Search results for: Deep learning based segmentation
29158 New Public Management: Step towards Democratization
Authors: Aneri Mehta, Krunal Mehta
Abstract:
Administration is largely based on two sciences: ‘management science’ and ‘political science’. The approach of new public management is more inclined towards the management science. Era of ‘New Public Management’ has affected the developing countries very immensely. Public management reforms are needed to enhance the development of the countries. This reform mainly includes capacity building, control of corruption, political decentralization, debureaucratization and public empowerment. This gives the opportunity to create self-sustaining change in the governance. This paper includes the link of approach of new public management and their effect on building effective democratization in the country. This approach mainly focuses on rationality and effectiveness of governance system. These need to have deep efforts on technological, organizational, social and cultural fields. Bringing citizen participation in governance is main objective of NPM. The shift from traditional public management to new public management have low success rate of reforms. This research includes case study of RTI which is a big step of government towards citizen centric approach of governance. The aspect of ‘publicness’ in the democratic policy implementation is important for good governance in India.Keywords: public management, development, public empowerment, governance
Procedia PDF Downloads 50829157 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.Keywords: game-based learning, knowledge based engineering, product modelling, design automation
Procedia PDF Downloads 15829156 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 9129155 Lessons Learned from Covid19 - Related ERT in Universities
Authors: Sean Gay, Cristina Tat
Abstract:
This presentation will detail how a university in Western Japan has implemented its English for Academic Purposes (EAP) program during the onset of CoViD-19 in the spring semester of 2020. In the spring semester of 2020, after a 2 week delay, all courses within the School of Policy Studies EAP Program at Kwansei Gakuin University were offered in an online asynchronous format. The rationale for this decision was not to disadvantage students who might not have access to devices necessary for taking part in synchronous online lessons. The course coordinators were tasked with consolidating the materials originally designed for face-to-face14 week courses for a 12 week asynchronous online semester and with uploading the modified course materials to Luna, the university’s network, which is a modified version of Blackboard. Based on research to determine the social and academic impacts of this CoViD-19 ERT approach on the students who took part in this EAP program, this presentation explains how future curriculum design and implementation can be managed in a post-CoViD world. There are a wide variety of lessons that were salient. The role of the classroom as a social institution was very prominent; however, awareness of cognitive burdens and strategies to mitigate that burden may be more valuable for teachers. The lessons learned during this period of ERT can help teachers moving forward.Keywords: asynchronous online learning, emergency remote teaching (ERT), online curriculum design, synchronous online learning
Procedia PDF Downloads 20729154 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 11229153 Analyzing Perceptions of Leadership Capacities After a Year-Long Leadership Development Training: An Exploratory Study of School Leaders in South Africa
Authors: Norma Kok, Diemo Masuko, Thandokazi Dlongwana, Komala Pillay
Abstract:
CONTEXT: While many school principals have been outstanding teachers and have inherent leadership potential, many have not had access to the quality of leadership development or support that empowers them to produce high-quality education outcomes in extremely challenging circumstances. Further, school leaders in under-served communities face formidable challenges arising from insufficient infrastructure, overcrowded classrooms, socio-economic challenges within the community, and insufficient parental involvement, all of which put a strain on principals’ ability to lead their schools effectively. In addition few school leaders have access to other supportive networks, and many do not know how to build and leverage social capital to create opportunities for their schools and learners. Moreover, we know that fostering parental involvement in their children’s learning improves a child’s morale, attitude, and academic achievement across all subject areas, and promotes better behaviour and social adjustment. Citizen Leader Lab facilitates the Partners for Possibility (PfP) programme to provide leadership development and support to school leaders serving under-resourced communities in South Africa to create effective environments of learning. This is done by creating partnerships between school leaders and private-sector business leaders over a 12-month period. (185) OBJECTIVES: To explore school leaders’ perceptions of their leadership capacities and changes at their schools after being exposed to a year-long leadership development training programme. METHODS: School leaders gained new leadership capacities e.g. resilience, improved confidence, communication and conflict resolution skills - catalysing into improved cultures of collaborative decision-making and environments for enhanced teaching and learningprogramme based on the 70:20:10 model whereby: 10% of learning comes from workshops, 20% of learning takes place through peer learning and 70% of learning occurs through experiential learning as partnerships work together to identify and tackle challenges in targeted schools. Participants completed a post-programme questionnaire consisting of structured and unstructured questions and semi-structured interviews were conducted with them and their business leader. The interviews were audio-recorded, transcribed and thematic content analysis was undertaken. The analysis was inductive and emerging themes were identified. A code list was generated after coding was undertaken using computer software (Dedoose). Quantitative data gathered from surveys was aggregated and analysed. RESULTS: School leadership found the programme interesting and rewarding. They gained new leadership capacities such as resilience, improved confidence, communication and conflict resolution skills - catalyzing into improved cultures of collaborative decision-making and environments for enhanced teaching and learning. New networks resulted in tangible outcomes such as upgrades to school infrastructure, water and sanitation, vegetable gardens at schools resulting in nutrition for learners and/or intangible outcomes such as skills for members of school management teams (SMTs). Collaborative leadership led to SMTs being more aligned, efficient, and cohesive; and teachers being more engaged and motivated. Notable positive changes at the school inspired parents and community members to become more actively involved in the school and in their children’s education. CONCLUSION: The PfP programme leads to improved leadership capacities and improved school culture which leads to improved teaching and learning and new resources for schools.Keywords: collaborative decision-making, collaborative leadership, community involvement, confidence
Procedia PDF Downloads 9529152 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 10129151 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills
Authors: Inkeri Jaaskelainen
Abstract:
The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being
Procedia PDF Downloads 13529150 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi
Authors: P. Phenpun, S. Wareewan
Abstract:
This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.Keywords: humanized care service, volunteer activity, nursing student, learning log
Procedia PDF Downloads 30929149 Effects of in silico (Virtual Lab) And in vitro (inside the Classroom) Labs in the Academic Performance of Senior High School Students in General Biology
Authors: Mark Archei O. Javier
Abstract:
The Fourth Industrial Revolution (FIR) is a major industrial era characterized by the fusion of technologies that is blurring the lines between the physical, digital, and biological spheres. Since this era teaches us how to thrive in the fast-paced developing world, it is important to be able to adapt. With this, there is a need to make learning and teaching in the bioscience laboratory more challenging and engaging. The goal of the research is to find out if using in silico and in vitro laboratory activities compared to the conventional conduct laboratory activities would have positive impacts on the academic performance of the learners. The potential contribution of the research is that it would improve the teachers’ methods in delivering the content to the students when it comes to topics that need laboratory activities. This study will develop a method by which teachers can provide learning materials to the students. A one-tailed t-Test for independent samples was used to determine the significant difference in the pre- and post-test scores of students. The tests of hypotheses were done at a 0.05 level of significance. Based on the results of the study, the gain scores of the experimental group are greater than the gain scores of the control group. This implies that using in silico and in vitro labs for the experimental group is more effective than the conventional method of doing laboratory activities.Keywords: academic performance, general biology, in silico laboratory, in vivo laboratory, virtual laboratory
Procedia PDF Downloads 19329148 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 22929147 Analyse of User Interface Design in Mobile Teaching Apps
Authors: Asma Ashoul
Abstract:
Nowadays, smartphones are playing a major role in our lives, by communicating with family, friends or using them to learn different things in life. Using smartphones to learn and teach today is something common to see in places like schools or colleges. Therefore, thinking about developing an app that teaches Arabic language may help some categories in society to learn a second language. For example, kids under the age of five or older would learn fast by using smartphones. The problem is based on the Arabic language, which is most like to be not used anymore. The developer assumed to develop an app that would help the younger generation on their learning the Arabic language. A research was completed about user interface design to help the developer choose appropriate layouts and designs. Developing the artefact contained different stages. First, analyzing the requirements with the client, which is needed to be developed. Secondly, designing the user interface design based on the literature review. Thirdly, developing and testing the application after it is completed contacting all the tools that have been used. Lastly, evaluation and future recommendation, which contained the overall view about the application followed by the client’s feedback. Gathering the requirements after having client meetings based on the interface design. The project was done following an agile development methodology. Therefore, this methodology helped the developer to manage to finish the work on time.Keywords: developer, application, interface design, layout, Agile, client
Procedia PDF Downloads 11929146 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 5829145 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques
Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara
Abstract:
In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN
Procedia PDF Downloads 8429144 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper
Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,
Abstract:
The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK
Procedia PDF Downloads 15129143 The Diversity of Contexts within Which Adolescents Engage with Digital Media: Contributing to More Challenging Tasks for Parents and a Need for Third Party Mediation
Authors: Ifeanyi Adigwe, Thomas Van der Walt
Abstract:
Digital media has been integrated into the social and entertainment life of young children, and as such, the impact of digital media appears to affect young people of all ages and it is believed that this will continue to shape the world of young children. Since, technological advancement of digital media presents adolescents with diverse contexts, platforms and avenues to engage with digital media outside the home environment and from parents' supervision, a wide range of new challenges has further complicated the already difficult tasks for parents and altered the landscape of parenting. Despite the fact that adolescents now have access to a wide range of digital media technologies both at home and in the learning environment, parenting practices such as active, restrictive, co-use, participatory and technical mediations are important in mitigating of online risks adolescents may encounter as a result of digital media use. However, these mediation practices only focus on the home environment including digital media present in the home and may not necessarily transcend outside the home and other learning environments where adolescents use digital media for school work and other activities. This poses the question of who mediates adolescent's digital media use outside the home environment. The learning environment could be a ''loose platform'' where an adolescent can maximise digital media use considering the fact that there is no restriction in terms of content and time allotted to using digital media during school hours. That is to say that an adolescent can play the ''bad boy'' online in school because there is little or no restriction of digital media use and be exposed to online risks and play the ''good boy'' at home because of ''heavy'' parental mediation. This is the reason why parent mediation practices have been ineffective because a parent may not be able to track adolescents digital media use considering the diversity of contexts, platforms and avenues adolescents use digital media. This study argues that due to the diverse nature of digital media technology, parents may not be able to monitor the 'whereabouts' of their children in the digital space. This is because adolescent digital media usage may not only be confined to the home environment but other learning environments like schools. This calls for urgent attention on the part of teachers to understand the intricacies of how digital media continue to shape the world in which young children are developing and learning. It is, therefore, imperative for parents to liaise with the schools of their children to mediate digital media use during school hours. The implication of parents- teachers mediation practices are discussed. The article concludes by suggesting that third party mediation by teachers in schools and other learning environments should be encouraged and future research needs to consider the emergent strategy of teacher-children mediation approach and the implication for policy for both the home and learning environments.Keywords: digital media, digital age, parent mediation, third party mediation
Procedia PDF Downloads 16229142 A Meta Analysis of the Recent Work-Related Research of BEC-Teachers in the Graduate Programs of the Selected HEIs in Region I and CAR
Authors: Sherelle Lou Sumera Icutan, Sheila P. Cayabyab, Mary Jane Laruan, Paulo V. Cenas, Agustina R. Tactay
Abstract:
This study critically analyzed the recent theses and dissertations of the Basic Education Curriculum (BEC) teachers who finished their graduate programs in selected higher educational institutions in Region I and CAR to be able to come up with a unified result from the varied results of the analyzed research works. All theses and dissertations completed by the educators/teachers/school personnel in the secondary and elementary public and private schools in Region 1 and CAR from AY 2003–2004 to AY 2007–2008 were classified first–as to work or non-work related; second–as to the different aspects of the curriculum: implementation, content, instructional materials, assessment instruments, learning, teaching, and others; third–as to being eligible for meta-analysis or not. Only studies found eligible for meta-analysis were subjected to the procedure. Aside from documentary analysis, the statistical treatments used in meta-analysis include the standardized effect size, Pearson’s correlation (r), the chi-square test of homogeneity and the inverse of the Fisher transformation. This study found out that the BEC-teachers usually probe on work-related researchers with topics that are focused on the learning performances of the students and on factors related to teaching. The development of instructional materials and assessment of implemented programs are also equally explored. However, there are only few researches on content and assessment instrument. Research findings on the areas of learning and teaching are the only aspects that are meta-analyzable. The research findings across studies in Region I and CAR of BEC teachers that focused on similar variables correlated to teaching do not vary significantly. On the contrary, research findings across studies in Region I and CAR that focused on variables correlated to learning performance significantly vary. Within each region, variations on the findings of research works related to learning performance that considered similar variables still exist. The combined finding on the effect size or relationship of the variables that are correlated to learning performance are low which means that effect is small but definite while the combined findings on the relationship of the variables correlated to teaching are slight or almost negligible.Keywords: meta-analysis, BEC teachers, work-related research,
Procedia PDF Downloads 43029141 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.Keywords: regression, piecewise, Bayesian, reversible Jump MCMC
Procedia PDF Downloads 52429140 Empowering Middle School Math Coordinators as Agents of Transformation: The Impact of the Mitar Program on Mathematical Literacy and Social-Emotional Learning Integration
Authors: Saleit Ron
Abstract:
The Mitar program was established to drive a shift in middle school mathematics education, emphasizing the connection of math to real-life situations, exploring mathematical modeling and literacy, and integrating social and emotional learning (SEL) components for enhanced excellence. The program envisions math coordinators as catalysts for change, equipping them to create educational materials, strengthen leadership skills, and develop SEL competencies within coordinator communities. These skills are then employed to lead transformative efforts within their respective schools. The program engaged 90 participants across six math coordinator communities during 2022-2023, involving 30-60 hours of annual learning. The process includes formative and summative evaluations through questionnaires and interviews, revealing participants' high contentment and successful integration of acquired skills into their schools. Reflections from participants highlighted the need for enhanced change leadership processes, often seeking more personalized mentoring to navigate challenges effectively.Keywords: math coordinators, mathematical literacy, mathematical modeling, SEL competencies
Procedia PDF Downloads 5629139 Internationalization Strategies and Firm Productivity: Manufacturing Firm-Level Evidence from Ethiopia
Authors: Soressa Tolcha Jarra
Abstract:
Looking into firm-level internationalization strategies and their effects on firms' productivity is needed in order to understand the role of firms’ participation in trading activities on the one hand and the effects of firms’ internalization strategies on firm-level productivity on the other. Thus, this study aims to investigate firms' imports of intermediates and export strategies and their impact on firm productivity using an establishment-level panel dataset from Ethiopian manufacturing firms over the period 2011–2020. Methodologically, the joint firm’s decision to import intermediates and estimate exports is undertaken by system GMM using Wooldridge's approach. The translog-production function is used to estimate firm-level productivity by considering a general Markov process. The size of the firm is used in a mediating role. The result indicates evidence of the self-selection of more productive firms into exporting and importing intermediates, which is indicative of sizable export and import market entry costs. Furthermore, there is evidence in favor of learning by exporting (LBE) and learning by importing (LBI) hypotheses for smaller and medium Ethiopian manufacturing firms. However, for large firms, there is only evidence in support of the learning by exporting (LBE) hypothesis.Keywords: Ethiopia, export, firm productivity, intermediate imports
Procedia PDF Downloads 4329138 A Dynamic Curriculum as a Platform for Continuous Competence Development
Authors: Niina Jallinoja, Anu Moisio
Abstract:
Focus on adult learning is vital to overcome economic challenges as well as to respond to the demand for new competencies and sustained productivity in the digitalized world economy. Employees of all ages must be able to carry on continuous professional development to remain competitive in the labor market. According to EU policies, countries should offer more flexible opportunities for adult learners who study online and in so-called ‘second chance’ qualification programmes. Traditionally, adult education in Finland has comprised of not only liberal adult education but also the government funding to study for Bachelor, Master's, and Ph.D. degrees in Finnish Universities and Universities of Applied Sciences (UAS). From the beginning of 2021, public funding is allocated not only to degrees but also to courses to achieve new competencies for adult learners in Finland. Consequently, there will be degree students (often younger of age) and adult learners studying in the same evening, online and blended courses. The question is thus: How are combined studies meeting the different needs of degree students and adult learners? Haaga-Helia University of Applied Sciences (UAS), located in the metropolitan area of Finland, is taking up the challenge of continuous learning for adult learners. Haaga-Helia has been reforming the bachelor level education and respective shorter courses from 2019 in the biggest project in its history. By the end of 2023, Haaga-Helia will have a flexible, modular curriculum for the bachelor's degrees of hospitality management, business administration, business information technology, journalism and sports management. Building on the shared key competencies, degree students will have the possibility to build individual study paths more flexibly, thanks to the new modular structure of the curriculum. They will be able to choose courses across all degrees, and thus, build their own unique competence combinations. All modules can also be offered as separate courses or learning paths to non-degree students, both publicly funded and as commercial services for employers. Consequently, there will be shared course implementations for degree studies and adult learners with various competence requirements. The newly designed courses are piloted in parallel of the designing of the curriculum in Haaga-Helia during 2020 and 2021. Semi-structured online surveys are composed among the participants for the key competence courses. The focus of the research is to understand how students in the bachelor programme and adult learners from Open UAE perceive the learning experience in such a diverse learning group. A comparison is also executed between learning methods of in-site teaching, online implementation, blended learning and virtual self-learning courses to understand how the pedagogy is meeting the learning objectives of these two different groups. The new flexible curricula and the study modules are to be designed to fill the most important competence gaps that exist in the Finnish labor markets. The new curriculum will be dynamic and constantly evolving over time according to the future competence needs in the labor market. This type of approach requires constant dialogue between Haaga-Helia and workplaces during and after designing of the shared curriculum.Keywords: ccompetence development, continuous learning, curriculum, higher education
Procedia PDF Downloads 13029137 In-Fun-Mation: Putting the Fun in Information Retrieval at the Linnaeus University, Sweden
Authors: Aagesson, Ekstrand, Persson, Sallander
Abstract:
A description of how a team of librarians at Linnaeus University Library in Sweden utilizes a pedagogical approach to deliver engaging digital workshops on information retrieval. The team consists of four librarians supporting three different faculties. The paper discusses the challenges faced in engaging students who may perceive information retrieval as a boring and difficult subject. The paper emphasizes the importance of motivation, inclusivity, constructive feedback, and collaborative learning in enhancing student engagement. By employing a two-librarian teaching model, maintaining a lighthearted approach, and relating information retrieval to everyday experiences, the team aimed to create an enjoyable and meaningful learning experience. The authors describe their approach to increase student engagement and learning outcomes through a three-phase workshop structure: before, during, and after the workshops. The "flipped classroom" method was used, where students were provided with pre-workshop materials, including a short film on information search and encouraged to reflect on the topic using a digital collaboration tool. During the workshops, interactive elements such as quizzes, live demonstrations, and practical training were incorporated, along with opportunities for students to ask questions and provide feedback. The paper concludes by highlighting the benefits of the flipped classroom approach and the extended learning opportunities provided by the before and after workshop phases. The authors believe that their approach offers a sustainable alternative for enhancing information retrieval knowledge among students at Linnaeus University.Keywords: digital workshop, flipped classroom, information retrieval, interactivity, LIS practitioner, student engagement
Procedia PDF Downloads 7029136 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 14429135 Conspicuous and Significant Learner Errors in Algebra
Authors: Michael Lousis
Abstract:
The kind of the most important and conspicuous errors the students made during the three-years of testing of their progress in Algebra are presented in this article. The way these students’ errors changed over three-years of school Algebra learning also is shown. The sample is comprised of two hundred (200) English students and one hundred and fifty (150) Greek students, who were purposefully culled according to their participation in each occasion of testing in the development of the three-year Kassel Project in England and Greece, in both domains at once of Arithmetic and Algebra. Hence, for each of these English and Greek students, six test-scripts were available and corresponded to the three occasions of testing in both Arithmetic and Algebra respectively.Keywords: algebra, errors, Kassel Project, progress of learning
Procedia PDF Downloads 30329134 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19
Authors: Youssef A. Yakoub, Ramy M. Shaaban
Abstract:
Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.Keywords: eLearning, STEM education, COVID-19 crisis, online practical training
Procedia PDF Downloads 14029133 Use of Pragmatic Cues for Word Learning in Bilingual and Monolingual Children
Authors: Isabelle Lorge, Napoleon Katsos
Abstract:
BACKGROUND: Children growing up in a multilingual environment face challenges related to the need to monitor the speaker’s linguistic abilities, more frequent communication failures, and having to acquire a large number of words in a limited amount of time compared to monolinguals. As a result, bilingual learners may develop different word learning strategies, rely more on some strategies than others, and engage cognitive resources such as theory of mind and attention skills in different ways. HYPOTHESIS: The goal of our study is to investigate whether multilingual exposure leads to improvements in the ability to use pragmatic inference for word learning, i.e., to use speaker cues to derive their referring intentions, often by overcoming lower level salience effects. The speaker cues we identified as relevant are (a) use of a modifier with or without stress (‘the WET dax’ prompting the choice of the referent which has a dry counterpart), (b) referent extension (‘this is a kitten with a fep’ prompting the choice of the unique rather than shared object), (c) referent novelty (choosing novel action rather than novel object which has been manipulated already), (d) teacher versus random sampling (assuming the choice of specific examples for a novel word to be relevant to the extension of that new category), and finally (e) emotional affect (‘look at the figoo’ uttered in a sad or happy voice) . METHOD: To this end, we implemented on a touchscreen computer a task corresponding to each of the cues above, where the child had to pick the referent of a novel word. These word learning tasks (a), (b), (c), (d) and (e) were adapted from previous word learning studies. 113 children have been tested (54 reception and 59 year 1, ranging from 4 to 6 years old) in a London primary school. Bilingual or monolingual status and other relevant information (age of onset, proficiency, literacy for bilinguals) is ascertained through language questionnaires from parents (34 out of 113 received to date). While we do not yet have the data that will allow us to test for effect of bilingualism, we can already see that performances are far from approaching ceiling in any of the tasks. In some cases the children’s performances radically differ from adults’ in a qualitative way, which means that there is scope for quantitative and qualitative effects to arise between language groups. The findings should contribute to explain the puzzling speed and efficiency that bilinguals demonstrate in acquiring competence in two languages.Keywords: bilingualism, pragmatics, word learning, attention
Procedia PDF Downloads 14329132 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 2229131 Football Chants in Israel: Persistent Values and Changing Trends
Authors: Ilan Tamir
Abstract:
Fans’ chants in sports stadium have, over the years, become an integral part of the spectator experience. While chants add color, atmosphere, and a demonstration of fans’ support for their team, chants also play a significant role in defining fans’ perceptions of their team’s identity and its differentiation from other teams. An analysis of football chants may therefore shed light on fans’ deep-seated worldviews of their own role, their team, the sport in general, and even life itself. This study, based on an analysis of Israeli football chants over years, identifies key changing and stable perceptions of football fans. Overall 94 chants collected, over a period of five decades. After a pilot study, the chants organized in two groups (one covering 1970-1999 and the other 2000-2016). The chants analyzed through qualitative content analysis in order to understand fans values as a reflection of the society. Findings point to several values that have remained stable over years, including fans’ attitudes toward their team and its rivals, and their attitude toward God. On the other hand, recently emerging phenomena such as radicalization of hatred toward the commercialization of sport reflect social and cultural changes, both in and outside the world of sport.Keywords: sport, fans, chants, soccer
Procedia PDF Downloads 16929130 Gamification in Onboarding: Revolutionizing Employee Integration Through Serious Games
Authors: Maciej Zareba, Pawel Dawid
Abstract:
The integration of serious games into the onboarding process is radically changing the way organizations seek to engage and retain new employees, especially in digital generations such as Millennials (Generation Y) and Generation Z. Serious gamification uses game design elements - such as points, leaderboards and progress indicators - to create interactive, goal-oriented and engaging experiences that facilitate smoother transitions to new roles and acceptance of organizational cultures. The use of serious games in onboarding reduces the stress of starting a new job while accelerating the learning curve through mechanisms that reward achievements, such as completing milestones, connecting with other team members or learning about company values. These tools promote immediate recognition and a sense of belonging to the team and organization, thereby significantly increasing retention and engagement rates. The article also outlines the benefits of using serious games in the onboarding process. It focuses on increasing employee motivation, accelerating learning about the organization and increasing engagement in the long term. In addition, the paper outlines the potential of using a serious game - 4FactoryManager - in the onboarding process. The article provides useful information for HR professionals who are looking for innovative ways to recruit, onboard and keep the best employees in a changing labor market.Keywords: HR, oboarding, digital generation, serious games
Procedia PDF Downloads 929129 The Impact of Physics Taught with Simulators and Texts in Brazilian High School: A Study in the Adult and Youth Education
Authors: Leandro Marcos Alves Vaz
Abstract:
The teaching of physics in Brazilian public schools emphasizes strongly the theoretical aspects of this science, showing its philosophical and mathematical basis, but neglecting its experimental character. Perhaps the lack of science laboratories explains this practice. In this work, we present a method of teaching physics using the computer. As alternatives to real experiments, we have the trials through simulators, many of which are free software available on the internet. In order to develop a study on the use of simulators in teaching, knowing the impossibility of simulations on all topics in a given subject, we combined these programs with phenomenological and/or experimental texts in order to mitigate this limitation. This study proposes the use of simulators and the debate using phenomenological/experimental texts on electrostatic theme in groups of the 3rd year of EJA (Adult and Youth Education) in order to verify the advantages of this methodology. Some benefits of the hybridization of the traditional method with the tools used were: Greater motivation of the students in learning, development of experimental notions, proactive socialization to learning, greater easiness to understand some concepts and the creation of collaborative activities that can reduce timidity of part of the students.Keywords: experimentation, learning physical, simulators, youth and adult
Procedia PDF Downloads 292