Search results for: damage analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28808

Search results for: damage analysis

28418 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain

Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.

Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis

Procedia PDF Downloads 475
28417 Effect of Oral Immonoglobulin (IgY) Ingestion on Post Exercise Muscle Soreness and Muscle Damage Markers in Females

Authors: Bert H. Jacobson, Taylor Monaghan, John Sellers

Abstract:

Intense resistance-type activity generally elicits delayed onset muscle soreness (DOMS) in individuals unaccustomed to such action. DOMS is a combination of contractile tissue microtrauma, osmotic pressure changes, alteration calcium regulation, and inflammation. Elevated muscle-specific enzyme creatine kinase (CK) is a marker of striated muscle damage. Avian immunoglobulin (IgY) mediates inflammation and may thereby reduce post-exercise DOMS. Purpose: The aim of this study was to compare the effect of oral IgY and placebo (Pl) on CK, serum relevels, and perceived pain following induced DOMS. Methods: Healthy college-aged females (N=16) were randomly divided into an experimental group (IgY) and a control group (PL). CK serum levels were recorded followed by 14 days of supplementation of either IgY or Pl at the following doses: days 1-2 =4.5 g, days 3-5 =9.0 g, and days 6-14 =13.5 g. Following the 14 d, lower limb DOMS was induced using two methods of resistance training. After 48 hours, subjects reported for a second blood draw. Results: One-way ANOVA resulted in the IgY group posting significantly less (p < 0.05) serum CK than the PL group. Furthermore, the IgY group experienced significantly less post-test perceived soreness than the Pl group. Conclusion: IgY supplementation lessens muscle CK levels and perceived muscle soreness following exercise, possibly due to an anti-inflammatory effect. It was suggested that IgY may serve as a buffer for DOMS thereby allowing the participant to continue vigorous exercise without discomfort.

Keywords: muscle, soreness, damage, serum

Procedia PDF Downloads 186
28416 Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension

Authors: Pablo Kubo, Cassio Paiva, Adelino Ferreira

Abstract:

The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants.

Keywords: damage, shock absorber, vertical dynamic load, absorber

Procedia PDF Downloads 473
28415 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers

Authors: Hasan Taherkhani

Abstract:

Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.

Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep

Procedia PDF Downloads 265
28414 Effect of Exercise Training and Dietary Silymarin on Levels of Leptin, Adiponectin, Paraoxonase and Body Composition

Authors: Alireza Barari, Saeed Shirali

Abstract:

The etiology of obesity is heterogeneous with several factors, and the pathophysiology of obesity has recently related to leptin, oxidative damage, and inflammation. Silybum marianum have a health-promoting perspective and has shown that bioactive molecules of silymarin have the antioxidant and antitumor properties and can affect secretion of hormones and enzyme activity in animal. This study aimed to evaluate the antioxidant effects and changes in hormonal levels and body composition after silymarin consumption. Forty-five healthy untrained colleges male take part in the 4-week investigation. The subjects were assigned to 5 groups: endurance training, Silymarin with endurance training, strength training with placebo, Silymarin with strength training or placebo. Body fat percentage and Blood sample analysis were measured before and after the intervention to assay leptin, adiponectin and paraoxonase in the sample of subject's serum. There was a considerable decrease in body fat percent and a significant increase in VO2 max in 'Strength training' and 'Strength training with Silymarin' groups. But, no significant changes in levels of leptin, adiponectinin, and paraoxanase (PON) that were observed between exercise and exercise with Silymarin in these groups. We observed reduction in body fat% and increase in adiponectin induced by exercise for 4 weeks in untrained healthy men. Silybin, could not effectively improve all parameters and don’t prevent the progression of cell damage by antioxidant activity of PON.

Keywords: anti-inflammatory activity, antioxidant activity, silymarin, body composition, paraoxonase (PON)

Procedia PDF Downloads 209
28413 Magnesium Ameliorates Lipopolysaccharide-Induced Liver Injury in Mice

Authors: D. M. El-Tanbouly, R. M. Abdelsalam, A. S. Attia, M. T. Abdel-Aziz

Abstract:

Lipopolysaccharide (LPS) endotoxin, a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis. LPS administration induces systemic inflammation that mimics many of the initial clinical features of sepsis and has deleterious effects on several organs including the liver and eventually leading to septic shock and death. The present study aimed to investigate the protective effect of magnesium, a well-known cofactor in many enzymatic reactions and a critical component of the antioxidant system, on hepatic damage associated with LPS induced- endotoxima in mice. Mg (20 and 40 mg/kg, po) was administered for 7 consecutive days. Systemic inflammation was induced one hour after the last dose of Mg by a single dose of LPS (2 mg/kg, ip) and three hours thereafter plasma was separated, animals were sacrificed and their livers were isolated. LPS-treated mice suffered from hepatic dysfunction revealed by histological observation, elevation in plasma transaminases activities, C-reactive protein content and caspase-3, a critical marker of apoptosis. Liver inflammation was evident by elevation in liver cytokines contents (TNF-α and IL-10) and myeloperoxidase (MPO) activity. Additionally, oxidative stress was manifested by increased liver lipoperoxidation, glutathione depletion, elevated total nitrate/nitrite (NOx) content and glutathione peroxidase (GPx) activity. Pretreatment with Mg largely mitigated these alternations through its anti-inflammatory and antioxidant potentials. Mg, therefore, could be regarded as an effective strategy for prevention of liver damage associated with septicemia.

Keywords: LPS, liver damage, magnesium, septicemia

Procedia PDF Downloads 388
28412 Cu Voids Detection of Electron Beam Inspection at the 5nm Node

Authors: Byungsik Moon

Abstract:

Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.

Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection

Procedia PDF Downloads 62
28411 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 136
28410 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 327
28409 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea

Authors: Paul Buchana, Patrick E. Mc Sharry

Abstract:

In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.

Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis

Procedia PDF Downloads 290
28408 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements

Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel

Abstract:

Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.

Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance

Procedia PDF Downloads 284
28407 Antioxidant Potential of Pomegranate Rind Extract Attenuates Pain, Inflammation and Bone Damage in Experimental Rats

Authors: Ritu Karwasra, Surender Singh

Abstract:

Inflammation is an important physiological response of the body’s self-defense system that helps in eliminating and protecting organism from harmful stimuli and in tissue repair. It is a highly regulated protective response which helps in eliminating the initial cause of cell injury, and initiates the process of repair. The present study was designed to evaluate the ameliorative effect of pomegranate rind extract on pain and inflammation. Hydroalcoholic standardized rind extract of pomegranate at doses 50, 100 and 200 mg/kg and indomethacin (3 mg/kg) was tested against eddy’s hot plate induced thermal algesia, carrageenan (acute inflammation) and Complete Freund’s Adjuvant (chronic inflammation) induced models in Wistar rats. Parameters analyzed were inhibition of paw edema, measurement of joint diameter, levels of GSH, TBARS, SOD, TNF-α, radiographic imaging, tissue histology and synovial expression of pro-inflammatory cytokine receptor (TNF-R1). Radiological and light microscopical analysis were carried out to find out the bone damage in CFA-induced chronic inflammatory model. Findings of the present study revealed that pomegranate rind extract at a dose of 200 mg/kg caused a significant (p<0.05) reduction in paw swelling in both the inflammatory models. Nociceptive threshold was also significantly (p<0.05) improved. Immunohistochemical analysis of TNF-R1 in CFA-induced group showed elevated level, whereas reduction in level of TNF-R1 was observed in pomegranate (200 mg/kg). Henceforth, we might say that pomegranate produced a dose-dependent reduction in inflammation and pain along with the reduction in levels of oxidative stress markers and tissue histology, and the effect was found to be comparable to that of indomethacin. Thus, it can be concluded that pomegranate is a potential therapeutic target in the pathogenesis of inflammation and pain, and punicalagin is the major constituents found in rind extract might be responsible for the activity.

Keywords: carrageenan, inflammation, nociceptive-threshold, pomegranate, histopathology

Procedia PDF Downloads 208
28406 Managing Company's Reputation during Crisis: An Analysis of Croatia Airlines' Crisis Response Strategy to the Labor Unions' Strike Announcement

Authors: M. Polic, N. Cesarec Salopek

Abstract:

When it comes to crisis, no company, notwithstanding its financial success, power or reputation is immune to the new environment and circumstances emerging from it. The main challenge company faces with during a crisis is to protect its most valuable intangible asset reputation. Crisis has the serious potential to disrupt company’s everyday operations and damage its reputation extremely fast, especially if the company did not anticipate threats that may cause a crisis. Therefore, when a crisis happens, company must directly respond to it, whilst an effective crisis communication can limit consequences arising from the crisis, protect and repair the reputational damage caused to the company. Since every crisis is unique, each one of it requires different crisis response strategy. In July 2018, airline labor unions threatened Croatia Airlines, the state owned flag carrier of Croatia, to hold a strike that would be called into question regular flights and affect more than 7.600 passengers per day. This study explores the differences between crisis response strategies that Croatia Airlines, the state owned flag carrier of Croatia and airline labor unions used during the crisis period within the Situational Crisis Communication Theory (SCCT) by analyzing the content of formal communication tools used by Croatia Airlines and airline labor unions. Moreover, this study shows how Croatia Airlines successfully managed to communicate to the general public the threat that airline labor unions imposed on it and how was it received by the Croatian media. By using the qualitative and quantitative content analysis, the study will reveal the frames that dominated in the media articles during the crisis period. The greatest significance of this study is that it will provide the deeper insight into how transparent and consistent communication, the one that Croatia Airlines used before and during the crisis period, contributed to the decision of the competent court (Zagreb County Court) which prohibited labor unions strike in August 2018.

Keywords: crisis communication, crisis response strategy, Croatia Airlines, labor union, reputation management, situational crisis communication theory, strike

Procedia PDF Downloads 124
28405 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures

Authors: Galih Permana, Yuskar Lase

Abstract:

In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.

Keywords: building, coupling beam, damper, nonlinear time history analysis

Procedia PDF Downloads 157
28404 Displacement Based Design of a Dual Structural System

Authors: Romel Cordova Shedan

Abstract:

The traditional seismic design is the methodology of Forced Based Design (FBD). The Displacement Based Design (DBD) is a seismic design that considers structural damage to achieve a failure mechanism of the structure before the collapse. It is easier to quantify damage of a structure with displacements rather than forces. Therefore, a structure to achieve an inelastic displacement design with good ductility, it is necessary to be damaged. The first part of this investigation is about differences between the methodologies of DBD and FBD with some DBD advantages. In the second part, there is a study case about a dual building 5-story, which is regular in plan and elevation. The building is located in a seismic zone, which acceleration in firm soil is 45% of the acceleration of gravity. Then it is applied both methodologies into the study case to compare its displacements, shear forces and overturning moments. In the third part, the Dynamic Time History Analysis (DTHA) is done, to compare displacements with DBD and FBD methodologies. Three accelerograms were used and the magnitude of the acceleration scaled to be spectrum compatible with design spectrum. Then, using ASCE 41-13 guidelines, the hinge plastics were assigned to structure. Finally, both methodologies results about study case are compared. It is important to take into account that the seismic performance level of the building for DBD is greater than FBD method. This is due to drifts of DBD are in the order of 2.0% and 2.5% comparing with FBD drifts of 0.7%. Therefore, displacements of DBD is greater than the FBD method. Shear forces of DBD result greater than FBD methodology. These strengths of DBD method ensures that structure achieves design inelastic displacements, because those strengths were obtained due to a displacement spectrum reduction factor which depends on damping and ductility of the dual system. Also, the displacements for the study case for DBD results to be greater than FBD and DTHA. In that way, it proves that the seismic performance level of the building for DBD is greater than FBD method. Due to drifts of DBD which are in the order of 2.0% and 2.5% compared with little FBD drifts of 0.7%.

Keywords: displacement-based design, displacement spectrum reduction factor, dynamic time history analysis, forced based design

Procedia PDF Downloads 221
28403 Seismic Analysis of URM Buildings in South Africa

Authors: Trevor N. Haas, Thomas van der Kolf

Abstract:

South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.

Keywords: URM, seismic analysis, FEM, Cape Town

Procedia PDF Downloads 360
28402 Structural Integrity Analysis of Baffle Former Assembly in Pressurized Water Reactors Considering Irradiation Aging

Authors: Jong-Sung Kim, Myung-Jo Jhung

Abstract:

BFA is one of the reactor internals components in PWR. The BFA has the intended functions to support fuel assembly, to keep structural integrity of upper/lower core support structures, and to secure reactor coolant flow path. Failure of the BFA may give rise to significant effect on reactor safety operation and stop. The BFA is subject to relatively high neutron irradiation dose due to location close to the core. Therefore, IASCC can occur on the BFA due to damage accumulation as operating year increases. In this study, IASCC susceptibility on the BFA was assessed via the FEA considering variations of mechanical material behaviors with neutron irradiation. As a result of the assessment, some points have susceptibility more than 0.2 to IASCC during design lifetime.

Keywords: baffle former assembly, finite element analysis, irradiation aging, nuclear power plant, pressurized water reactor

Procedia PDF Downloads 349
28401 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 263
28400 Rehabilitation and Conservation of Mangrove Forest as Pertamina Corporate Social Responsibility Approach in Prevention Damage Climate in Indonesia

Authors: Nor Anisa

Abstract:

This paper aims to describe the use of conservation and rehabilitation of Mangrove forests as an alternative area in protecting the natural environment and ecosystems and ecology, community education and innovation of sustainable industrial development such as oil companies, gas and coal. The existence of globalization encourages energy needs such as gas, diesel and coal as an unaffected resource which is a basic need for human life while environmental degradation and natural phenomena continue to occur in Indonesia, especially global warming, sea water pollution, extinction of animal steps. The phenomenon or damage to nature in Indonesia is caused by a population explosion in Indonesia that causes unemployment, the land where the residence will disappear so that this will encourage the exploitation of nature and the environment. Therefore, Pertamina as a state-owned oil and gas company carries out its social responsibility efforts, namely to carry out conservation and rehabilitation and management of Mangrove fruit seeds which will provide an educational effect on the benefits of Mangrove seed maintenance. The method used in this study is a qualitative method and secondary data retrieval techniques where data is taken based on Pertamina activity journals and websites that can be accounted for. So the conclusion of this paper is: the benefits and function of conservation of mangrove forests in Indonesia physically, chemically, biologically and socially and economically and can provide innovation to the CSR (Corporate Social Responsibility) of the company in continuing social responsibility in the scope of environmental conservation and social education.

Keywords: mangrove, environmental damage, conservation and rehabilitation, innovation of corporate social responsibility

Procedia PDF Downloads 123
28399 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed

Authors: Tolulope Babawarun, Harry Ngwangwa

Abstract:

The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.

Keywords: ANSYS, finite element analysis, static loading, dynamic analysis

Procedia PDF Downloads 72
28398 Inhibition of Glutamate Carboxypeptidase Activity Protects Retinal Ganglionic Cell Death Induced by Ischemia-Reperfusion by Reducing the Astroglial Activation in Rat

Authors: Dugeree Otgongerel, Kyong Jin Cho, Yu-Han Kim, Sangmee Ahn Jo

Abstract:

Excessive activation of glutamate receptor is thought to be involved in retinal ganglion cell (RGC) death after ischemia- reperfusion damage. Glutamate carboxypeptidase II (GCPII) is an enzyme responsible for the synthesis of glutamate. Several studies showed that inhibition of GCPII prevents or reduces cellular damage in brain diseases. Thus, in this study, we examined the expression of GCPII in rat retina and the role of GCPII in acute high IOP ischemia-reperfusion damage of eye by using a GCPII inhibitor, 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Animal model of ischemia-reperfusion was induced by raising the intraocular pressure for 60 min and followed by reperfusion for 3 days. Rats were randomly divided into four groups: either intra-vitreous injection of 2-PMPA (11 or 110 ng per eye) or PBS after ischemia-reperfusion, 2-PMPA treatment without ischemia-reperfusion and sham-operated normal control. GCPII immunoreactivity in normal rat retina was detected weakly in retinal nerve fiber layer (RNFL) and retinal ganglionic cell layer (RGL) and also inner plexiform layer (IPL) and outer plexiform layer (OPL) strongly where are co-stained with an anti-GFAP antibody, suggesting that GCPII is expressed mostly in Muller and astrocytes. Immunostaining with anti-BRN antibody showed that ischemia- reperfusion caused RGC death (31.5 %) and decreased retinal thickness in all layers of damaged retina, but the treatment of 2-PMPA twice at 0 and 48 hour after reperfusion blocked these retinal damages. GCPII level in RNFL layer was enhanced after ischemia-reperfusion but was blocked by PMPA treatment. This result was confirmed by western blot analysis showing that the level of GCPII protein after ischemia- reperfusion increased by 2.2- fold compared to control, but this increase was blocked almost completely by 110 ng PMPA treatment. Interestingly, GFAP immunoreactivity in the retina after ischemia- reperfusion followed by treatment with PMPA showed similar pattern to GCPII, increase after ischemia-reperfusion but reduction to the normal level by PMPA treatment. Our data demonstrate that increase of GCPII protein level after ischemia-reperfusion injury is likely to cause glial activation and/or retinal cell death which are mediated by glutamate, and GCPII inhibitors may be useful in treatment of retinal disorders in which glutamate excitotoxicity is pathogenic.

Keywords: glutamate carboxypepptidase II, glutamate excitotoxicity, ischemia-reperfusion, retinal ganglion cell

Procedia PDF Downloads 334
28397 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: debonding, dynamic response, finite element modelling, novel FRP beams

Procedia PDF Downloads 110
28396 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: fragility curve, sensitivity analysis, reliability index, RC frames

Procedia PDF Downloads 313
28395 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level

Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni

Abstract:

In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.

Keywords: tropocollagen, multiscale model, fibrils, knee ligaments

Procedia PDF Downloads 120
28394 Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate

Authors: Muhammad Khalil, Nader Abuelfoutouh, Gasser Abdelal, Adrian Murphy

Abstract:

Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation.

Keywords: composite structures, lightning multiphysics, magnetohydrodynamic (MHD), coupled thermal-electrical analysis, thermal plasmas.

Procedia PDF Downloads 356
28393 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 164
28392 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals

Procedia PDF Downloads 368
28391 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 249
28390 Benefit-Cost Analysis of Flood Management: a Case Study of Jammu and Kashmir

Authors: Kowser Ali Jan, R. Balaji

Abstract:

A disaster hurts those affected. It also spares many in the affected areas, yet those spared may be indirectly affected. The analytical framework of prevention and coping has proved useful in many circumstances. Historically and currently, there has been limited quantitative information available on flood management in Jammu and Kashmir. This study focuses on the Cost-benefit Analysis (CBA) of flood management by District Disaster Management Kulgam, and the assessment is based on secondary pooled data collected from government offices, NGOs, published Journals, and local and national newspapers. It also described the scenario, the approach adopted, and the sources of flood damage cost information. The estimated total benefits account for 78686.18 lakh of rupees, and that of total costs account for 2218.75lakh of rupees. The Benefit-Cost ratio greater than one (>1) shows that Flood Management in District Kulgam was economically feasible and successfully managed. The State of Jammu and Kashmir takes essential prevention and management measures to bring down the damages due to floods to significant status.

Keywords: cost-benefit analysis, nature, flood management, disaster

Procedia PDF Downloads 139
28389 Investigating Re-Use a Historical Masonry Arch Bridge

Authors: H. A. Erdogan

Abstract:

Historical masonry arch bridges built centuries ago have fulfilled their function until recent decades. However, from the beginning of 20th century, these bridges have remained inadequate as a result of increasing speed, size and capacity of the means of transport. Although new bridges have been built in many places, masonry bridges located within the city limits still need to be used. When the size and transportation loads of modern vehicles are taken into account, it is apparent that historical masonry arch bridges would be exposed to greater loads than their initial design loads. Because of that, many precautions taken either remain insufficient or damage these bridges. In this study, the history of Debbaglar Bridge, one of the historic bridges located in the city center of Aksaray/Turkey is presented and its existing condition is evaluated. Structural analysis of the bridge under present conditions and loads is explained. Moreover, the retrofit and restoration application prepared considering the analysis data is described.

Keywords: adaptive re-use, Aksaray debbaglar bridge, masonry bridge, reconstruction

Procedia PDF Downloads 301