Search results for: analog filters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 511

Search results for: analog filters

121 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 165
120 Evaluation of the Efficacy and Tolerance of Gabapentin in the Treatment of Neuropathic Pain

Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani

Abstract:

INTRODUCTION: Neuropathic pain (NP) caused by damage to the somatosensory nervous system has a significant impact on quality of life and is associated with a high economic burden on the individual and society. The treatment of neuropathic pain consists of the use of a wide range of therapeutic agents, including gabapentin, which is used in the treatment of neuropathic pain. OBJECTIF: The objective of this study was to evaluate the efficacy and tolerance of gabapentin in the treatment of neuropathic pain. MATERIAL AND METHOD: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the "Hospital anxiety, and depression scale HAD" score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. RESULTS: A total of 67 patients' data were collected. The average age was 64 years (+/- 15 years), with extremes ranging from 26 years to 94 years. 58 women and 9 men with an M/F sex ratio of 0.15. Cervical radiculopathy was found in 21% of this population, and lumbosacral radiculopathy in 61%. Gabapentin was introduced in doses ranging from 300 to 1800 mg per day with an average dose of 864 mg (+/- 346) per day for an average duration of 12.6 months. Before treatment, 93% of patients had a non-restorative sleep quality (VAS>3). 54% of patients had a pain VAS greater than 5. The function was normal in only 9% of patients. The mean anxiety score was 3.25 (standard deviation: 2.70), and the mean HAD depression score was 3.79 (standard deviation: 1.79). After treatment, all patients had improved the quality of their sleep (p<0.0001). A significant difference was noted in pain VAS, function, as well as anxiety and depression, and HAD score. Gabapentin was stopped for side effects (dizziness and drowsiness) and/or unsatisfactory response. CONCLUSION: Our data demonstrate a favorable effect of gabapentin on the management of neuropathic pain with a significant difference before and after treatment on the quality of life of patients associated with an acceptable tolerance profile.

Keywords: neuropathic pain, chronic pain, treatment, gabapentin

Procedia PDF Downloads 79
119 Visualization Tool for EEG Signal Segmentation

Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh

Abstract:

This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.

Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation

Procedia PDF Downloads 372
118 The Impact of Dust Storm Events on the Chemical and Toxicological Characteristics of Ambient Particulate Matter in Riyadh, Saudi Arabia

Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Mohammed Kalafy, Badr Alharbi, Constantinos Sioutas

Abstract:

In this study, we investigated the chemical and toxicological characteristics of PM10 in the metropolitan area of Riyadh, Saudi Arabia. PM10 samples were collected on quartz and teflon filters during cold (December 2019–April 2020) and warm (May 2020–August 2020) seasons, including dust and non-dust events. The PM10 constituents were chemically analyzed for their metal, inorganic ions, and elemental and organic carbon (EC/OC) contents. Additionally, the PM10 oxidative potential was measured by means of the dithiothreitol (DTT) assay. Our findings revealed that the oxidative potential of the collected ambient PM10 samples was significantly higher than those measured in many urban areas worldwide. The oxidative potential of the collected ambient PM¹⁰⁻ samples was also higher during dust episodes compared to non-dust events, mainly due to higher concentrations of metals during these events. We performed Pearson correlation analysis, principal component analysis (PCA), and multi-linear regression (MLR) to identify the most significant sources contributing to the toxicity of PM¹⁰⁻ The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM10 were soil and resuspended dust emissions (identified by Al, K, Fe, and Li) (31%), followed by secondary organic aerosol (SOA) formation (traced by SO₄-² and NH+₄) (20%), and industrial activities (identified by Se and La) (19%), and traffic emissions (characterized by EC, Zn, and Cu) (17%). Results from this study underscore the impact of transported dust emissions on the oxidative potential of ambient PM10 in Riyadh and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM₁₀-

Keywords: ambient PM10, oxidative potential, source apportionment, Riyadh, dust episodes

Procedia PDF Downloads 136
117 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 60
116 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 178
115 Metamorphic Approach in Architecture Studio to Re-Imagine Drawings in Acknowledgement of Architectural/Artistic Identity

Authors: Hassan Wajid, Syed T. Ahmed, Syed G. Haider Jr., Razia Latif, Ahsan Ali, Maira Anam

Abstract:

The phenomenon of Metamorphosis can be associated with any object, organism, or structure gradually and progressively going through the change of systemic or morphological form. This phenomenon can be integrated while teaching drawing to architecture students. In architectural drawings, metamorphosis’s main focus and purpose are not to completely imitate any object. In the process of drawing, the changes in systemic or morphological form happen until the complete process, and the visuals of the complete process change the drawing, opening up possibilities for the imagination of the perceivers. Metamorphosis in architectural drawings begins with an initial form and, through various noticeable stages, ends up final form or manifestation. How much of the initial form is manifested in the final form and progressively among various intermediate stages becomes an indication of the nature of metamorphosis as a phenomenon. It is important at this stage to clarify that the term metamorphosis is presently being coopted from its original domain, usually in life sciences. In this current exercise, the architectural drawings are to act as an operative analog process transforming one image of art and/or architecture in its broadest sense. That composition is claimed to have come from one source (individual work, a cultural artifact, civilizational remain). It dialectically meets, opposes, or confronts some carefully chosen alien opposites from a different domain. As an example, the layers of a detailed drawing of a Turkish prayer rug of 5 x 7 ratio over a detailed architectural plan of a religious, historical complex can be observed such that the two drawings, though at markedly different scales could dialectically converse with one another and through their mutual congruencies. In the final stage, the idea concludes contradictions across the scales to initiate the analogous roles of metamorphosed third reality, which suggests the previous un-acknowledged architectural or artistic identity. The proposed paper explores the trajectory of reproduction by analyzing drawings through detailed drawing stages and analyzes challenges as well as opportunities in the discovered realm of imagination. This description further aims at identifying factors influencing creativity and innovation in producing architectural drawings through the process of observing drawings from inception to the concluding stage.

Keywords: architectural drawings, metamorphosis, perceptions, discovery

Procedia PDF Downloads 79
114 Piql Preservation Services - A Holistic Approach to Digital Long-Term Preservation

Authors: Alexander Rych

Abstract:

Piql Preservation Services (“Piql”) is a turnkey solution designed for secure, migration-free long- term preservation of digital data. Piql sets an open standard for long- term preservation for the future. It consists of equipment and processes needed for writing and retrieving digital data. Exponentially growing amounts of data demand for logistically effective and cost effective processes. Digital storage media (hard disks, magnetic tape) exhibit limited lifetime. Repetitive data migration to overcome rapid obsolescence of hardware and software bears accelerated risk of data loss, data corruption or even manipulation and adds significant repetitive costs for hardware and software investments. Piql stores any kind of data in its digital as well as analog form securely for 500 years. The medium that provides this is a film reel. Using photosensitive film polyester base, a very stable material that is known for its immutability over hundreds of years, secure and cost-effective long- term preservation can be provided. The film reel itself is stored in a packaging capable of protecting the optical storage medium. These components have undergone extensive testing to ensure longevity of up to 500 years. In addition to its durability, film is a true WORM (write once- read many) medium. It therefore is resistant to editing or manipulation. Being able to store any form of data onto the film makes Piql a superior solution for long-term preservation. Paper documents, images, video or audio sequences – all of those file formats and documents can be preserved in its native file structure. In order to restore the encoded digital data, only a film scanner, a digital camera or any appropriate optical reading device will be needed in the future. Every film reel includes an index section describing the data saved on the film. It also contains a content section carrying meta-data, enabling users in the future to rebuild software in order to read and decode the digital information.

Keywords: digital data, long-term preservation, migration-free, photosensitive film

Procedia PDF Downloads 368
113 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 164
112 Profiling the Volatile Metabolome in Pear Leaves with Different Resistance to the Pear Psylla Cacopsylla bidens (Sulc) and Characterization of Phenolic Acid Decarboxylase

Authors: Mwafaq Ibdah, Mossab, Yahyaa, Dor Rachmany, Yoram Gerchman, Doron Holland, Liora Shaltiel-Harpaz

Abstract:

Pear Psylla is the most important pest of pear in all pear-growing regions, in Asian, European, and the USA. Pear psylla damages pears in several ways: high-density populations of these insects can cause premature leaf and fruit drop, diminish plant growth, and reduce fruit size. In addition, their honeydew promotes sooty mold on leaves and russeting on fruit. Pear psyllas are also considered vectors of pear pathogens such as Candidatus Phytoplasma pyri causing pear decline that can lead to loss of crop and tree vigor, and sometimes loss of trees. Psylla control is a major obstacle to efficient integrated pest management. Recently we have identified two naturally resistance pear accessions (Py.760-261 and Py.701-202) in the Newe Ya’ar live collection. GC-MS volatile metabolic profiling identified several volatile compounds common in these accessions but lacking, or much less common, in a sensitive accession, the commercial Spadona variety. Among these volatiles were styrene and its derivatives. When the resistant accessions were used as inter-stock, the volatile compounds appear in commercial Spadona scion leaves, and it showed reduced susceptibility to pear psylla. Laboratory experiments and applications of some of these volatile compounds were very effective against psylla eggs, nymphs, and adults. The genes and enzymes involved in the specific reactions that lead to the biosynthesis of styrene in plant are unknown. We have identified a phenolic acid decarboxylase that catalyzes the formation of p-hydroxystyrene, which occurs as a styrene analog in resistant pear genotypes. The His-tagged and affinity chromatography purified E. coli-expressed pear PyPAD1 protein could decarboxylate p-coumaric acid and ferulic acid to p-hydroxystyrene and 3-methoxy-4-hydroxystyrene. In addition, PyPAD1 had the highest activity toward p-coumaric acid. Expression analysis of the PyPAD gene revealed that its expressed as expected, i.e., high when styrene levels and psylla resistance were high.

Keywords: pear Psylla, volatile, GC-MS, resistance

Procedia PDF Downloads 121
111 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter

Abstract:

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink

Procedia PDF Downloads 511
110 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters

Authors: Mansoor Soomro

Abstract:

The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.

Keywords: current harmonics, power quality, passive filters, power electronic converters

Procedia PDF Downloads 279
109 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 441
108 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 62
107 Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter

Authors: Harish Aryal

Abstract:

The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution.

Keywords: hodoscope, transient testing, collimators, MCNP, TREAT, hodogram, filters

Procedia PDF Downloads 52
106 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran

Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei

Abstract:

Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.

Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran

Procedia PDF Downloads 381
105 Environmental Impact Assessment in Mining Regions with Remote Sensing

Authors: Carla Palencia-Aguilar

Abstract:

Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.

Keywords: carbon dioxide, NPP, MODIS, MINING

Procedia PDF Downloads 70
104 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 115
103 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 43
102 Validation of a Placebo Method with Potential for Blinding in Ultrasound-Guided Dry Needling

Authors: Johnson C. Y. Pang, Bo Peng, Kara K. L. Reeves, Allan C. L. Fud

Abstract:

Objective: Dry needling (DN) has long been used as a treatment method for various musculoskeletal pain conditions. However, the evidence level of the studies was low due to the limitations of the methodology. Lack of randomization and inappropriate blinding is potentially the main sources of bias. A method that can differentiate clinical results due to the targeted experimental procedure from its placebo effect is needed to enhance the validity of the trial. Therefore, this study aimed to validate the method as a placebo ultrasound(US)-guided DN for patients with knee osteoarthritis (KOA). Design: This is a randomized controlled trial (RCT). Ninety subjects (25 males and 65 females) aged between 51 and 80 (61.26 ± 5.57) with radiological KOA were recruited and randomly assigned into three groups with a computer program. Group 1 (G1) received real US-guided DN, Group 2 (G2) received placebo US-guided DN, and Group 3 (G3) was the control group. Both G1 and G2 subjects received the same procedure of US-guided DN, except the US monitor was turned off in G2, blinding the G2 subjects to the incorporation of faux US guidance. This arrangement created the placebo effect intended to permit comparison of their results to those who received actual US-guided DN. Outcome measures, including the visual analog scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) subscales of pain, symptoms, and quality of life (QOL), were analyzed by repeated measures analysis of covariance (ANCOVA) for time effects and group effects. The data regarding the perception of receiving real US-guided DN or placebo US-guided DN were analyzed by the chi-squared test. The missing data were analyzed with the intention-to-treat (ITT) approach if more than 5% of the data were missing. Results: The placebo US-guided DN (G2) subjects had the same perceptions as the use of real US guidance in the advancement of DN (p<0.128). G1 had significantly higher pain reduction (VAS and KOOS-pain) than G2 and G3 at 8 weeks (both p<0.05) only. There was no significant difference between G2 and G3 at 8 weeks (both p>0.05). Conclusion: The method with the US monitor turned off during the application of DN is credible for blinding the participants and allowing researchers to incorporate faux US guidance. The validated placebo US-guided DN technique can aid in investigations of the effects of US-guided DN with short-term effects of pain reduction for patients with KOA. Acknowledgment: This work was supported by the Caritas Institute of Higher Education [grant number IDG200101].

Keywords: ultrasound-guided dry needling, dry needling, knee osteoarthritis, physiotheraphy

Procedia PDF Downloads 91
101 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter

Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar

Abstract:

Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).

Keywords: filter media, hydraulic loading rate, residence time distribution, tracer

Procedia PDF Downloads 254
100 Placebo Analgesia in Older Age: Evidence from Event-Related Potentials

Authors: Angelika Dierolf, K. Rischer, A. Gonzalez-Roldan, P. Montoya, F. Anton, M. Van der Meulen

Abstract:

Placebo analgesia is a powerful cognitive endogenous pain modulation mechanism with high relevance in pain treatment. Older people would benefit, especially from non-pharmacologic pain interventions, since this age group is disproportionately affected by acute and chronic pain, while pharmacological treatments are less suitable due to polypharmacy and age-related changes in drug metabolism. Although aging is known to affect neurobiological and physiological aspects of pain perception, as for example, changes in pain threshold and pain tolerance, its effects on cognitive pain modulation strategies, including placebo analgesia, have hardly been investigated so far. In the present study, we are assessing placebo analgesia in 35 older adults (60 years and older) and 35 younger adults (between 18 and 35 years). Acute pain was induced with short transdermal electrical pulses to the inner forearm, using a concentric stimulating electrode. Stimulation intensities were individually adjusted to the participant’s threshold. Next to the stimulation site, we applied sham transcutaneous electrical nerve stimulation (TENS). Participants were informed that sometimes the TENS device would be switched on (placebo condition), and sometimes it would be switched off (control condition). In reality, it was always switched off. Participants received alternating blocks of painful stimuli in the placebo and control condition and were asked to rate the intensity and unpleasantness of each stimulus on a visual analog scale (VAS). Pain-related evoked potentials were recorded with a 64-channel EEG. Preliminary results show a reduced placebo effect in older compared to younger adults in both behavioral and neurophysiological data. Older people experienced less subjective pain reduction under sham TENS treatment compared to younger adults, as evidenced by the VAS ratings. The N1 and P2 event-related potential components were generally reduced in the older group. While younger adults showed a reduced N1 and P2 under sham TENS treatment, this reduction was considerably smaller in older people. This reduced placebo effect in the older group suggests that cognitive pain modulation is altered in aging and may at least partly explain why older adults experience more pain. Our results highlight the need for a better understanding of the efficacy of non-pharmacological pain treatments in older adults and how these can be optimized to meet the specific requirements of this population.

Keywords: placebo analgesia, aging, acute pain, TENS, EEG

Procedia PDF Downloads 117
99 Machine Learning for Exoplanetary Habitability Assessment

Authors: King Kumire, Amos Kubeka

Abstract:

The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.

Keywords: machine-learning, habitability, exoplanets, supercomputing

Procedia PDF Downloads 66
98 Machine Learning for Exoplanetary Habitability Assessment

Authors: King Kumire, Amos Kubeka

Abstract:

The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.

Keywords: exoplanets, habitability, machine-learning, supercomputing

Procedia PDF Downloads 83
97 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 116
96 The Effectiveness of Extracorporeal Shockwave Therapy on Pain and Motor Function in Subjects with Knee Osteoarthritis A Systematic Review and Meta-Analysis of Randomized Clinical Trial

Authors: Vu Hoang Thu Huong

Abstract:

Background and Purpose: The effects of Extracorporeal Shockwave Therapy (ESWT) in the participants with knee osteoarthritis (KOA) were unclear on physical performance although its effects on pain had been investiagted. This study aims to explore the effects of ESWT on pain relief and physical performance on KOA. Methods: The studies with the randomized controlled design to investigate the effects of ESWT on KOA were systematically searched using inclusion and exclusion criteria through seven electronic databases including Pubmed etc. between 1990 and Dec 2022. To summarize those data, visual analog scale (VAS) or pain scores were determined for measure of pain intensity. Range of knee motion, or the scores of physical activities including Lequesne index (LI), Knee Injury and Osteoarthritis Outcome Score (KOOS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were determined for measure of physical performances. The first evaluate after treatment period was define as the effect of post-treatment period or immediately effect; and the last evaluate was defined as the effect of following period or the end effect in our study. Data analysis was performed using RevMan 5.4.1 software. A significant level was set at p<0.05. Results: Eight studies (number of participant= 499) reporting the ESWT effects on mild-to-moderate severity (Grades I to III Kellgren–Lawrence) of KOA were qualified for meta-analysis. Compared with sham or placebo group, the ESWT group had a significant decrease of VAS rest score (0.90[0.12~1.67] as mean difference [95% confidence interval]) and pain score WOMAC (2.49[1.22~3.76]), and a significant improvement of physical performance with a decrease of the scores of WOMAC activities (8.18[3.97~12.39]), LI (3.47[1.68~5.26]), and KOOS (5.87[1.73~ 10.00]) in the post-treatment period. There were also a significant decrease of WOMAC pain score (2.83[2.12~3.53]) and a significant decrease of the scores of WOMAC activities (9.47[7.65~11.28]) and LI (4.12[2.34 to 5.89]) in the following period. Besides, compared with other treatment groups, ESWT also displayed the improvement in pain and physical performance, but it is not significant. Conclusions: The ESWT was effective and valuable method in pain relief as well as in improving physical activities in the participants with mild-to-moderate KOA. Clinical Relevance: There are the effects of ESWT on pain relief and the improvement of physical performance in the with KOA.

Keywords: knee osteoarthritis, extracorporeal shockwave therapy, pain relief, physical performance, shockwave

Procedia PDF Downloads 60
95 A Comparative Study of Simple and Pre-polymerized Fe Coagulants for Surface Water Treatment

Authors: Petros Gkotsis, Giorgos Stratidis, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

This study investigates the use of original and pre-polymerized iron (Fe) reagents compared to the commonly applied polyaluminum chloride (PACl) coagulant for surface water treatment. Applicable coagulants included both ferric chloride (FeCl₃) and ferric sulfate (Fe₂(SO₄)₃) and their pre-polymerized Fe reagents, such as polyferric sulfate (PFS) and polyferric chloride (PFCl). The efficiency of coagulants was evaluated by the removal of natural organic matter (NOM) and suspended solids (SS), which were determined in terms of reducing the UV absorption at 254 nm and turbidity, respectively. The residual metal concentration (Fe and Al) was also measured. Coagulants were added at five concentrations (1, 2, 3, 4 and 5 mg/L) and three pH values (7.0, 7.3 and 7.6). Experiments were conducted in a jar-test device, with two types of synthetic surface water (i.e., of high and low organic strength) which consisted of humic acid (HA) and kaolin at different concentrations (5 mg/L and 50 mg/L). After the coagulation/flocculation process, clean water was separated with filters of pore size 0.45 μm. Filtration was also conducted before the addition of coagulants in order to compare the ‘net’ effect of the coagulation/flocculation process on the examined parameters (UV at 254 nm, turbidity, and residual metal concentration). Results showed that the use of PACl resulted in the highest removal of humics for both types of surface water. For the surface water of high organic strength (humic acid-kaolin, 50 mg/L-50 mg/L), the highest removal of humics was observed at the highest coagulant dosage of 5 mg/L and at pH=7. On the contrary, turbidity was not significantly affected by the coagulant dosage. However, the use of PACl decreased turbidity the most, especially when the surface water of high organic strength was employed. As expected, the application of coagulation/flocculation prior to filtration improved NOM removal but slightly affected turbidity. Finally, the residual Fe concentration (0.01-0.1 mg/L) was much lower than the residual Al concentration (0.1-0.25 mg/L).

Keywords: coagulation/flocculation, iron and aluminum coagulants, metal salts, pre-polymerized coagulants, surface water treatment

Procedia PDF Downloads 124
94 Validation of a Placebo Method with Potential for Blinding in Ultrasound-Guided Dry Needling

Authors: Johnson C. Y. Pang, Bo Pengb, Kara K. L. Reevesc, Allan C. L. Fud

Abstract:

Objective: Dry needling (DN) has long been used as a treatment method for various musculoskeletal pain conditions. However, the evidence level of the studies was low due to the limitations of the methodology. Lack of randomization and inappropriate blinding are potentially the main sources of bias. A method that can differentiate clinical results due to the targeted experimental procedure from its placebo effect is needed to enhance the validity of the trial. Therefore, this study aimed to validate the method as a placebo ultrasound(US)-guided DN for patients with knee osteoarthritis (KOA). Design: This is a randomized controlled trial (RCT). Ninety subjects (25 males and 65 females) aged between 51 and 80 (61.26±5.57) with radiological KOA were recruited and randomly assigned into three groups with a computer program. Group 1 (G1) received real US-guided DN, Group 2 (G2) received placebo US-guided DN, and Group 3 (G3) was the control group. Both G1 and G2 subjects received the same procedure of US-guided DN, except the US monitor was turned off in G2, blinding the G2 subjects to the incorporation of faux US guidance. This arrangement created the placebo effect intended to permit comparison of their results to those who received actual US-guided DN. Outcome measures, including the visual analog scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) subscales of pain, symptoms and quality of life (QOL), were analyzed by repeated-measures analysis of covariance (ANCOVA) for time effects and group effects. The data regarding the perception of receiving real US-guided DN or placebo US-guided DN were analyzed by the chi-squared test. The missing data were analyzed with the intention-to-treat (ITT) approach if more than 5% of the data were missing. Results: The placebo US-guided DN (G2) subjects had the same perceptions as the use of real US guidance in the advancement of DN (p<0.128). G1 had significantly higher pain reduction (VAS and KOOS-pain) than G2 and G3 at 8 weeks (both p<0.05) only. There was no significant difference between G2 and G3 at 8 weeks (both p>0.05). Conclusion: The method with the US monitor turned off during the application of DN is credible for blinding the participants and allowing researchers to incorporate faux US guidance. The validated placebo US-guided DN technique can aid in investigations of the effects of US-guided DN with short-term effects of pain reduction for patients with KOA. Acknowledgment: This work was supported by the Caritas Institute of Higher Education [grant number IDG200101].

Keywords: reliability, jumping, 3D motion analysis, anterior crucial ligament reconstruction

Procedia PDF Downloads 93
93 Flipping the Script: Opportunities, Challenges, and Threats of a Digital Revolution in Higher Education

Authors: James P. Takona

Abstract:

In a world that is experiencing sharp digital transformations guided by digital technologies, the potential of technology to drive transformation and evolution in the higher is apparent. Higher education is facing a paradigm shift that exposes susceptibilities and threats to fully online programs in the face of post-Covid-19 trends of commodification. This historical moment is likely to be remembered as a critical turning point from analog to digital degree-focused learning modalities, where the default became the pivot point of competition between higher education institutions. Fall 2020 marks a significant inflection point in higher education as students, educators, and government leaders scrutinize higher education's price and value propositions through the new lens of traditional lecture halls versus multiple digitized delivery modes. Online education has since tiled the way for a pedagogical shift in how teachers teach and students learn. The incremental growth of online education in the west can now be attributed to the increasing patronage among students, faculty, and institution administrators. More often than not, college instructors assume paraclete roles in this learning mode, while students become active collaborators and no longer passive learners. This paper offers valuable discernments into the threats, challenges, and opportunities of a massive digital revolution in servicing degree programs. To view digital instruction and learning demands for instructional practices that revolve around collaborative work, engaging students in learning activities, and an engagement that promotes active efforts to solicit strong connections between course activities and expected learning pace for all students. Appropriate digital technologies demand instructors and students need prior solid skills. Need for the use of digital technology to support instruction and learning, intelligent tutoring offers great promise, and failures at implementing digital learning may not improve outcomes for specific student populations. Digital learning benefits students differently depending on their circumstances and background and those of the institution and/or program. Students have alternative options, access to the convenience of learning anytime and anywhere, and the possibility of acquiring and developing new skills leading to lifelong learning.

Keywords: digi̇tized learning, digital education, collaborative work, high education, online education, digitize delivery

Procedia PDF Downloads 63
92 The Comparative Electroencephalogram Study: Children with Autistic Spectrum Disorder and Healthy Children Evaluate Classical Music in Different Ways

Authors: Galina Portnova, Kseniya Gladun

Abstract:

In our EEG experiment participated 27 children with ASD with the average age of 6.13 years and the average score for CARS 32.41 and 25 healthy children (of 6.35 years). Six types of musical stimulation were presented, included Gluck, Javier-Naida, Kenny G, Chopin and other classic musical compositions. Children with autism showed orientation reaction to the music and give behavioral responses to different types of music, some of them might assess stimulation by scales. The participants were instructed to remain calm. Brain electrical activity was recorded using a 19-channel EEG recording device, 'Encephalan' (Russia, Taganrog). EEG epochs lasting 150 s were analyzed using EEGLab plugin for MatLab (Mathwork Inc.). For EEG analysis we used Fast Fourier Transform (FFT), analyzed Peak alpha frequency (PAF), correlation dimension D2 and Stability of rhythms. To express the dynamics of desynchronizing of different rhythms we've calculated the envelope of the EEG signal, using the whole frequency range and a set of small narrowband filters using Hilbert transformation. Our data showed that healthy children showed similar EEG spectral changes during musical stimulation as well as described the feelings induced by musical fragments. The exception was the ‘Chopin. Prelude’ fragment (no.6). This musical fragment induced different subjective feeling, behavioral reactions and EEG spectral changes in children with ASD and healthy children. The correlation dimension D2 was significantly lower in autists compared to healthy children during musical stimulation. Hilbert envelope frequency was reduced in all group of subjects during musical compositions 1,3,5,6 compositions compared to the background. During musical fragments 2 and 4 (terrible) lower Hilbert envelope frequency was observed only in children with ASD and correlated with the severity of the disease. Alfa peak frequency was lower compared to the background during this musical composition in healthy children and conversely higher in children with ASD.

Keywords: electroencephalogram (EEG), emotional perception, ASD, musical perception, childhood Autism rating scale (CARS)

Procedia PDF Downloads 258