Search results for: learning difficulty
3788 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan
Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva
Abstract:
Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups
Procedia PDF Downloads 693787 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores
Abstract:
This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino
Procedia PDF Downloads 1773786 Analysis of the Barriers and Aids That Lecturers Offer to Students with Disabilities
Authors: Anabel Moriña
Abstract:
In recent years, advances have been made in disability policy at Spanish universities, especially in terms of creating more inclusive learning environments. Nevertheless, while efforts to foster inclusion at the tertiary level -and the growing number of students with disabilities at university- are clear signs of progress, serious barriers to full participation in learning still exist. The research shows that university responses to diversity tend to be reactive, not proactive; as a result, higher education (HE) environments can be especially disabling. It has been demonstrated that the performance of students with disabilities is closely linked to the good will of university faculty and staff. Lectures are key players when it comes to helping or hindering students throughout the teaching/learning process. This paper presents an analysis of how lecturers respond to students with disabilities, the initial question being: do lecturers aid or hinder students? The general aim is to analyse-by listen to the students themselves-lecturers barriers and support identified as affecting academic performance and overall perception of the higher education (HE) experience. Biographical-narrative methodology was employed. This research analysed the results differentiating by fields of knowledge. The research was conducted in two phases: discussion groups along with individual oral/written interviews were set up with 44 students with disabilities and mini life histories were completed for 16 students who participated in the first stage. The study group consisted of students with disabilities enrolled during three academic years. The results of this paper noted that participating students identified many more barriers than bridges when speaking about the role lecturers play in their learning experience. Findings are grouped into several categories: Faculty attitudes when “dealing with” students with disabilities, teaching methodologies, curricular adaptations, and faculty training in working with students. Faculty does not always display appropriate attitudes towards students with disabilities. Study participants speak of them turning their backs on their problems-or behaving in an awkward manner. In many cases, it seems lecturers feel that curricular adaptations of any kind are a form of favouritism. Positive attitudes, however, often depend almost entirely on the good will of faculty and-although well received by students-are hard to come by. As the participants themselves suggest, this study confirms that good teaching practices not only benefit students with disabilities but the student body as a whole. In this sense, inclusive curricula provide new opportunities for all students. A general coincidence has been the lack of training on behalf of lecturers to adequately attend disabled students, and the need to cover this shortage. This can become a primary barrier and is more often due to deficient faculty training than to inappropriate attitudes on the part of lecturers. In conclusion, based on this research we can conclude that more barriers than bridges exist. That said, students do report receiving a good deal of support from their lecturers-although almost exclusively in a spirit of good will; when lecturers do help, however, it tends to have a very positive impact on students' academic performance.Keywords: barriers, disability, higher education, lecturers
Procedia PDF Downloads 2583785 The Professional Rehabilitation of Workers Affected by Chronic Low Back Pain in 'Baixada Santista' Region, Brazil
Authors: Maria Do Carmo Baracho De Alencar
Abstract:
Back pain is considered a worldwide public health problem and has led to numerous work-related absence from work and public spending on rehabilitation, as well as difficulties in the process of professional rehabilitation and return to work. Also, the rehabilitation of workers is one of the great challenges today and for the field of Workers' Health in Brazil. Aim: To investigate the procedures related to the professional rehabilitation of insured workers affected by chronic low back pain, based on the perceptions of professional counselors. Methods: A list of related professional counselors was obtained from the Professional Rehabilitation Coordination of the Baixada Santista (SP) region, and from the Social Security National Institute of Brazil, and in which cities they worked. Semistructured and individual interview was scheduled, based on a pre-elaborated script, containing questions about procedures, experiences at work and feelings. The interviews were recorded and transcribed in full for content analysis. Results: Ten (10) professional counselors of both genders and from nine (9) cities from the Baixada Santista region participated in the study. Aged between 31 and 64 years, and time in service between 4 and 38 years. Only one of the professionals was graduaded in Psychology. Among the testimonies emerged the high demand of work, the lack of interest of companies, medical authority, the social helplessness after rehabilitation process, difficulty in assessing invisible pain, and suffering, anguish, and frustration at work, between others. Conclusion: The study contributes to reflections about the importance of interdisciplinary actions and the Psychology in the processes of professional rehabilitation and readaptation in the process of return to work.Keywords: low back pain, rehabilitation, work, occupational health
Procedia PDF Downloads 1403784 Examining Geometric Thinking Behaviours of Undergraduates in Online Geometry Course
Authors: Peter Akayuure
Abstract:
Geometry is considered an important strand in mathematics due to its wide-ranging utilitarian value and because it serves as a building block for understanding other aspects of undergraduate mathematics, including algebra and calculus. Matters regarding students’ geometric thinking have therefore long been pursued by mathematics researchers and educators globally via different theoretical lenses, curriculum reform efforts, and innovative instructional practices. However, so far, studies remain inconclusive about the instructional platforms that effectively promote geometric thinking. At the University of Education, Winneba, an undergraduate geometry course was designed and delivered on UEW Learning Management System (LMS) using Moodle platform. This study utilizes van Hiele’s theoretical lens to examine the entry and exit’s geometric thinking behaviours of prospective teachers who took the undergraduate geometry course in the LMS platform. The study was a descriptive survey that involved an intact class of 280 first-year students enrolled to pursue a bachelor's in mathematics education at the university. The van Hiele’s Geometric thinking test was used to assess participants’ entry and exit behaviours, while semi-structured interviews were used to obtain data for triangulation. Data were analysed descriptively and displayed in tables and charts. An Independent t-test was used to test for significant differences in geometric thinking behaviours between those who entered the university with a diploma certificate and with senior high certificate. The results show that on entry, more than 70% of the prospective teachers operated within the visualization level of van Hiele’s geometric thinking. Less than 20% reached analysis and abstraction levels, and no participant reached deduction and rigor levels. On exit, participants’ geometric thinking levels increased markedly across levels, but the difference from entry was not significant and might have occurred by chance. The geometric thinking behaviours of those enrolled with diploma certificates did not differ significant from those enrolled directly from senior high school. The study recommends that the design principles and delivery of undergraduate geometry course via LMS should be structured and tackled using van Hiele’s geometric thinking levels to serve as means of bridging the existing learning gaps of undergraduate students.Keywords: geometric thinking, van Hiele’s, UEW learning management system, undergraduate geometry
Procedia PDF Downloads 1333783 Digital Literacy Landscape of Islamic Boarding Schools in Indonesia
Authors: Zainuddin Abuhamid Muhammad Ghozali, Andrew Whitworth
Abstract:
Islamic boarding school or pesantren is a distinctive education institution in Indonesia focusing on religious teachings. Its stance in restricting access to the internet raises a question about its students’ development of digital literacy. Inspired by Luckin’s ecology of resource model, this study aims to map out the digital literacy situation of the institution based on the availability of learning resources, such as digital facilities, digital accessibility, and digital competence. This study was carried out through a survey method involving 50 teachers from pesantrens across the nation. The result shows that pesantrens have provided students with digital facilities at a moderate level, yet the accessibility to using them is still limited. They also incorporated digital competencies into their curriculum, with an emphasis on digital ethics. The study also identifies different patterns of pesantrens’ behavior based on types and educational levels, where certain school types and educational levels tend to give a stricter policy compared to others or vice versa. The restriction of digital resources in pesantren indicated that they had done a filtration process to design their learning environment. The filtration was mainly motivated by sociocultural factors, where they drew concern for the negative impact of the internet. Notably, this restriction also contributes to students’ poor development of digital literacy.Keywords: digital literacy, ecology of resources, Indonesia, Islamic boarding school
Procedia PDF Downloads 753782 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction
Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang
Abstract:
The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.Keywords: surface machining, EBSD, subsurface layer, local deformation
Procedia PDF Downloads 3333781 An Analysis of Teacher Knowledge of Recognizing and Addressing the Needs of Traumatized Students
Authors: Tiffany Hollis
Abstract:
Childhood trauma is well documented in mental health research, yet has received little attention in urban schools. Child trauma affects brain development and impacts cognitive, emotional, and behavioral functioning. When educators understand that some of the behaviors that appear to be aggressive in nature might be the result of a hidden diagnosis of trauma, learning can take place, and the child can thrive in the classroom setting. Traumatized children, however, do not fit neatly into any single ‘box.’ Although many children enter school each day carrying with them the experience of exposure to violence in the home, the symptoms of their trauma can be multifaceted and complex, requiring individualized therapeutic attention. The purpose of this study was to examine how prepared educators are to address the unique challenges facing children who experience trauma. Given the vast number of traumatized children in our society, it is evident that our education system must investigate ways to create an optimal learning environment that accounts for trauma, addresses its impact on cognitive and behavioral development, and facilitates mental and emotional health and well-being. The researcher describes the knowledge, attitudes, dispositions, and skills relating to trauma-informed knowledge of induction level teachers in a diverse middle school. The data for this study were collected through interviews with teachers, who are in the induction phase (the first three years of their teaching career). The study findings paint a clear picture of how ill-prepared educators are to address the needs of students who have experienced trauma and the implications for the development of a professional development workshop or series of workshops that train teachers how to recognize and address and respond to the needs of students. The study shows how teachers often lack skills to meet the needs of students who have experienced trauma. Traumatized children regularly carry a heavy weight on their shoulders. Children who have experienced trauma may feel that the world is filled with unresponsive, threatening adults, and peers. Despite this, supportive interventions can provide traumatized children with places to go that are safe, stimulating, and even fun. Schools offer an environment that potentially meets these requirements by creating safe spaces where students can feel at ease and have fun while also learning via stimulating educational activities. This study highlights the lack of preparedness of educators to address the academic, behavioral, and cognitive needs of students who have experienced trauma. These findings provide implications for the creation of a professional development workshop that addresses how to recognize and address the needs of students who have experienced some type of trauma. They also provide implications for future research with a focus on specific interventions that enable the creation of optimal learning environments where students who have experienced trauma and all students can succeed, regardless of their life experiences.Keywords: educator preparation, induction educators, professional development, trauma-informed
Procedia PDF Downloads 1293780 Ethical Utility of Artificial Intelligence in Education
Authors: Layan Kateb, Jawaher Ragban, Rawia Alamri, Rewaa Alhazmi
Abstract:
This paper evaluates user satisfaction with the AI functionality of Coconote, an innovative app designed to transform raw input -documents, voice recordings, and video recordings- into structured study materials such as flashcards, study guides, and transcripts. Leveraging AI-driven natural language processing and summarization algorithms, Coconote aims to streamline the study process by providing personalized, accessible, and accurate learning tools. To measure user satisfaction, we conducted a survey among 20 participants, including students, educators, and professionals, who tested the app’s core features over a two-week period. The survey assessed criteria such as ease of use, accuracy of generated materials, and perceived value in enhancing productivity. Results indicate high satisfaction levels with the app’s ability to produce coherent and concise outputs, with 83% of respondents reporting improved study efficiency. However, feedback highlighted areas for improvement, including occasional inaccuracies in transcription and customization limitations in flashcard formatting. This study demonstrates the potential of AI to transform learning methods and identifies key areas for refinement in user-centric design. Coconote represents a step forward in leveraging AI to enhance educational technologyKeywords: tools for students, artificial intelligence in education, AI study tool, ethical AI tools
Procedia PDF Downloads 143779 Customized Design of Amorphous Solids by Generative Deep Learning
Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang
Abstract:
The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.Keywords: metallic glass, artificial intelligence, mechanical property, automated generation
Procedia PDF Downloads 663778 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 1273777 Online Augmented Reality Mathematics Application
Authors: Farhaz Amyn Rajabali, Collins Odour
Abstract:
Mathematics has been there for over 4000 years and has been one of the very first educational topics explored by human civilization. Throughout the years, it has become a complex study and has derived so many other subjects. With advancements in ICT, most of the computation in mathematics is done using powerful computers. In many different countries, the children in primary and secondary schools face difficulties in learning mathematics, and this has many reasons behind it, one being the students don’t engage much with the mathematical concepts hence failing to understand them deeply. The objective of this system is to help the students understand this mathematical concept interactively, which in return will encourage the love for learning and increase thorough understanding of many concepts. Research was conducted among a group of samples and about 50% of respondents replied that they had never used an augmented reality application before. This means that the chances for this system to be accepted in the market are high due to its innovative idea. Around 60% of people did recommend the use of this system to learn mathematics. The study also showed several challenges in an educational system, including but not limited to lack of resources which was chosen by 30% of respondents, the challenge to read from textbooks (34.6%) and how hard it is to visualize concepts (46.2%). The survey question asked what benefits the users see using augmented reality to learn mathematics. The responses that were picked the most were increased student engagement and using real-world examples to understand concepts, both being 65.4% and followed by easy access to learning material at 61.5%, and increased knowledge retention at 50%. This shows that there are plenty of issues with an education system that can be addressed by software applications; now that the newer generation is so enthusiastic about electronic devices, it can actually be used to deliver good knowledge and skills to the upcoming students and mitigate most of the challenges faced currently. The study concludes that the implementation of the system is a best practice for the educational system especially leveraging a new technology that has the ability to attract the attention of many young students and use it to deliver information. It will also give rise to awareness of new technology and on multiple ways it can be implemented. Addressing the educational sector in developing countries using information technology is an imperative task since these kids studying now is the future of the country and will use what they learn and understand during their childhood will help them to make decisions about their lives in the future which will not only affect them personally but also affect the whole society in general.Keywords: AR, mathematics, system development, augmented reality
Procedia PDF Downloads 853776 Loan Supply and Asset Price Volatility: An Experimental Study
Authors: Gabriele Iannotta
Abstract:
This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment
Procedia PDF Downloads 1293775 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults
Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer
Abstract:
This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.Keywords: communication, cooperation, development, interaction, neuroscience
Procedia PDF Downloads 2583774 Links Between Maternal Trauma, Response to Distress, and Toddler Internalizing and Externalizing Behaviors: A Mediational Analysis
Authors: Zena Ebrahim, Susan Woodhouse
Abstract:
Previous research shows that mothers’ experiences of trauma are linked to their child’s later socioemotional functioning. However, the mechanisms involved are not well understood. One potential mediator is maternal insensitive responses to child distress. This study examined the link between maternal trauma, mothers’ responses to toddler distress, and toddlers’ socioemotional outcomes among a socioeconomically diverse sample of 110 mothers and their 12- to 35-month-old toddlers. It was hypothesized that a mother’s difficulty in responding sensitively to her child’s distress would mediate the relations between maternal trauma and child internalizing and externalizing behaviors. Two mediational models were tested to examine non-supportive responses to distress as a potential mediator of the relation between maternal trauma and toddler mental health outcomes; one model focused on predicting child internalizing symptoms and the other focused on predicting child externalizing symptoms. Measures included assessment of maternal trauma (Life Stressor Checklist-Revised), mothers’ responses to child distress (Coping with Toddlers’ Negative Emotions Scale), and toddler socioemotional functioning (Infant-Toddler Social and Emotional Assessment). Results revealed that the relations between maternal trauma and toddler symptoms (internalizing and externalizing symptoms) were mediated by maternal non-supportive response to child distress for both internalizing and externalizing domains of child mental health. Findings suggest the importance of early intervention for trauma-exposed mothers and target areas for parenting interventions.Keywords: trauma, parenting, child mental health, transgenerational effects of trauma
Procedia PDF Downloads 1593773 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 1003772 Emerging Technologies for Learning: In Need of a Pro-Active Educational Strategy
Authors: Pieter De Vries, Renate Klaassen, Maria Ioannides
Abstract:
This paper is about an explorative research into the use of emerging technologies for teaching and learning in higher engineering education. The assumption is that these technologies and applications, which are not yet widely adopted, will help to improve education and as such actively work on the ability to better deal with the mismatch of skills bothering our industries. Technologies such as 3D printing, the Internet of Things, Virtual Reality, and others, are in a dynamic state of development which makes it difficult to grasp the value for education. Also, the instruments in current educational research seem not appropriate to assess the value of such technologies. This explorative research aims to foster an approach to better deal with this new complexity. The need to find out is urgent, because these technologies will be dominantly present in the near future in all aspects of life, including education. The methodology used in this research comprised an inventory of emerging technologies and tools that potentially give way to innovation and are used or about to be used in technical universities. The inventory was based on both a literature review and a review of reports and web resources like blogs and others and included a series of interviews with stakeholders in engineering education and at representative industries. In addition, a number of small experiments were executed with the aim to analyze the requirements for the use of in this case Virtual Reality and the Internet of Things to better understanding the opportunities and limitations in the day-today learning environment. The major findings indicate that it is rather difficult to decide about the value of these technologies for education due to the dynamic state of change and therefor unpredictability and the lack of a coherent policy at the institutions. Most decisions are being made by teachers on an individual basis, who in their micro-environment are not equipped to select, test and ultimately decide about the use of these technologies. Most experiences are being made in the industry knowing that the skills to handle these technologies are in high demand. The industry though is worried about the inclination and the capability of education to help bridge the skills gap related to the emergence of new technologies. Due to the complexity, the diversity, the speed of development and the decay, education is challenged to develop an approach that can make these technologies work in an integrated fashion. For education to fully profit from the opportunities, these technologies offer it is eminent to develop a pro-active strategy and a sustainable approach to frame the emerging technologies development.Keywords: emerging technologies, internet of things, pro-active strategy, virtual reality
Procedia PDF Downloads 1943771 Practice of Developing EFL Coursebooks at Mongolian National University of Education
Authors: Nyamsuren Baljinnyam, Narmandakh Khaltar, Otgonbaatar Olzkhuu
Abstract:
Undergraduate students study English I (elective) and II (compulsory) courses which are included in the General foundation courses in the Teacher Education Curriculum Framework at the Mongolian National University of Education. Teachers at the English Department have designed and developed 2 levels (from pre-intermediate to upper-intermediate) English coursebooks since 2016 and published the second editions of each in 2018 and 2019. Developing coursebooks based on the students’ needs, satisfaction, and dissatisfaction with these instructional materials are essential phenomena in the delivery service of teaching English at the tertiary level. Thus, this study aims at findings from students’ views on English coursebooks which are studied mostly in the first and second semesters of the undergraduate academic program. The purpose of this research project was to determine the overall pedagogical value and suitability of the book to students’ needs and 21st-century teacher education concepts. We have designed a coursebook evaluation checklist with 28 questionnaires, including Morris’s English as a foreign language coursebook evaluation checklist (2017). The study is a 2 phased descriptive survey study that covered 572 and 519 undergraduate students who studied in the spring term of the 2021-2022 academic year and the fall term of the 2022-2023 academic year at 7 branch schools of Mongolian National University of Education (MNUE). Data analysis consists of student responses to each item. Coursebook evaluation data is classified into 3 main categories as “general attributes”, “learning content” and “task evaluation”. Some results of the study indicate the following findings: 97 percent of the total survey participants (in total 1091) have given positive responses to the coursebooks that these are fully aimed at acquiring the students’ language learning skills: reading, writing, listening, and speaking; 78 percent responded that the coursebooks were different from the English Textbooks that they learned in secondary schools; and 91 percent answered that the English coursebooks could give motivation to the students to achieve their self-study.Keywords: coursebook evaluation, improving English, student satisfaction and dissatisfaction with coursebooks, language learning materials, language tasks, students’ needs
Procedia PDF Downloads 193770 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 193769 Characterizing Content Language Integrated Learning (CLIL) Teaching in an EFL Primary School: A Case Study
Authors: Alfia Sari
Abstract:
The implementation of the Content Language Integrated Learning (CLIL) approach in Indonesia has shown positive impacts in several educational institutions. Several studies have proven the benefits of implementing the CLIL approach, including the development of students’ language and content subject knowledge. Interestingly, one primary school in Surabaya, Indonesia, has been successfully implementing the CLIL approach. The students achieved high content and language subject scores, and the school was accredited A. A study on how the CLIL approach was practiced is important to investigate how teachers implemented it and how students benefited from it. Therefore, this present study attempted to investigate the implementation of the CLIL approach in this school to characterize good practices that can be implemented in other schools. A case study was conducted to observe its implementation in the third-grade classes (English, Science, and Math) by using the Protocol for Language Arts Teaching Observation (PLATO). The findings indicated that the CLIL teaching in this school accommodated the content and language well (scores 3-4). The content and language were clearly integrated, and the teachers successfully carried out the subjects in English. Teachers offered students opportunities to listen, speak, read, and write using the target language. This study described some characteristics of CLIL teaching in primary school that can be used as examples for future CLIL teachers to integrate the content and language in their teaching practices.Keywords: CLIL, ELT, young learners, case study
Procedia PDF Downloads 553768 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend
Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar
Abstract:
Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend
Procedia PDF Downloads 2063767 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy
Authors: Jakub Czyżycki, Paweł Twardowski
Abstract:
Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations
Procedia PDF Downloads 623766 Utilizing Radio as a Resource Alternative for Disseminating Information to University Students in Ibadan, Nigeria: A Study of Lead City FM and Diamond FM Radio Stations
Authors: Olufemi Sunday Onabajo
Abstract:
Radio according to communication scholars is a veritable instrument of mass education. However, its full potentials in boosting higher education have not been realized because of the commercial nature of radio stations in Nigeria. The licensing of campus radio for disseminating information on university curricular is aimed at reinforcing information shared during face to face teaching. This study anchored on Agenda Setting and Technology determinism theories seeks to find out the extent to which university students in Lead City University and University of Ibadan, Nigeria have keyed-in to the philosophy of their campus radio – Lead City FM and Diamond FM in making information dissemination in their domiciled universities less cumbersome. The study employs both qualitative and quantitative methods though the use of depth interview for ten (10) academic staff and five (5) radio personnel of both radio stations; and a questionnaire addressed to 200 students of both institutions using the systematic random sampling technique. The data collected was analyzed using simple percentage and chi-square one tail test, and it was discovered that students of both universities and their radio personnel are yet to realize the potentials of campus radio as a resource alternative to effective learning, and recommends the coming together of all stakeholders to articulate the way forward.Keywords: disseminating information, effective learning, resource alternative, utilizing radio
Procedia PDF Downloads 3023765 Fostering Non-Traditional Student Success in an Online Music Appreciation Course
Authors: Linda Fellag, Arlene Caney
Abstract:
E-learning has earned an essential place in academia because it promotes learner autonomy, student engagement, and technological aptitude, and allows for flexible learning. However, despite advantages, educators have been slower to embrace e-learning for ESL and other non-traditional students for fear that such students will not succeed without the direct faculty contact and academic support of face-to-face classrooms. This study aims to determine if a non-traditional student-friendly online course can produce student retention and performance rates that compare favorably with those of students in standard online sections of the same course aimed at traditional college-level students. One Music faculty member is currently collaborating with an English instructor to redesign an online college-level Music Appreciation course for non-traditional college students. At Community College of Philadelphia, Introduction to Music Appreciation was recently designated as one of the few college-level courses that advanced ESL, and developmental English students can take while completing their language studies. Beginning in Fall 2017, the course will be critical for international students who must maintain full-time student status under visa requirements. In its current online format, however, Music Appreciation is designed for traditional college students, and faculty who teach these sections have been reluctant to revise the course to address the needs of non-traditional students. Interestingly, presenters maintain that the online platform is the ideal place to develop language and college readiness skills in at-risk students while maintaining the course's curricular integrity. The two faculty presenters describe how curriculum rather than technology drives the redesign of the digitized music course, and self-study materials, guided assignments, and periodic assessments promote independent learning and comprehension of material. The 'scaffolded' modules allow ESL and developmental English students to build on prior knowledge, preview key vocabulary, discuss content, and complete graded tasks that demonstrate comprehension. Activities and assignments, in turn, enhance college success by allowing students to practice academic reading strategies, writing, speaking, and student-faculty and peer-peer communication and collaboration. The course components facilitate a comparison of student performance and retention in sections of the redesigned and existing online sections of Music Appreciation as well as in previous sections with at-risk students. Indirect, qualitative measures include student attitudinal surveys and evaluations. Direct, quantitative measures include withdrawal rates, tests of disciplinary knowledge, and final grades. The study will compare the outcomes of three cohorts in the two versions of the online course: ESL students, at-risk developmental students, and college-level students. These data will also be compared with retention and student outcomes data of the three cohorts in f2f Music Appreciation, which permitted non-traditional student enrollment from 1998-2005. During this eight-year period, the presenter addressed the problems of at-risk students by adding language and college success support, which resulted in strong retention and outcomes. The presenters contend that the redesigned course will produce favorable outcomes among all three cohorts because it contains components which proved successful with at-risk learners in f2f sections of the course. Results of their study will be published in 2019 after the redesigned online course has met for two semesters.Keywords: college readiness, e-learning, music appreciation, online courses
Procedia PDF Downloads 1793764 The Transformative Landscape of the University of the Western Cape’s Elearning Center: Institutionalizing ELearning
Authors: Paul Dankers, Juliet Stoltenkamp, Carolynne Kies
Abstract:
In May 2005, the University of the Western Cape (UWC) established an eLearning Division (ED) that, over the past 18 years, accelerated into the institutionalization of an efficient eLearning Centre. The initial objective of the ED was to incessantly align itself with emerging technologies caused by digital transformation, which progressively impacted Higher Education Institutions (HEIs) globally. In this paper, we present how the UWC eLearning Division (ED) first evolved into the eLearning Development and Support Unit (EDUS), currently called the ‘Centre for Innovative Education and Communication Technologies (CIECT). CIECT was strategically separated from the Department of Information and Communication Services (ICS) in 2009 and repositioned as an independent structure at UWC. Using a comparative research method, we highlight the transformative eLearning landscape at UWC by doing a detailed account of the shift in practices. Our research method will determine the initial vision and outcomes of institutionalizing an eLearning division. The study aims to compare across space or time the eLearning division’s rate of growth. By comparing the progressive growth of the UWCs eLearning division over the years, we will be able to document the successes and achievements of the eLearning division precisely. This study’s outcomes will act as a reference for novel research subjects on formalising eLearning. More research that delves into the effectiveness of having an eLearning division at HEIs in support of students’ teaching and learning is needed.Keywords: eLearning, institutionalization, teaching and learning, transformation
Procedia PDF Downloads 483763 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability
Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy
Abstract:
This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality
Procedia PDF Downloads 2623762 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4473761 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone
Authors: Zhuang Hou, Xiaolei Cao
Abstract:
The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program
Procedia PDF Downloads 1393760 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 823759 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis
Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning
Procedia PDF Downloads 16