Search results for: traditional learning approach
18329 Multilingualism in Medieval Romance: A French Case Study
Authors: Brindusa Grigoriu
Abstract:
Inscribing itself in the field of the history of multilingual communities with a focus on the evolution of language didactics, our paper aims at providing a pragmatic-interactional approach on a corpus proposing to scholars of the international scientific community a relevant text of early modern European literature: the first romance in French, The Conte of Flore and Blanchefleur by Robert d’Orbigny (1150). The multicultural context described by the romance is one in which an Arab-speaking prince, Floire, and his Francophone protégée, Blanchefleur, learn Latin together at the court of Spain and become fluent enough to turn it into the language of their love. This learning process is made up of interactional patterns of affective relevance, in which the proficiency of the protagonists in the domain of emotive acts becomes a matter of linguistic and pragmatic emulation. From five to ten years old, the pupils are efficiently stimulated by their teacher of Latin, Gaidon – a Moorish scholar of the royal entourage – to cultivate their competencies of oral expression and reading comprehension (of Antiquity classics), while enjoying an ever greater freedom of written expression, including the composition of love poems in this second language of culture and emotional education. Another relevant parameter of the educational process at court is that Latin shares its prominent role as a language of culture with French, whose exemplary learner is the (Moorish) queen herself. Indeed, the adult 'First lady' strives to become a pupil benefitting from lifelong learning provided by a fortuitous slave-teacher with little training, her anonymous chambermaid and Blanchefleur’s mother, who, despite her status of a war trophy, enjoys her Majesty’s confidence as a cultural agent of change in linguistic and theological fields. Thus, the two foreign languages taught at Spains’s court, Latin and French – as opposed to Arabic -, suggest a spiritual authority allowing the mutual enrichment of intercultural pioneers of cross-linguistic communication, in the aftermath of religious wars. Durably, and significantly – if not everlastingly – the language of physical violence rooted in intra-cultural solipsism is replaced by two Romance languages which seem to embody, together and yet distinctly, the parlance of peace-making.Keywords: multilingualism, history of European language learning, French and Latin learners, multicultural context of medieval romance
Procedia PDF Downloads 14218328 Science Explorer Modules as a Communication Approach to Encourage High School Students to Pursue Science Careers
Authors: Mark Ivan Roblas
Abstract:
The Science Explorer is a mobile learning science facility in the Philippines. It is a bus that travels to different provinces in the country bringing interactive science modules facilitated by scientists from the industry and academe. The project aims to entice students to get into careers in science through interactive science modules and interaction with real-life scientists. This article looks into the effectiveness of its modules as a communication source and message to encourage high school students to get into careers in the future. The study revealed that as the Science Explorer modules are able to retain students to stay in science careers of their choice and even convert some to choose from non-science to a science degree, it still lacks in penetrating the belief system of the students and influencing them to take a scientific career path.Keywords: informal science, mobile science, science careers, science education
Procedia PDF Downloads 22718327 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 38018326 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time
Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen
Abstract:
Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.Keywords: 4C/ID model, virtual patients, education, dental, instructional design
Procedia PDF Downloads 8518325 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 2218324 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 10218323 Impact of Surface Roughness on Light Absorption
Authors: V. Gareyan, Zh. Gevorkian
Abstract:
We study oblique incident light absorption in opaque media with rough surfaces. An analytical approach with modified boundary conditions taking into account the surface roughness in metallic or dielectric films has been discussed. Our approach reveals interference-linked terms that modify the absorption dependence on different characteristics. We have discussed the limits of our approach that hold valid from the visible to the microwave region. Polarization and angular dependences of roughness-induced absorption are revealed. The existence of an incident angle or a wavelength for which the absorptance of a rough surface becomes equal to that of a flat surface is predicted. Based on this phenomenon, a method of determining roughness correlation length is suggested.Keywords: light, absorption, surface, roughness
Procedia PDF Downloads 5718322 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting
Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh
Abstract:
The ability to manipulate magnetic particles in fluid flows by means of inhomogeneous magnetic fields is used in a wide range of biomedical applications including magnetic drug targeting (MDT). In MDT, magnetic carrier particles bounded with drug molecules are injected into the vascular system up-stream from the malignant tissue and attracted or retained at the specific region in the body with the help of an external magnetic field. Although the concept of MDT has been around for many years, however, wide spread acceptance of the technique is still looming despite the fact that it has shown some promise in both in vivo and clinical studies. This is because traditional MDT has some inherent limitations. Typically, the magnetic force is not very strong and it is also very short ranged. Since the magnetic force must overcome rather large hydrodynamic forces in the body, MDT applications have been limited to sites located close to the surface of the skin. Even in this most favorable situation, studies have shown that it is difficult to collect appreciable amounts of the MDCPs at the target site. To overcome these limitations of the traditional MDT approach, Ritter and co-workers reported the implant assisted magnetic drug targeting (IA-MDT). In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing in a fluid in an implant assisted cylindrical channel under the magnetic field. A coil of ferromagnetic SS 430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under the magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases from 23 to 51 % as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.Keywords: capture efficiency, implant assisted-magnetic drug targeting (IA-MDT), magnetic nanoparticles, modelling
Procedia PDF Downloads 46718321 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 11918320 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 19318319 The Link Between Success Factors of Online Architectural Education and Students’ Demographics
Authors: Yusuf Berkay Metinal, Gulden Gumusburun Ayalp
Abstract:
Architectural education is characterized by its distinctive amalgamation of studio-based pedagogy and theoretical instruction. It offers students a comprehensive learning experience that blends practical skill development with critical inquiry and conceptual exploration. Design studios are central to this educational paradigm, which serve as dynamic hubs of creativity and innovation, providing students with immersive environments for experimentation and collaborative engagement. The physical presence and interactive dynamics inherent in studio-based learning underscore the indispensability of face-to-face instruction and interpersonal interaction in nurturing the next generation of architects. However, architectural education underwent a seismic transformation in response to the global COVID-19 pandemic, precipitating an abrupt transition from traditional, in-person instruction to online education modalities. While this shift introduced newfound flexibility in terms of temporal and spatial constraints, it also brought many challenges to the fore. Chief among these challenges was maintaining effective communication and fostering meaningful collaboration among students in virtual learning environments. Besides these challenges, lack of peer learning emerged as a vital issue of the educational experience, particularly crucial for novice students navigating the intricacies of architectural practice. Nevertheless, the pivot to online education also laid bare a discernible decline in educational efficacy, prompting inquiries regarding the enduring viability of online education in architectural pedagogy. Moreover, as educational institutions grappled with the exigencies of remote instruction, discernible disparities between different institutional contexts emerged. While state universities often contended with fiscal constraints that shaped their operational capacities, private institutions encountered challenges from a lack of institutional fortification and entrenched educational traditions. Acknowledging the multifaceted nature of these challenges, this study endeavored to undertake a comprehensive inquiry into the dynamics of online education within architectural pedagogy by interrogating variables such as class level and type of university; the research aimed to elucidate demographic critical success factors that underpin the effectiveness of online education initiatives. To this end, a meticulously constructed questionnaire was administered to architecture students from diverse academic institutions across Turkey, informed by an exhaustive review of extant literature and scholarly discourse. The resulting dataset, comprising responses from 232 participants, underwent rigorous statistical analysis, including independent samples t-test and one-way ANOVA, to discern patterns and correlations indicative of overarching trends and salient insights. In sum, the findings of this study serve as a scholarly compass for educators, policymakers, and stakeholders navigating the evolving landscapes of architectural education. By elucidating the intricate interplay of demographical factors that shape the efficacy of online education in architectural pedagogy, this research offers a scholarly foundation upon which to anchor informed decisions and strategic interventions to elevate the educational experience for future cohorts of aspiring architects.Keywords: architectural education, COVID-19, distance education, online education
Procedia PDF Downloads 5618318 The Pursuit of Marital Sustainability Inspiring by Successful Matrimony of Two Distinguishable Indonesian Ethnics as a Learning Process
Authors: Mutiara Amalina Khairisa, Purnama Arafah, Rahayu Listiana Ramli
Abstract:
In recent years, so many cases of divorce increasingly occur. Betrayal in form of infidelity, less communication one another, economically problems, selfishness of two sides, intervening parents from both sides which frequently occurs in Asia, especially in Indonesia, the differences of both principles and beliefs, “Sense of Romantism” depletion, role confict, a large difference in the purpose of marriage,and sex satisfaction are expected as the primary factors of the causes of divorce. Every couple of marriage wants to reach happy life in their family but severe problems brought about by either of those main factors come as a reasonable cause of failure marriage. The purpose of this study is to find out how marital adjustment and supporting factors in ensuring the success of that previous marital adjusment are inseparable two things assumed as a framework can affect the success in marriage becoming a resolution to reduce the desires to divorce. Those two inseparable things are able to become an aspect of learning from the success of the different ethnics marriage to keep holding on wholeness.Keywords: marital adjustment, marital sustainability, learning process, successful ethnicity differences marriage, basical cultural values
Procedia PDF Downloads 43318317 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder
Authors: Yu-Chi Chou
Abstract:
The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation
Procedia PDF Downloads 7018316 Teacher’s Personality Potential Contributes to Personality Development and Well-being of Schoolchildren: A Longitudinal Study in Russia
Authors: Elena G. Diryugina, Maria A. Dovger, Maria V. Lunkina, Alexandra A. Ianchenko
Abstract:
The personality development and well-being of children have become important focuses of school education and indicators of its quality. The studies show that academic success depends more on personality and motivation than on intelligence and giftedness. Those personality resources that help a person to maintain well-being both here and now and in the future constitute their personality potential. The development of schoolchildrens' personality potential can help them meet the challenges of the modern world and achieve new educational goals. At the same time, it is noted that the pedagogical factor is one of the most significant in relation to schoolchildrens' success and well-being. What is important for teachers to develop in order to make their students feel more competent and maintain well-being? As part of the Developmental Environment Programme of the Charitable Foundation ‘Investment in the Future’, a longitudinal study of the personality potential and well-being of educators and schoolchildren was conducted from 2018 to 2023. More than 2,500 teachers and over 4,000 students from Russia took part. It was found that behind a teacher's communication style, an important construct that influences the motivation of schoolchildren and the satisfaction of their basic psychological needs, is the personal potential of that teacher. Their personality potential correlates with the social-emotional development of schoolchildren in junior grades. A teacher's communication style with adolescents contributes to their academic motivation, self-esteem and satisfaction with life and learning. In addition, child well-being cannot be promoted in isolation from attention to the psychological well-being of teachers. Their social well-being and engagement are higher when they are included in professional learning communities. The results will be helpful for both positive education researchers and practitioners to identify an approach to child personality development and well-being that is achieved primarily through the personality development and well-being of school staff members and mostly teachers.Keywords: Personality development, personality potential, schoolchildren, teaching style, well-being
Procedia PDF Downloads 5018315 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 18818314 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study
Authors: Nir Wittenberg, Moshe Farhi
Abstract:
This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations
Procedia PDF Downloads 8418313 Educational Audit and Curricular Reforms in the Arabian Context
Authors: Irum Naz
Abstract:
In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center
Procedia PDF Downloads 19018312 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 13818311 Students’ Motivation, Self-Determination, Test Anxiety and Academic Engagement
Authors: Shakirat Abimbola Adesola, Shuaib Akintunde Asifat, Jelili Olalekan Amoo
Abstract:
This paper presented the impact of students’ emotions on learning when receiving lectures and when taking tests. It was observed that students experience different types of emotions during the study, and this was found to have a significant effect on their academic performance. A total of one thousand six hundred and seventy-five (1675) students from the department of Computer Science in two Colleges of Education in South-West Nigeria took part in this study. The students were randomly selected for the research. Sample comprises of 968 males representing 58%, and 707 females representing 42%. A structured questionnaire, of Motivated Strategies for Learning Questionnaire (MSLQ) was distributed to the participants to obtain their opinions. Data gathered were analyzed using the IBM SPSS 20 to obtain ANOVA, descriptive analysis, stepwise regression, and reliability tests. The results revealed that emotion moderately shape students’ motivation and engagement in learning; and that self-regulation and self-determination do have significant impact on academic performance. It was further revealed that test anxiety has a significant correlation with academic performance.Keywords: motivation, self-determination, test anxiety, academic performance, and academic engagement
Procedia PDF Downloads 8718310 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm
Procedia PDF Downloads 37818309 Energy States of Some Diatomic Molecules: Exact Quantization Rule Approach
Authors: Babatunde J. Falaye
Abstract:
In this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng-Fan diatomic molecular potential by using exact quantization rule approach. The wave functions have been expressed by hypergeometric functions via the functional analysis approach. An extension to rotational-vibrational energy eigenvalues of some diatomic molecules are also presented. It is shown that the calculated energy levels are in good agreement with the ones obtained previously E_nl-D (shifted Deng-Fan).Keywords: Schrödinger equation, exact quantization rule, functional analysis, Deng-Fan potential
Procedia PDF Downloads 50318308 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data
Authors: Minjuan Sun
Abstract:
Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.Keywords: credit score, digital footprint, Fintech, machine learning
Procedia PDF Downloads 17218307 Pilot Study of the Psychometric Properties of the Test of Predisposition towards the Bullying
Authors: Rosana Choy, Fabiola Henostroza
Abstract:
Actual theory suggests social-ecological factors as the main framework of bullying. Most previous research in this phenomenon is focused on the identification of bullying attitudes and conducts in puberty and adolescence periods. For this reason, this study is considered as a contribution to the existing knowledge in measuring matters, because of its non-traditional way of evaluation (graphic items), and because of its approach to a distinctive age group, children from 7 to 9 years-old, not regularly examined in current studies in this field. The research used a transversal descriptive investigation design for the development of a graphic test for bullying predisposition. The process began with the operationalization of the variable bullying predisposition, the structuring of the factors and variable indicators of a pilot instrument, evaluation by experts of the items representation, and finally it continued with the test application to children of two types of regular school population in Lima-Peru: private and public schools. The reliability level was 0.85 and the validity of the test corroborated the three-factor structure proposed by the researchers.Keywords: bullying, graphic test, reliability, validity
Procedia PDF Downloads 27018306 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 13818305 Questioning the Relationship Between Young People and Fake News Through Their Use of Social Media
Authors: Marion Billard
Abstract:
This paper will focus on the question of the real relationship between young people and fake news. Fake news is one of today’s main issues in the world of information and communication. Social media and its democratization helped to spread false information. According to traditional beliefs, young people are more inclined to believe what they read through social media. But, the individuals concerned, think that they are more inclined to make a distinction between real and fake news. This phenomenon is due to their use of the internet and social media from an early age. During the 2016 and 2017 French and American presidential campaigns, the term fake news was in the mouth of the entire world and became a real issue in the field of information. While young people were informing themselves with newspapers or television until the beginning of the ’90s, Gen Z (meaning people born between 1997 and 2010), has always been immersed in this world of fast communication. They know how to use social media from a young age and the internet has no secret for them. Today, despite the sporadic use of traditional media, young people tend to turn to their smartphones and social networks such as Instagram or Twitter to stay abreast of the latest news. The growth of social media information led to an “ambient journalism”, giving access to an endless quantity of information. Waking up in the morning, young people will see little posts with short texts supplying the essential of the news, without, for the most, many details. As a result, impressionable people are not able to do a distinction between real media, and “junk news” or Fake News. This massive use of social media is probably explained by the inability of the youngsters to find connections between the communication of the traditional media and what they are living. The question arises if this over-confidence of the young people in their ability to distinguish between accurate and fake news would not make it more difficult for them to examine critically the information. Their relationship with media and fake news is more complex than popular opinion. Today’s young people are not the master in the quest for information, nor inherently the most impressionable public on social media.Keywords: fake news, youngsters, social media, information, generation
Procedia PDF Downloads 16518304 Robot-Assisted Learning for Communication-Care in Autism Intervention
Authors: Syamimi Shamsuddin, Hanafiah Yussof, Fazah Akhtar Hanapiah, Salina Mohamed, Nur Farah Farhan Jamil, Farhana Wan Yunus
Abstract:
Robot-based intervention for children with autism is an evolving research niche in human-robot interaction (HRI). Recent studies in this area mostly covered the role of robots in the clinical and experimental setting. Our previous work had shown that interaction with a robot pose no adverse effects on the children. Also, the presence of the robot, together with specific modules of interaction was associated with less autistic behavior. Extending this impact on school-going children, interactions that are in-tune with special education lessons are needed. This methodological paper focuses on how a robot can be incorporated in a current learning environment for autistic children. Six interaction scenarios had been designed based on the existing syllabus to teach communication skills, using the Applied Behavior Analysis (ABA) technique as the framework. Development of the robotic experience in class also covers the required set-up involving participation from teachers. The actual research conduct involving autistic children, teachers and robot shall take place in the next phase.Keywords: autism spectrum disorder, ASD, humanoid robot, communication skills, robot-assisted learning
Procedia PDF Downloads 36918303 Alternate Dispute Resolution: Expeditious Justice
Authors: Uzma Fakhar, Osama Fakhar, Aamir Shafiq Ch
Abstract:
Methods of alternate dispute resolution (ADR) like conciliation, arbitration, mediation are the supplement to ensure inexpensive and expeditious justice in a country. Justice delayed has not only created chaos, but an element of rebellious behavior towards judiciary is being floated among people. Complexity of traditional judicial system and its diversity has created an overall coherence. Admittedly, In Pakistan the traditional judicial system has failed to achieve its goals which resulted in the backlog of cases pending in courts, resultantly even the critics of alternate dispute resolution agree to restore the spirit of expeditious justice by reforming the old Panchayat system. The Government is keen to enact certain laws and make amendments to facilitate the resolution of a dispute through a simple and faster ADR framework instead of a lengthy and exhausting complex trial in order to create proliferation and faith in alternate dispute resolution. This research highlights the value of ADR in a country like Pakistan for revival of the confidence of the people upon the judicial process and a useful judicial tool to reduce the pressure on the judiciary.Keywords: alternate dispute resolution, development of law, expeditious justice, Pakistan
Procedia PDF Downloads 22518302 Different Roles for Mentors and Mentees in an e-Learning Environment
Authors: Nidhi Gadura
Abstract:
Given the increase in the number of students and administrators asking for online courses the author developed two partially online courses. One was a biology majors at genetics course while the other was a non-majors at biology course. The student body at Queensborough Community College is generally underprepared and has work and family obligations. As an educator, one has to be mindful about changing the pedagogical approach, therefore, special care was taken when designing the course material. Despite the initial concerns, both of these partially online courses were received really well by students. Lessons learnt were that student engagement is the key to success in an online course. Good practices to run a successful online course for underprepared students are discussed in this paper. Also discussed are the lessons learnt for making the eLearning environment better for all the students in the class, overachievers and underachievers alike.Keywords: partially online course, pedagogy, student engagement, community college
Procedia PDF Downloads 39918301 Lessons Learnt from Tutors’ Perspectives on Online Tutorial’s Policies in Open and Distance Education Institution
Authors: Durri Andriani, Irsan Tahar, Lilian Sarah Hiariey
Abstract:
Every institution has to develop, implement, and control its policies to ensure the effectiveness of the institution. In doing so, all related stakeholders have to be involved to maximize the benefit of the policies and minimize the potential constraints and resistances. Open and distance education (ODE) institution is no different. As an education institution, ODE institution has to focus their attention to fulfilling academic needs of their students through open and distance measures. One of them is quality learning support system. Significant stakeholders in learning support system are tutors since they are the ones who directly communicate with students. Tutors are commonly seen as objects whose main responsibility is limited to implementing policies decided by management in ODE institutions. Nonetheless, tutors’ perceptions of tutorials are believed to influence tutors’ performances in facilitating learning support. It is therefore important to analyze tutors’ perception on various aspects of learning support. This paper presents analysis of tutors’ perceptions on policies of tutoriala in ODE institution using Policy Analysis Framework (PAF) modified by King, Nugent, Russell, and Lacy. Focus of this paper is on on-line tutors, those who provide tutorials via Internet. On-line tutors were chosen to stress the increasingly important used of Internet in ODE system. The research was conducted in Universitas Terbuka (UT), Indonesia. UT is purposely selected because of its large number (1,234) of courses offered and large area coverage (6000 inhabited islands). These posed UT in a unique position where learning support system has, to some extent, to be standardized while at the same time it has to be able to cater the needs of different courses in different places for students with different backgrounds. All 598 listed on-line tutors were sent the research questionnaires. Around 20% of the email addresses could not be reached. Tutors were asked to fill out open-ended questionnaires on their perceptions on definition of on-line tutorial, roles of tutors and students in on-line tutorials, requirement for on-line tutors, learning materials, and student evaluation in on-line tutorial. Data analyzed was gathered from 40 on-line tutors who sent back filled-out questionnaires. Data were analyzed qualitatively using content analysis from all 40 tutors. The results showed that using PAF as entry point in choosing learning support services as area of policy with delivery learning materials as the issue at UT has been able to provide new insights of aspects need to be consider in formulating policies in online tutorial and in learning support services. Involving tutors as source of information could be proven to be productive. In general, tutors had clear understanding about definition of online tutorial, roles of tutors and roles of students, and requirement of tutor. Tutors just need to be more involved in the policy formulation since they could provide data on students and problem faced in online tutorial. However, tutors need an adjustment in student evaluation which according tutors too focus on administrative aspects and subjective.Keywords: distance education, on-line tutorial, tutorial policy, tutors’ perspectives
Procedia PDF Downloads 25718300 Sexual Harassment at University: Male Students' Perspectives
Authors: Shakila Singh
Abstract:
Sexual harassment continues to be a problem both in educational institutions and workplaces with the main victims being women and the main perpetrators being men. The achievement of quality education demands to create safe learning spaces for all students and requires extensive and integrated interventions. This article draws on the data from a broader study that aims to create safer learning environments at university by addressing gender violence. It attempts to understand male students’ perspectives about their role in sexual harassment on the campus. It is a move away from interventions that place the responsibility of prevention of sexual harassment, on women. The study adopts an interpretive paradigm within a qualitative approach. The sample comprises twenty male university students who were purposively selected because they live in the campus residences. The main data generation methods included focus group discussions and individual interviews. Findings show that while many male students agree that victims of sexual harassment are mainly women, they also suggest that men are victims of sexual harassment by women. Male students have varying understandings of what constitutes sexual harassment. They position themselves as victims who feel harassed by women’s dress and behaviour. Male students also felt under pressure by sexual advances made by women that forced them to comply in order to protect their masculinity. This article argues that social norms of masculinity are powerful drivers of behaviour that play a key role in the perpetuation of sexual harassment. Male students who feel strongly against sexual harassment of female students are constrained by their masculinities in their ability to act against it. Effective interventions need to actively engage students in reflecting on and challenging social and cultural norms that contribute to violent expressions and to develop alternatives with them.Keywords: gender violence, male students, sexual harassment, university students
Procedia PDF Downloads 214