language or simply don’t have the required learning environment and strategies needed for language development with deaf children. As the majority of our pupils’ preferred language is BSL we use that to teach reading and writing English. If this is not mirrored at home, there is limited opportunity for joint reading sessions. Development of the e-Book required planning and technical development. The overall production took time as video footage needed to be shot and then edited individually for each page. There were various technical considerations such as having an appropriate background colour so not to draw attention away from the signer. Appointing a signer with the required high level of BSL was essential. The language and pace of the sign language was an important consideration as it was required to match the age and reading level of the book. When translating English text to BSL, careful consideration was given to the nonlinear nature of BSL and the differences in language structure and syntax. The e-book was produced using Apple’s ‘iBook Author’ software which allowed video footage of the signer to be embedded on pages opposite the text and illustration. This enabled BSL translation of the content of the text and inferences of the story. An interpreter was used to directly ‘voice over’ the signer rather than the actual text. The aim behind the structure and layout of the e-book is to allow parents to ‘read’ with their deaf child which helps to develop both languages. From observations, the use of e-books has given pupils confidence and motivation with their reading, developing skills bridging both BSL and English languages and more effective reading time with parents.Keywords: bilingual book, e-book, BSL and English, bilingual e-book
Procedia PDF Downloads 170852 Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin
Authors: Mohamed A. Saleem
Abstract:
Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period.Keywords: Sirt Basin, Zallah Trough, igneous intrusions, seismic data
Procedia PDF Downloads 113851 Assessing the Impact of Underground Cavities on Buildings with Stepped Foundations on Sloping Lands
Authors: Masoud Mahdavi
Abstract:
The use of sloping lands is increasing due to the reduction of suitable lands for the construction of buildings. In the design and construction of buildings on sloping lands, the foundation has special loading conditions that require the designer and executor to use the slopped foundation. The creation of underground cavities, including urban and subway tunnels, sewers, urban facilities, etc., inside the ground, causes the behavior of the foundation to be unknown. In the present study, using Abacus software, a 45-degree stepped foundation on the ground is designed. The foundations are placed on the ground in a cohesive (no-hole) manner with circular cavities that show the effect of increasing the cross-sectional area of the underground cavities on the foundation's performance. The Kobe earthquake struck the foundation and ground for two seconds. The underground cavities have a circular cross-sectional area with a radius of 5 m, which is located at a depth of 22.54 m above the ground. The results showed that as the number of underground cavities increased, von Mises stress (in the vertical direction) increased. With the increase in the number of underground cavities, the plastic strain on the ground has increased. Also, with the increase in the number of underground cavities, the change in location and speed in the foundation has increased.Keywords: stepped foundation, sloping ground, Kobe earthquake, Abaqus software, underground excavations
Procedia PDF Downloads 155850 Beyond Baudrillard: A Critical Intersection between Semiotics and Materialism
Authors: Francesco Piluso
Abstract:
Nowadays, to restore the deconstructive power of semiotics implies a critical analysis of neoliberal ideology, and, even more critically, a confrontation with materialist perspective. The theoretical path of Jean Baudrillard is crucial to understand the ambivalence of this intersection. A semiotic critique of Baudrillard’s work, through tools of both structuralism and interpretative semiotics, has the aim to give materialism a new consistent semiotic approach and vice-versa. According to Baudrillard, the commodity form is characterized by the same abstract and systemic logic of the sign-form, in which the production of the signified (use-value) is a mere ideological mean for the reproduction of the signifiers-chain (exchange-value). Nevertheless, this parallelism is broken by the author himself: if the use-value is deconstructed in its relative logic, the signified and the referent, both as discrete and positive elements, are collapsed on the same plane at the shadows of the signified forms. These divergent considerations lead Baudrillard to the same crucial point: the dismissal of the material world, replaced by the hyperreality as reproduction of a semiotic (genetic) Code. The stress on the concept of form, as an epistemological and semiotic tool to analyse the construction of values in the consumer society, has led to the Code as its ontological drift. In other words, Baudrillard seems to enclose consumer society (and reality) in this immanent and self-fetishized world of signs–an ideological perspective that mystifies the gravity of the material relationships between Northern-Western World and Third World. The notion of Encyclopaedia by Umberto Eco is the key to overturn the relationship of immanence/transcendence between the Code and the economic political of the sign, by understanding the former as an ideological plane within the encyclopedia itself. Therefore, rather than building semiotic (hyper)realities, semiotics has to deal with materialism in terms of material relationships of power which are mystified and reproduced through such ideological ontologies of signs.Keywords: Baudrillard, Code, Eco, Encyclopaedia, epistemology vs. ontology, semiotics vs. materialism
Procedia PDF Downloads 166849 Engineering Seismological Studies in and around Zagazig City, Sharkia, Egypt
Authors: M. El-Eraki, A. A. Mohamed, A. A. El-Kenawy, M. S. Toni, S. I. Mustafa
Abstract:
The aim of this paper is to study the ground vibrations using Nakamura technique to evaluate the relation between the ground conditions and the earthquake characteristics. Microtremor measurements were carried out at 55 sites in and around Zagazig city. The signals were processed using horizontal to vertical spectral ratio (HVSR) technique to estimate the fundamental frequencies of the soil deposits and its corresponding H/V amplitude. Seismic measurements were acquired at nine sites for recording the surface waves. The recorded waveforms were processed using the multi-channel analysis of surface waves (MASW) method to infer the shear wave velocity profile. The obtained fundamental frequencies were found to be ranging from 0.7 to 1.7 Hz and the maximum H/V amplitude reached 6.4. These results together with the average shear wave velocity in the surface layers were used for the estimation of the thickness of the upper most soft cover layers (depth to bedrock). The sediment thickness generally increases at the northeastern and southwestern parts of the area, which is in good agreement with the local geological structure. The results of this work showed the zones of higher potential damage in the event of an earthquake in the study area.Keywords: ambient vibrations, fundamental frequency, surface waves, zagazig
Procedia PDF Downloads 283848 Behavior Factors Evaluation for Reinforced Concrete Structures
Authors: Muhammad Rizwan, Naveed Ahmad, Akhtar Naeem Khan
Abstract:
Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures.Keywords: Northridge 1994 earthquake, reinforced concrete frame, response modification factor, shake table testing
Procedia PDF Downloads 173847 Seismic Retrofit of Reinforced Concrete Structures by Highly Dissipative Technologies
Authors: Stefano Sorace, Gloria Terenzi, Giulia Mazzieri, Iacopo Costoli
Abstract:
The prolonged earthquake sequence that struck several urban agglomerations and villages in Central Italy, starting from 24 August 2016 through January 2017, highlighted once again the seismic vulnerability of pre-normative reinforced concrete (R/C) structures. At the same time, considerable damages were surveyed in recently retrofitted R/C buildings too, one of which also by means of a dissipative bracing system. The solution adopted for the latter did not expressly take into account the performance of non-structural elements, and namely of infills and partitions, confirming the importance of their dynamic interaction with the structural skeleton. Based on this consideration, an alternative supplemental damping-based retrofit solution for this representative building, i.e., a school with an R/C structure situated in the municipality of Norcia, is examined in this paper. It consists of the incorporation of dissipative braces equipped with pressurized silicone fluid viscous (FV) dampers, instead of the BRAD system installed in the building, the delayed activation of which -caused by the high stiffness of the constituting metallic dampers- determined the observed non-structural damages. Indeed, the alternative solution proposed herein, characterized by dissipaters with mainly damping mechanical properties, guarantees an earlier activation of the protective system. A careful assessment analysis, preliminarily carried out to simulate and check the case study building performance in originally BRAD-retrofitted conditions, confirms that the interstorey drift demand related to the Norcia earthquake's mainshock and aftershocks is beyond the response capacity of infills. The verification analyses developed on the R/C structure, including the FV-damped braces, highlight their higher performance, giving rise to a completely undamaged response both of structural and non-structural elements up to the basic design earthquake normative level of seismic action.Keywords: dissipative technologies, performance assessment analysis, concrete structures, seismic retrofit
Procedia PDF Downloads 134846 Elderly for Elderly: The Role of Community Volunteer, a Case Study from the Great East Japan Earthquake and Tsunami in Kesennuma, Japan
Authors: Kensuke Otsuyama
Abstract:
The United Nation World Conference on Disaster Risk Reduction was held in Sendai, Japan, in 2015 and priorities for actions until 2030 were adopted for the next 15 years. Although one of these priorities is to ‘build back better’, there is neither a consensus definition of better recovery, nor indicators to measure better recovery. However, the community is considered as a key driver of recovery nowadays, and participation is a key word for effective recovery. In order to understand more about participatory community recovery, the author investigated recovery from the Great East Japan Earthquake and Tsunami (GEJET) in Kesennuma, a severely affected city. The research sought to: 1) Identify the elements that contribute to better recovery at the community level, and 2) analyze the role of community volunteers for disaster risk reduction for better recovery. A Participatory Community Recovery Index (PCRI) was created as a tool to measure community recovery. The index adopts seven primary indicators and 20 tertiary indicators, including: socio-economic aspect, housing, health, environment, self-organization, transformation, and institution. The index was applied to nine districts in Kesennuma city. Secondary and primary data by questionnaire surveys with local residents’ organization leaders and interviews with crisis management department officials in city government were also obtained. The indicator results were transformed into scores among 1 to 5, and the results were shown for each district. Based on the result of PCRI, it was found that the s Local Social Welfare Council played an important role in facilitating better recovery, enhancing community volunteer involvement to allow elderly residents to initiate local volunteer work for more affected single-living elderly people. Volunteers for the elderly by the elderly played a crucial role to strengthen community bonding in Kesennuma. In this research, the potential of community volunteers and inter-linkage with DRR activities are discussed.Keywords: recovery, participation, the great East Japan earthquake and tsunami, community volunteers
Procedia PDF Downloads 266845 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 128