Search results for: rise to span ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6663

Search results for: rise to span ratio

2523 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 154
2522 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 445
2521 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 170
2520 Force Sensor for Robotic Graspers in Minimally Invasive Surgery

Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy

Abstract:

Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.

Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor

Procedia PDF Downloads 231
2519 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section

Procedia PDF Downloads 329
2518 Landmark Based Catch Trends Assessment of Gray Eel Catfish (Plotosus canius) at Mangrove Estuary in Bangladesh

Authors: Ahmad Rabby

Abstract:

The present study emphasizing the catch trends assessment of Gray eel catfish (Plotosus canius) that was scrutinized on the basis of monthly length frequency data collected from mangrove estuary, Bangladesh during January 2017 to December 2018. A total amount of 1298 specimens were collected to estimate the total length (TL) and weight (W) of P. canius ranged from 13.3 cm to 87.4 cm and 28 g to 5200 g, respectively. The length-weight relationship was W=0.006 L2.95 with R2=0.972 for both sexes. The von Bertalanffy growth function parameters were L∞=93.25 cm and K=0.28 yr-1, hypothetical age at zero length of t0=0.059 years and goodness of the fit of Rn=0.494. The growth performances indices for L∞ and W∞ were computed as Φ'=3.386 and Φ=1.84, respectively. The size at first sexual maturity was estimated in TL as 48.8 cm for pool sexes. The natural mortality was 0.51 yr-1 at average annual water surface temperature as 22 0C. The total instantaneous mortality was 1.24 yr-1 at CI95% of 0.105–1.42 (r2=0.986). While fishing mortality was 0.73 yr-1 and the current exploitation ratio as 0.59. The recruitment was continued throughout the year with one major peak during May-June was 17.20-17.96%. The Beverton-Holt yield per recruit model was analyzed by FiSAT-II, when tc was at 1.43 yr, the Fmax was estimated as 0.6 yr-1 and F0.1 was 0.33 yr-1. Current age at the first capture was approximately 0.6 year, however Fcurrent = 0.73 yr-1 which is beyond the F0.1 indicated that the current stock of P. canius of Bangladesh was overexploited.

Keywords: Plotosus canius, mangrove estuary, asymptotic length, FiSAT-II

Procedia PDF Downloads 153
2517 Stigmatizing Narratives: Analyzing Drug Use Depictions in U.K. Digital News Media

Authors: Ava Simone Arteaga

Abstract:

This research explores the portrayal of drug use in U.K. digital news media, a topic of critical importance due to its influence on addiction treatment, recovery efforts, and public perceptions. Substance use disorder (SUD) as one of the most stigmatized health conditions globally, with media representations playing a crucial role in shaping societal attitudes. Despite the impact of media portrayals, there has been no comprehensive analysis of drug-related representations in U.K. digital news media for over thirteen years. This study aims to fill this gap by analyzing contemporary digital news depictions of drug use, focusing on how these portrayals influence public perception and contribute to stigma. This research will examine tabloid, national, and regional East Midlands press sites to understand current trends in drug-related reporting. The study will build on previous research, such as the 2010 UKDPC study, which revealed that drug users were often vilified, and that coverage was predominantly focused on criminal justice rather than recovery. Given the rise in drug-related deaths in the U.K. and the exacerbation of the drug crisis post-Brexit, this analysis is timely and crucial. The findings are expected to reveal how digital media continues to perpetuate stigma and misinformation about drug use. By comparing these findings with U.S. studies, the research will contribute to a better understanding of cross-cultural differences in drug-related media representations and inform policy discussions. The U.K. Government's ten-year plan to combat illegal drugs, which emphasizes reducing stigma, will benefit from this research by highlighting the need for improved media representations. Additionally, the study will engage with recent U.K. and international research on media stigma towards SUD to provide a broader context and comparative perspective. Ultimately, this study aims to drive changes in media reporting and contribute to the development of more effective public policies and interventions. By addressing current gaps in research and providing evidence-based recommendations, this work seeks to support the U.K. Government’s objectives and improve the media’s role in addressing drug-related issues.

Keywords: addiction, UK news media, media representations, depiction of drug use

Procedia PDF Downloads 27
2516 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 266
2515 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro

Authors: Prativa Das, Lay Poh Tan

Abstract:

Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.

Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis

Procedia PDF Downloads 128
2514 Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel

Authors: Mohamed Hassan Gundu, Jaeseung Lee, Muhammad Faizan Chinannai, Hyunchul Ju

Abstract:

In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width).

Keywords: PEMFC, air-cooling, relative humidity, water management, water concentration, oxygen concentration

Procedia PDF Downloads 297
2513 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement

Authors: Sateesh Kumar Pisini, Swetha Priya Pisini

Abstract:

Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.

Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity

Procedia PDF Downloads 261
2512 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 194
2511 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 111
2510 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon

Authors: Badache Messaoud

Abstract:

Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.

Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance

Procedia PDF Downloads 70
2509 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.

Keywords: space-based detection, aerial targets, detectability analysis, scene environment

Procedia PDF Downloads 144
2508 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles

Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada

Abstract:

When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.

Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure

Procedia PDF Downloads 526
2507 Carbon Monoxide Poisoning in Children

Authors: Atitallah Sofien, Bouyahia Olfa, Hadj Salah Ibrahim, Ben Saleh Foued, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Carbon monoxide (CO) poisoning is a common pathology responsible for high morbidity and mortality worldwide. Aim: The purpose of this study was to determine the epidemiological profile of CO poisoning as well as its clinical, paraclinical, therapeutic, and evolutionary aspects. Methods: Our study included observations of CO poisoning in children hospitalized in the pediatric department C of the Children's Hospital in Tunis over a period of 3 years. Results: We have collected 199 cases of CO poisoning in children. The average age was 5.43 years, with a sex ratio of 0.98. The source of CO was inside the home in 73.2% of cases, and it was the gas bath heater in 68.8% of cases. The intoxication was collective in 93.5% of the cases, and it occurred during the month of January in 35.8% of the cases. The clinical manifestations were headaches in 69.5% of cases. The rate of carboxyhemoglobin was pathological in 73.9% of cases. All patients received normobaric oxygen therapy, and only 3.6% of patients had a hyperbaric oxygen therapy session. We did not deplore any case of death in our study. Conclusion: CO poisoning remains a public health problem in Tunisia with high morbidity. The risk of secondary complications, particularly neuropsychiatric, requires clinical and possibly neuroradiological monitoring of these victims.

Keywords: poisoning, carbon monoxide, children, hyperbaric oxygenation

Procedia PDF Downloads 72
2506 Identifying the Determinants of the Shariah Non-Compliance Risk via Principal Axis Factoring

Authors: Muhammad Arzim Naim, Saiful Azhar Rosly, Mohamad Sahari Nordin

Abstract:

The objective of this study is to investigate the factors affecting the rise of Shariah non-compliance risk that can bring Islamic banks to succumb to monetary loss. Prior literatures have never analyzed such risk in details despite lots of it arguing on the validity of some Shariah compliance products. The Shariah non-compliance risk in this context is looking to the potentially failure of the facility to stand from the court test say that if the banks bring it to the court for compensation from the defaulted clients. The risk may also arise if the customers refuse to make the financing payments on the grounds of the validity of the contracts, for example, when relinquishing critical requirement of Islamic contract such as ownership, the risk that may lead the banks to suffer loss when the customer invalidate the contract through the court. The impact of Shariah non-compliance risk to Islamic banks is similar to that of legal risks faced by the conventional banks. Both resulted into monetary losses to the banks respectively. In conventional banking environment, losses can be in the forms of summons paid to the customers if they won the case. In banking environment, this normally can be in very huge amount. However, it is right to mention that for Islamic banks, the subsequent impact to them can be rigorously big because it will affect their reputation. If the customers do not perceive them to be Shariah compliant, they will take their money and bank it in other places. This paper provides new insights of risks faced by credit intensive Islamic banks by providing a new extension of knowledge with regards to the Shariah non-compliance risk by identifying its individual components that directly affecting the risk together with empirical evidences. Not limited to the Islamic banking fraternities, the regulators and policy makers should be able to use findings in this paper to evaluate the components of the Shariah non-compliance risk and make the necessary actions. The paper is written based on Malaysia’s Islamic banking practices which may not directly related to other jurisdictions. Even though the focuses of this study is directly towards to the Bay Bithaman Ajil or popularly known as BBA (i.e. sale with deferred payments) financing modality, the result from this study may be applicable to other Islamic financing vehicles.

Keywords: Islamic banking, Islamic finance, Shariah Non-compliance risk, Bay Bithaman Ajil (BBA), principal axis factoring

Procedia PDF Downloads 303
2505 Optimizing the Passenger Throughput at an Airport Security Checkpoint

Authors: Kun Li, Yuzheng Liu, Xiuqi Fan

Abstract:

High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.

Keywords: queue theory, security check, stochatic process, Monte Carlo simulation

Procedia PDF Downloads 200
2504 Development, Optimization and Characterization of Gastroretentive Multiparticulate Drug Delivery System

Authors: Swapnila V. Vanshiv, Hemant P. Joshi, Atul B. Aware

Abstract:

Current study illustrates the formulation of floating microspheres for purpose of gastroretention of Dipyridamole which shows pH dependent solubility, with the highest solubility in acidic pH. The formulation involved hollow microsphere preparation by using solvent evaporation technique. Concentrations of rate controlling polymer, hydrophilic polymer, internal phase ratio, stirring speed were optimized to get desired responses, namely release of Dipyridamole, buoyancy of microspheres, entrapment efficiency of microspheres. In the formulation, the floating microspheres were prepared by using ethyl cellulose as release retardant and HPMC as a low density hydrophilic swellable polymer. Formulated microspheres were evaluated for their physical properties such as particle size and surface morphology by optical microscopy and SEM. Entrapment efficiency, floating behavior and drug release study as well the formulation was evaluated for in vivo gastroretention in rabbits using gamma scintigraphy. Formulation showed 75% drug release up to 10 hr with entrapment efficiency of 91% and 88% buoyancy till 10 hr. Gamma scintigraphic studies revealed that the optimized system was retained in the gastric region (stomach) for a prolonged period i.e. more than 5 hr.

Keywords: Dipyridamole microspheres, gastroretention, HPMC, optimization method

Procedia PDF Downloads 387
2503 Effect of Varying Stocking Densities and Vitamin C (Ascorbic Acid) Supplementation on Growth Performance of Japanese Quails

Authors: T. S. Olugbemi, T. S. Friday, O. O. Olusola

Abstract:

This experiment was carried out to assess the effect of different stocking densities and vitamin C supplementation on the performance of Japanese quails. Five hundred and twenty (520) unsexed quail birds of two (2) weeks of age were allotted randomly into nine (9) groups with 3 replicates each in a 3x3 factorial arrangement (3 stocking density levels and 3 graded vitamin C levels) with densities of 150, 120, 90 cm2/bird(11, 16, 21 birds). During the five weeks growing trial (2- 6 weeks), results showed that stocking density had significant effects on final weight (131.59g compared to 111.10g for the lowest), total and daily weight gain. No significance difference was observed for feed conversion ratio, age at first lay and first egg weight. Observations on haematological parameters (packed cell volume (PCV), total protein (TP), haemoglobin, red blood cell (RBC), lymphocyte, heterophil) on stocking density showed no significant differences. Vitamin C supplementation at 50mg/kg and 100mg/kg did not have any significant effect on the growth performance parameters of growing quails. Stocking density at 150cm2/bird had a better performance with or without vitamin C supplementation hence it is recommended that stocking rates of quails between the ages of 2 – 6 weeks should not be below 150cm2/bird.

Keywords: anti-oxidants, performance, stress, stocking density

Procedia PDF Downloads 648
2502 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran

Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi

Abstract:

Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.

Keywords: crop coefficient, remote sensing, vegetation indices, wheat

Procedia PDF Downloads 414
2501 Value Added by Spirulina Platensis in Two Different Diets on Growth Performance, Gut Microbiota, and Meat Quality of Japanese Quails

Authors: Mohamed Yusuf

Abstract:

Aim: The growth promoting the effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. Materials and Methods: This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Results: Data revealed improvement (p<0.05) of weight gain, feed conversion ratio, and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g(SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kgVPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fishmeal based diet for growing Japanese quails. Conclusion: Using of SP will support the profitable production of Japanese quails fed vegetable protein diet.

Keywords: isocaloric, isonitrogenous, meat quality, performances, quails, spirulina, spirulina

Procedia PDF Downloads 252
2500 How to Break an Outbreak: Containment Measures of a Salmonella Outbreak Associated with Egg Consumption

Authors: Gal Zagron, Nitza Abramson, Deena R. Zimmerman, Chen Stein-Zamir

Abstract:

Background: Salmonella enteritidis is a common cause of foodborne outbreaks, primarily associated with poultry eggs. S. enteritidis This is the only Salmonella type that is found inside the eggshell. A rise in Salmonella enteritidis notifications was noted in spring 2017. Aims: The aim of this study is to describe the epidemiological investigation of the outbreak in the Jerusalem district, along with the containment measures taken. Methods: This study is a population-based epidemiological study with a description of environmental control activities. Results: During the months May - July, 2017 848 salmonellosis cases were reported to the Jerusalem district health office compared to 294 cases May - July 2016. Salmonella enteritidis was isolated in 58% of reported cases. Clusters and outbreaks ( > 2 cases) were reported among nursery schools, nursing homes, persons residing in one kibbutz and several cases in different food service establishments in the Jerusalem district. Epidemiological investigations revealed eggs consumption as a common feature among the cases (uncooked or undercooked eggs in most cases). A national investigation among egg suppliers revealed that most cases consumed eggs provided by a single provider with isolation of Salmonella enteritidis at the source as well. Containment measures were taken to control the epidemic including distributing information via electronic and written media to the public, searching for all egg distribution centers, informing local authorities, the poultry council and food stores. The eggs originating from the provider were recalled and extinguished. Written instructions to all food preparation facilities in the district were distributed regarding the proper storage and preparation of eggs. The number of reported cases declined and the outbreak vanished during correlating months of 2018. Conclusions: The investigation of Salmonella enteritidis outbreaks should include epidemiological and laboratory investigations, tracing the source of the eggs and testing the eggs and the source of eggs. Health education activities are essential as to the proper handling of eggs and egg products aiming to minimize susceptibility to Salmonella infection.

Keywords: epidemiological investigation, food-borne disease, food safety, Salmonella enteritidis

Procedia PDF Downloads 144
2499 To Allow or to Forbid: Investigating How Europeans Reason about Endorsing Rights to Minorities: A Vignette Methodology Based Cross-Cultural Study

Authors: Silvia Miele, Patrice Rusconi, Harriet Tenenbaum

Abstract:

An increasingly multi-ethnic Europe has been pushing citizens’ boundaries on who should be entitled and to what extent to practise their own diversity. Indeed, according to a Standard Eurobarometer survey conducted in 2017, immigration is seen by Europeans as the most serious issue facing the EU, and a third of respondents reported they do not feel comfortable interacting with migrants from outside the EU. Many of these come from Muslim countries, accounting for 4.9% of Europe population in 2016. However, the figure is projected to rise up to 14% by 2050. Additionally, political debates have increasingly focused on Muslim immigrants, who are frequently portrayed as difficult to integrate, while nationalist parties across Europe have fostered the idea of insuperable cultural differences, creating an atmosphere of hostility. Using a 3 X 3 X 2 between-subjects design, it was investigated how people reason about endorsing religious and non-religious rights to minorities. An online survey has been administered to university students of three different countries (Italy, Spain and the UK) via Qualtrics, presenting hypothetical scenarios through a vignette methodology. Each respondent has been randomly allocated to one of the three following conditions: Christian, Muslim or non-religious (vegan) target. Each condition entailed three questions about children self-determination rights to exercise some control over their own lives and 3 questions about children nurturance rights of care and protection. Moreover, participants have been required to further elaborate on their answers via free-text entries and have been asked about their contact and quality of contact with the three targets, and to self-report religious, national and ethnic identification. Answers have been recorded on a Likert scale of 1-5, 1 being "not at all", 5 being "very much". A two-way ANCOVA will be used to analyse answers to closed-ended questions, while free-text answers will be coded and data will be dichotomised based on Social Cognitive Domain Theory for four categories: moral, social conventional and psychological reasons, and analysed via ANCOVAs. This study’s findings aim to contribute to the implementation of educational interventions and speak to the introduction of governmental policies on human rights.

Keywords: children's rights, Europe, migration, minority

Procedia PDF Downloads 131
2498 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 151
2497 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model

Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim

Abstract:

Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature and the right vertical wall is maintained at a constant cold temperature, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL's finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number, the modified thermal conductivity ratio, the inter-phase heat transfer coefficien and the time independent. The results presented for values of the governing parameters in terms of streamlines in both fluid/porous layer, isotherms of fluid and solid porous layer, isotherms of fluid layer, and average Nusselt number.

Keywords: unsteady natural convection, thermal non-equilibrium model, Darcy model

Procedia PDF Downloads 377
2496 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems

Authors: Prasad Pokkunuri

Abstract:

Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.

Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids

Procedia PDF Downloads 294
2495 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: separation flow, backward facing step, heat transfer, laminar flow

Procedia PDF Downloads 471
2494 The Effect of Protexin and Curcuma Longa on Growth Performance, Serum Lipid and Immune Organ Weight of Broilers at Starter Period

Authors: Farhad Ahmadi, Mehran Mohammadi Khah, Fariba Rahimi, N. Vejdani Far

Abstract:

The aim of present research was to investigate the effect of different levels of protexin (PRT) and Curcuma longa (CUR) on performance, serum lipid and indices of immune system in broiler chickens at the starter stage. A total of 300, one-day-old male broiler (Ross-308) were allotted, in a 2×2+1 factorial design contain 2 levels of protexin (10 and 40 mg/kg diet) and 2 levels of Curcuma longa (200 and 400 mg/kg diet) with four replicate and 15 birds per pens. Experimental diets were: T1 control (basal diet); T2 (2g/kg CUR+0.1g PRT/kg diet), T3 (2g CUR/kg+0.2g PRT/kg diet), T4 (4g CUR/kg+0.1g PRT/kg) and T5 (4g CUR/kg+0.2g PRT/kg). Results indicated that body weight gain and feed conversion ratio had significantly improved (P < 0.05) in birds that fed diet inclusion any levels of additive. The highest BWG and lowest FCR observed in T5 birds group as compared to control (P < 0.05). Relative bursa of Fabricius and spleen weight in T5 and T3 birds groups were higher than control (P > 0.05). The serum of cholesterol, TG, LDL had significantly decreased (P < 0.05). As well, HDL was higher (P < 0.05) in T5 birds group compared to control. In conclusion, results of present trial indicated that blend of mention additive was better than using individual of those and improved performance traits.

Keywords: broiler, Curcuma longa, performance, protexin, serum

Procedia PDF Downloads 383