Search results for: action based method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 41060

Search results for: action based method

36920 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System

Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin

Abstract:

Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.

Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers

Procedia PDF Downloads 150
36919 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123
36918 The Genus Bacillus, Effect on Commercial Crops of Colombia

Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo

Abstract:

The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.

Keywords: genus bacillus, biological control, PGPRs, biochemical potential

Procedia PDF Downloads 435
36917 Shear Strength and Consolidation Behavior of Clayey Soil with Vertical and Radial Drainage

Authors: R. Pillai Aparna, S. R. Gandhi

Abstract:

Soft clay deposits having low strength and high compressibility are found all over the world. Preloading with vertical drains is a widely used method for improving such type of soils. The coefficient of consolidation, irrespective of the drainage type, plays an important role in the design of vertical drains and it controls accurate prediction of the rate of consolidation of soil. Also, the increase in shear strength of soil with consolidation is another important factor considered in preloading or staged construction. To our best knowledge no clear guidelines are available to estimate the increase in shear strength for a particular degree of consolidation (U) at various stages during the construction. Various methods are available for finding out the consolidation coefficient. This study mainly focuses on the variation of, consolidation coefficient which was found out using different methods and shear strength with pressure intensity. The variation of shear strength with the degree of consolidation was also studied. The consolidation test was done using two types of highly compressible clays with vertical, radial and a few with combined drainage. The test was carried out at different pressures intensities and for each pressure intensity, once the target degree of consolidation is achieved, vane shear test was done at different locations in the sample, in order to determine the shear strength. The shear strength of clayey soils under the application of vertical stress with vertical and radial drainage with target U value of 70% and 90% was studied. It was found that there is not much variation in cv or cr value beyond 80kPa pressure intensity. Correlations were developed between shear strength ratio and consolidation pressure based on laboratory testing under controlled condition. It was observed that the shear strength of sample with target U value of 90% is about 1.4 to 2 times than that of 70% consolidated sample. Settlement analysis was done using Asaoka’s and hyperbolic method. The variation of strength with respect to the depth of sample was also studied, using large-scale consolidation test. It was found, based on the present study that the gain in strength is more on the top half of the clay layer, and also the shear strength of the sample ensuring radial drainage is slightly higher than that of the vertical drainage.

Keywords: consolidation coefficient, degree of consolidation, PVDs, shear strength

Procedia PDF Downloads 238
36916 Metagenomics Features of The Gut Microbiota in Metabolic Syndrome

Authors: Anna D. Kotrova, Alexandr N. Shishkin, Elena I. Ermolenko

Abstract:

The aim. To study the quantitative and qualitative colon bacteria ratio from patients with metabolic syndrome. Materials and methods. Fecal samples from patients of 2 groups were identified and analyzed: the first group was formed by patients with metabolic syndrome, the second one - by healthy individuals. The metagenomics method was used with the analysis of 16S rRNA gene sequences. The libraries of the variable sites (V3 and V4) gene 16S RNA were analyzed using the MiSeq device (Illumina). To prepare the libraries was used the standard recommended by Illumina, a method based on two rounds of PCR. Results. At the phylum level in the microbiota of patients with metabolic syndrome compared to healthy individuals, the proportion of Tenericutes was reduced, the proportion of Actinobacteria was increased. At the genus level, in the group with metabolic syndrome, relative to the second group was increased the proportion of Lachnospira. Conclusion. Changes in the colon bacteria ratio in the gut microbiota of patients with metabolic syndrome were found both at the type and the genus level. In the metabolic syndrome group, there is a decrease in the proportion of bacteria that do not have a cell wall. To confirm the revealed microbiota features in patients with metabolic syndrome, further study with a larger number of samples is required.

Keywords: gut microbiota, metabolic syndrome, metagenomics, tenericutes

Procedia PDF Downloads 222
36915 Methods for Solving Identification Problems

Authors: Fadi Awawdeh

Abstract:

In this work, we highlight the key concepts in using semigroup theory as a methodology used to construct efficient formulas for solving inverse problems. The proposed method depends on some results concerning integral equations. The experimental results show the potential and limitations of the method and imply directions for future work.

Keywords: identification problems, semigroup theory, methods for inverse problems, scientific computing

Procedia PDF Downloads 481
36914 Brand Placement Strategies in Turkey: The Case of “Yalan Dünya”

Authors: Burçe Boyraz

Abstract:

This study examines appearances of brand placement as an alternative communication strategy in television series by focusing on Yalan Dünya which is one of the most popular television series in Turkey. Consequently, this study has a descriptive research design and quantitative content analysis method is used in order to analyze frequency and time data of brand placement appearances in first 3 seasons of Yalan Dünya with 16 episodes. Analysis of brand placement practices in Yalan Dünya is dealt in three categories: episode-based analysis, season-based analysis and comparative analysis. At the end, brand placement practices in Yalan Dünya are evaluated in terms of type, form, duration and legal arrangements. As a result of this study, it is seen that brand placement plays a determinant role in Yalan Dünya content. Also, current legal arrangements make brand placement closer to other traditional communication strategies instead of differing brand placement from them distinctly.

Keywords: advertising, alternative communication strategy, brand placement, Yalan Dünya

Procedia PDF Downloads 248
36913 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives

Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton

Abstract:

Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.

Keywords: hydrogel, metal ions, nanowire, nucleoside

Procedia PDF Downloads 265
36912 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 218
36911 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution

Authors: Masomeh Jamshid Nejad

Abstract:

Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.

Keywords: statistics, excel-based instruction, data visualization, pedagogy

Procedia PDF Downloads 53
36910 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects

Authors: Saeid Sahmani

Abstract:

Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.

Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect

Procedia PDF Downloads 356
36909 The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation

Authors: S. A. Kondratyev, O. I. Ibragimova

Abstract:

The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.

Keywords: criterion of action of physically adsorbed reagent, flotation, saturated fatty acids, surface pressure

Procedia PDF Downloads 222
36908 Towards Developing a Strategic Framework for Sustainable Knowledge Economy

Authors: Hamid Alalwany, Nabeel A. Koshak, Mohammad K. Ibrahim

Abstract:

Both knowledge economy and sustainable development are considered key dimensions in the policy action lines of many developed and developing countries. In this context, universities and other higher education institutes have a vital role in developing and sustaining wellbeing communities. In this paper, the authors’ aim is to address the links between the concepts of innovation and entrepreneurial capacity and knowledge economy, and to utilize the approach of intellectual capital development in building a sustainable knowledge economy. The paper will contribute to two discourses: (1) Developing a common understanding of the intersection aspects between the three concepts: Knowledge economy, Innovation and entrepreneurial system, and sustainable development; (2) Paving the road towards developing an integrated multidimensional framework for sustainable knowledge economy.

Keywords: innovation and entrepreneurial capacity, intellectual capital development, sustainable development, sustainable knowledge economy.

Procedia PDF Downloads 534
36907 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 270
36906 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 327
36905 Practices Supporting the Wellbeing of Healthcare Staff: Findings From a Narrative Inquiry

Authors: Julaine Allan, Katarzyna Olcon, Padmini Pai, Lynne Keevers, Mim Fox, Maria Mackay, Ruth Everingham, Sue Cutmore, Chris Degeling, Kristine Falzon, Summer Finlay

Abstract:

Effective local responses to community needs are grounded in contextual knowledge and built on existing resources. The SEED Wellbeing Program was created in 2020 in response to cumulative disasters, bushfires, floods and COVID experienced by healthcare staff in the Illawarra Shoalhaven Local Health District, NSW, Australia. SEED used a participatory action methodology to bring healthcare staff teams together to engage in restorative activities in the workplace. Guided by Practice Theory, this study identified the practices that supported the recovery of healthcare staff.

Keywords: mental health and wellbeing, workplace wellness, healthcare providers, natural disasters, COVID-19, burnout, occupational trauma

Procedia PDF Downloads 142
36904 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 156
36903 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 95
36902 Screening of Potential Sources of Tannin and Its Therapeutic Application

Authors: Mamta Kumari, Shashi Jain

Abstract:

Tannins are a unique category of plant phytochemicals especially in terms of their vast potential health-benefiting properties. Researchers have described the capacity of tannins to enhance glucose uptake and inhibit adipogenesis, thus being potential drugs for the treatment of non-insulin dependent diabetes mellitus. Thus, the present research was conducted to find out tannin content of food products. The percentage of tannin in various analyzed sources ranged from 0.0 to 108.53%; highest in kathaa and lowest in ker and mango bark. The percentage of tannins present in the plants, however, varies. Numerous studies have confirmed that the naturally occurring polyphenols are key factor for the beneficial effects of the herbal medicines. Isolation and identification of active constituents from plants, preparation of standardized dose & dosage regimen can play a significant role in improving the hypoglycaemic action.

Keywords: tannins, diabetes, polyphenols, antioxidant, hypoglycemia

Procedia PDF Downloads 392
36901 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 85
36900 Innovation of Teaching Methods in Vocational Education with Popularity Development Process

Authors: Hong Zeng

Abstract:

In the process of popularization of higher education, it is necessary to innovate teaching methods in order to make the students cultivated suitable for the needs of social development. This paper discusses the limitations and shortcomings of the traditional teaching method of teaching approach to a person's aptitude, personality, and interest and introduces the new teaching method of teaching approach to a person's personality. The teaching approach to a person's personality is a target teaching method that aims to develop students' potential and cultivate professional talents. Therefore, teachers should be professional and can adopt modern teaching methods from the Internet so that students can clearly understand the course and the knowledge structure. Finally, the students using new teaching methods can enhance their motivation to study and quickly acquire professional skills.

Keywords: higher education, personality, target education, student-centered

Procedia PDF Downloads 119
36899 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 273
36898 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters

Authors: Iveta Bryjova

Abstract:

Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.

Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity

Procedia PDF Downloads 304
36897 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 71
36896 Interpreting Possibilities: Teaching Without Borders

Authors: Mira Kadric

Abstract:

The proposed paper deals with a new developed approach for interpreting teaching, combining traditional didactics with a new element. The fundamental principle of the approach is taken from the theatre pedagogy (Augusto Boal`s Theatre of the Oppressed) and includes the discussion on social power relations. From the point of view of education sociology this implies strengthening students’ individual potential for self-determination on a number of levels, especially in view of the present increase in social responsibility. This knowledge constitutes a starting point and basis for the process of self-determined action. This takes place in the context of a creative didactic policy which identifies didactic goals, provides clear sequences of content, specifies interdisciplinary methods and examines their practical adequacy and ultimately serves not only individual translators and interpreters, but all parties involved. The goal of the presented didactic model is to promote independent work and problem-solving strategies; this helps to develop creative potential and self-confident behaviour. It also conveys realistic knowledge of professional reality and thus also of the real socio-political and professional parameters involved. As well as providing a discussion of fundamental questions relevant to Translation and Interpreting Studies, this also serves to improve this interdisciplinary didactic approach which simulates interpreting reality and illustrates processes and strategies which (can) take place in real life. This idea is illustrated in more detail with methods taken from the Theatre of the Oppressed created by Augusto Boal. This includes examples from (dialogue) interpreting teaching based on documentation from recordings made in a seminar in the summer term 2014.

Keywords: augusto boal, didactic model, interpreting teaching, theatre of the oppressed

Procedia PDF Downloads 432
36895 HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset

Authors: Fuad Ali Mohammed Al-Yarimi

Abstract:

Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically.

Keywords: anonymity data, data mining, distributed frequent itemset mining, gaussian perturbation, perturbation approach, privacy preserving data mining

Procedia PDF Downloads 505
36894 Alternative (In)Security: Using Photovoice Research Methodology to Explore Refugee Anxieties in Lebanon

Authors: Jessy Abouarab

Abstract:

For more than half a century, international norms related to refugee security and protection have proliferated, yet their role in alleviating war’s negative impacts on human life remains limited. The impact of refugee-security processes often manifests asymmetrically within populations. Many issues and people get silenced due to narrow security policies that focus either on abstract threat containment and refugee control or refugee protection and humanitarian aid. (In)security practices are gendered and experienced. Examining the case study of Syrian refugees in Lebanon, this study explores the gendered impact of refugee security mechanisms on local realities. A transnational feminist approach will be used to position this research in relation to existing studies in the field of security and the refugee-protection regime, highlighting the social, cultural, legal, and political barriers to gender equality in the areas of violence, rights, and social inclusion. Through Photovoice methodology, the Syrian refugees’ (in)securities in Lebanon were given visibility by enabling local volunteers to record and reflect their realities through pictures, at the same time voice the participants’ anxieties and recommendations to reach normative policy change. This Participatory Action Research approach helped participants observe the structural barriers and lack of culturally inclusive refugee services that hinder security, increase discrimination, stigma, and poverty. The findings have implications for a shift of the refugee protection mechanisms to a community-based approach in ways that extend beyond narrow security policies that hinder women empowerment and raise vulnerabilities such as gendered exploitation, abuse, and neglect.

Keywords: gender, (in)security, Lebanon, refugee, Syrian refugees, women

Procedia PDF Downloads 143
36893 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
36892 Critical Realism as a Bridge between Critical Pedagogy and Queer Theory

Authors: Mike Seal

Abstract:

This paper explores the traditions of critical and queer pedagogy, its intersections, tensions and paradoxes. Critical pedagogy, with a materialist realist ontology, and queer theory, which is often post-modern, post-structural and anti-essential, may not seem compatible. Similarly, there are tensions between activist orientations, often enacted through essential sexual identities, and a queer approach that questions such identities and subjectivities. It will argue that critical realism gives us a bridge between critical and queer pedagogy in preserving a realist materialist ontology, where economic forces are real, and independent of consciousness and hermeneutic constructions of them. At the same time, it offers an epistemology that does not necessitate a binary view of the roles of the oppressed, liberator, or even oppressor. It accepts that our knowledge is contingent, partial and contestable, but has the potential, and enough validity, to demand action and potentially inform the actions of others.

Keywords: critical pedagogy, queer pedagogy, critical realsim, heteronormativity

Procedia PDF Downloads 191
36891 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources

Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou

Abstract:

The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.

Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test

Procedia PDF Downloads 102