Search results for: learning efficiency
9444 The Sustainability of Eco–City Model: Green and Energy Efficiency Technology-Related Framing and Selectivity Issues in Eco–City Projects in Stockholm
Authors: Simon Elias Bibri, Vera Minavere Bardici
Abstract:
In this article, we investigate framing, discursive and material selectivity as important issues that need to be addressed in the planning of eco–city as a model of sustainable urban form. Focusing on the Stockholm region in Sweden, we discuss issues of the contribution of eco–city model to sustainability and examine key themes associated with the construction of the discourse on eco–city projects, namely the integration of environmental, economic, and social sustainability as well as design and technology as solutions in urban projects documents pertaining specifically to Hammarby Sjöstad and Stockholm Royal Seaport. The article is divided into four sections. First, we elucidate the concept and problem of framing and discursive and material selectivity. Second, we briefly discuss the discourse of sustainability, sustainable urban forms, and eco–city, pointing out some key issues that need to be addressed in sustainable urban planning. In the third and main section of the article, we investigate plans and projects for sustainable urban development, focusing on framing and discursive and material selectivity issues in the construction of the discourse on eco–city projects in Stockholm and discussing the findings in terms of the integration of sustainability dimensions, the economic benefits of and the negative environmental effects of energy efficiency and green technology, the shaping influence of cultural frames, the links of eco–city to macro–processes of regulation, the technological orientation of eco–city projects and the associated selectivity aspects. The article concludes with a call for further research for the possibilities for a more environmentally sound and holistic approach to sustainable urban forms.Keywords: framing, selectivity, sustainability, eco–city, sustainable urban form, design, energy efficiency, green technology, Hammarby Sjöstad, Stockholm Royal Seaport
Procedia PDF Downloads 4269443 Intelligent Quality Management System on the Example оf Bread Baking
Authors: Irbulat Utepbergenov, Lyazzat Issabekova, Shara Toybayeva
Abstract:
This article discusses quality management using the bread baking process as an example. The baking process must be strictly controlled and repeatable. Automation and monitoring of quality management systems can help. After baking bread, quality control of the finished product should be carried out. This may include an evaluation of appearance, weight, texture, and flavor. It is important to continuously work to improve processes and products based on data and feedback from the quality management system. A method and model of automated quality management and an intelligent automated management system based on intelligent technologies are proposed, which allow to automate the processes of QMS implementation and support and improve the validity, efficiency, and effectiveness of management decisions by automating a number of functions of decision makers and staff. This project is supported by the grant of the Ministry of Education and Science of the Republic of Kazakhstan (Zhas Galym project No. AR 13268939 Research and development of digital technologies to ensure consistency of the carriers of normative documents of the quality management system).Keywords: automated control system, quality management, efficiency evaluation, bakery oven, intelligent system
Procedia PDF Downloads 459442 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings
Authors: Annette Cosgrove
Abstract:
The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.Keywords: TEL, DTL, digital teaching, digital assessment
Procedia PDF Downloads 789441 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 969440 Fostering Inclusive Learning: The Role of Intercultural Communication in Multilingual Primary Education
Authors: Ozge Yalciner
Abstract:
Intercultural communication is crucial in the education of multilingual learners in primary grades, significantly influencing their academic and social development. This study explores how intercultural communication intersects with multilingual education, highlighting the importance of culturally responsive teaching practices. It addresses the challenges and opportunities presented by diverse linguistic backgrounds and proposes strategies for creating inclusive and supportive learning environments. The research emphasizes the need for teacher training programs that equip educators with the skills to recognize and address cultural differences, thereby enhancing student engagement and participation. This study was completed in an elementary school in a city in the Midwest, USA. The data was collected through observations and interviews with students and teachers. It discusses the integration of multicultural perspectives in curricula and the promotion of language diversity as an asset. Peer interactions and collaborative learning are highlighted as crucial for developing intercultural competence among young learners. The findings suggest that meaningful intercultural communication fosters a sense of belonging and mutual respect, leading to improved educational outcomes for multilingual students. Prioritizing intercultural communication in primary education is essential for supporting the linguistic and cultural identities of multilingual learners. By adopting inclusive pedagogical approaches and fostering an environment of cultural appreciation, educators can better support their students' academic success and personal growth.Keywords: diversity, intercultural communication, multilingual learners, primary grades
Procedia PDF Downloads 439439 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2939438 Assess and Improve Building Energy Efficiency– a Case Study on the Office of Research and Graduate Studies at Qatar University
Authors: Mohamed Youssef
Abstract:
The proliferation of energy consumption in the built environment has made energy efficiency and savings strategies a priority objective for energy policies in most countries. Qatar is a clear example, where it has initiated several programs and institutions to mitigate the overuse of electricity consumption and control the energy load of the building by following global standards and spreading awareness campaigns. A Case study on the Office of Research and Graduate Studies at Qatar University has been investigated in this paper. The paper studied the rating load of existing buildings before and after retrofitting by using Carrier’s Hourly Analysis Program (HAP). The performance of the building has increased especially after using the LED light system instead of fluorescent light with a low payback period. GINAN paint and green roof have shown a considerable contribution to the reduction of electrical load in the building. In comparison, the double HR window had the least effect on the reduction of electricity consumption.Keywords: energy conservation in Qatar, HAP, LED light, GINAN paint, green roof, double HR window
Procedia PDF Downloads 1779437 Adaptive Programming for Indigenous Early Learning: The Early Years Model
Authors: Rachel Buchanan, Rebecca LaRiviere
Abstract:
Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today.Keywords: culturally adapted programming, indigenous early learning, principles-based approach, program scaling
Procedia PDF Downloads 1939436 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1069435 The Impact of the COVID-19 Pandemic on the Armenian Higher Education System: Challenges аnd Perspectives
Authors: Armine Vahanyan
Abstract:
Humanity has been still coping with the new COVID-19 pandemic. Healthcare providers, economists, psychologists, and other specialists speak about the impact of the virus on different spheres of our life. In the list of similar discussions, the impact of pandemics on global education is of utmost importance. Ideally, providing quality education services should be crucial, and the ways education programs are being adapted will determine the success or failure of the service providers. The paper aims to summarize the research touching upon the current situation of higher education in Armenia. The research includes data from official reports, surveys among education leads, faculty, and students, as well as personal observations and consideration. Through descriptive analysis, the findings of the research are being presented from various aspects. Interim results of the research unveiled two major issues in the sector of higher education in Armenia. On the one hand, the entire compulsory digitization of instruction, assessment, and grading has evoked serious gaps related to the lack of technical competencies. There is an urgent need for professional development programs that will address most of the concerns due to the shift to the online instruction mode. On the other hand, online teaching and learning require revision and adaptation of the existing curricula. Given that the content of certain programs may not be compromised, the teaching methods, the assignments, and evaluation require profound transformation, which will still be in line with course learning outcomes and student learning outcomes. The given paper focuses on the ways the mentioned issues are being addressed in Armenia. The extent of commitment for changes and adaptability to the new situation varies from the government-funded and private universities. In particular, the paper compares and contrasts activities and measures taken at the Armenian State Pedagogical University and the American University of Armenia. Thus, the Pedagogical University focused on the use of Google Classroom as the only means for teaching and learning as well as adopted the compulsory synchronous instruction mode. The American University, on the contrary, kept practicing the academic freedom, enabling both synchronous and asynchronous instruction modes, ensuring alignment of the course learning outcomes and student learning outcomes. The State University utilized the assignments and assessment, which would work for the on-campus instruction mode, while the American university employed a variety of assignments applicable for online teaching mode. The latter has suggested the utilization of multiple apps, internet sources, and online library access for a better online instant. Discussions with faculty through online forums and/or professional development workshops also facilitate restructuring and adaptation of the courses. Finally, the paper will synthesize the results of the undertaken research and will outline the e-learning perspectives and opportunities boosted by the known devastating healthcare issue.Keywords: assessment, compulsory digitization of education services, online teaching, instruction mode, program restructuring
Procedia PDF Downloads 1309434 Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay
Authors: Seyed Abolhasan Naeini, Mohammad Hosseinzade
Abstract:
Settlement and bearing capacity of a piled raft are the two important issues for the foundations of the structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system could be used to reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation is evaluated numerically in two cases: in first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles are the parameters which varied in this research to find out how they affect the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity. The complementary results will be presented in the final version of the paper.Keywords: soft clay, strip piled raft, bearing capacity, settlement
Procedia PDF Downloads 3129433 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context
Authors: Andrea Fiorista
Abstract:
The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL
Procedia PDF Downloads 909432 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3079431 Transmission Design That Eliminates Gradual System Problems in Gearboxes
Authors: Ömer Ateş, Atilla Savaş
Abstract:
Reducers and transmission systems are power and speed transfer tools that have been used for many years in the technology world and in all engineering fields. Since today's transmissions have a threaded tap system, torque interruption occurs during tap change. besides, breakdown and manufacturing costs are high. Another problem is the limited torque and rpm setting in stepped gearbox systems. In this study, a new type of transmission system is designed to solve these problems. This new type of transmission system has been called the Continuously Variable Pulley. The most important feature of the transmission system in the study is that it can be adjusted Revolutions Per Minute-wise and torque-wise at the millimeter (precision) adjustment level. In order to make adjustments at this level, an adjustable pulley with the help of hydraulic piston is designed. The efficiency of the designed transmission system is 97 percent, the efficiency of today's transmissions is in the range of 85-95 percent. examined at the analysis and calculations, it is seen that the designed system gives realistic results and can be compared with today's transmissions and reducers. Therefore, this new type of transmission has been proven to be usable in production areas and the world of technology.Keywords: gearbox, reducer, transmission, torque
Procedia PDF Downloads 1239430 The Analysis of Gizmos Online Program as Mathematics Diagnostic Program: A Story from an Indonesian Private School
Authors: Shofiayuningtyas Luftiani
Abstract:
Some private schools in Indonesia started integrating the online program Gizmos in the teaching-learning process. Gizmos was developed to supplement the existing curriculum by integrating it into the instructional programs. The program has some features using an inquiry-based simulation, in which students conduct exploration by using a worksheet while teachers use the teacher guidelines to direct and assess students’ performance In this study, the discussion about Gizmos highlights its features as the assessment media of mathematics learning for secondary school students. The discussion is based on the case study and literature review from the Indonesian context. The purpose of applying Gizmos as an assessment media refers to the diagnostic assessment. As a part of the diagnostic assessment, the teachers review the student exploration sheet, analyze particularly in the students’ difficulties and consider findings in planning future learning process. This assessment becomes important since the teacher needs the data about students’ persistent weaknesses. Additionally, this program also helps to build student’ understanding by its interactive simulation. Currently, the assessment over-emphasizes the students’ answers in the worksheet based on the provided answer keys while students perform their skill in translating the question, doing the simulation and answering the question. Whereas, the assessment should involve the multiple perspectives and sources of students’ performance since teacher should adjust the instructional programs with the complexity of students’ learning needs and styles. Consequently, the approach to improving the assessment components is selected to challenge the current assessment. The purpose of this challenge is to involve not only the cognitive diagnosis but also the analysis of skills and error. Concerning the selected setting for this diagnostic assessment that develops the combination of cognitive diagnosis, skills analysis and error analysis, the teachers should create an assessment rubric. The rubric plays the important role as the guide to provide a set of criteria for the assessment. Without the precise rubric, the teacher potentially ineffectively documents and follows up the data about students at risk of failure. Furthermore, the teachers who employ the program of Gizmos as the diagnostic assessment might encounter some obstacles. Based on the condition of assessment in the selected setting, the obstacles involve the time constrain, the reluctance of higher teaching burden and the students’ behavior. Consequently, the teacher who chooses the Gizmos with those approaches has to plan, implement and evaluate the assessment. The main point of this assessment is not in the result of students’ worksheet. However, the diagnostic assessment has the two-stage process; the process to prompt and effectively follow-up both individual weaknesses and those of the learning process. Ultimately, the discussion of Gizmos as the media of the diagnostic assessment refers to the effort to improve the mathematical learning process.Keywords: diagnostic assessment, error analysis, Gizmos online program, skills analysis
Procedia PDF Downloads 1849429 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action
Authors: Elisabeth Unterfrauner, Christian Voigt
Abstract:
Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement
Procedia PDF Downloads 1369428 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation
Procedia PDF Downloads 2629427 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting
Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva
Abstract:
The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.Keywords: dipole antenna, double-band, high efficiency, rectenna
Procedia PDF Downloads 1289426 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling
Authors: Dong Wu, Michael Grenn
Abstract:
Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction
Procedia PDF Downloads 849425 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD
Authors: Kourosh Modarresi
Abstract:
The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage
Procedia PDF Downloads 3129424 Training as Barrier for Implementing Inclusion for Students with Learning Difficulties in Mainstream Primary Schools in Saudi Arabia
Authors: Mohammed Alhammad
Abstract:
The movement towards the inclusion of students with special educational needs (SEN) in mainstream schools has become widely accepted practice in many countries. However in Saudi Arabia, this is not happening. Instead the practice for students with learning difficulties (LD) is to study in special classrooms in mainstream schools and they are not included with their peers, except at break times and morning assembly, and on school trips. There are a number of barriers that face implementing inclusion for students with LD in mainstream classrooms: one such barrier is the training of teachers. The training, either pre- or in-service, that teachers receive is seen as playing an important role in leading to the successful implementation of inclusion. The aim of this presentation is to explore how pre-service training and in-service training are acting as barriers for implementing inclusion of students with LD in mainstream primary schools in Saudi Arabia from the perspective of teachers. The qualitative research approach was used to explore this barrier. Twenty-four teachers (general education teachers, special education teachers) were interviewed using semi-structured interview and a number of documents were used as method of data collection. The result showed teachers felt that not much attention was paid to inclusion in pre-services training for general education teachers and special education teachers in Saudi Arabia. In addition, pre-service training for general education teachers does not normally including modules on special education. Regarding the in-service training, no courses at all about inclusion are provided for teachers. Furthermore, training courses in special education are few. As result, the knowledge and skills required to implemented inclusion successfully.Keywords: inclusion, learning difficulties, Saudi Arabia, training
Procedia PDF Downloads 3799423 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3619422 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 1979421 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1189420 Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices: Construction Proceedings and Validation
Authors: Cristina Costa-Lobo, Sandra Fernandes, Miguel Magalhães, José Dinis-Carvalho, Alfredo Regueiro, Ana Carvalho
Abstract:
This paper is a report on the findings of the construction and the validation of a questionnaire monetized in a portuguese higher education context with undergraduate students. The Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices consists of six scales: Critical appraisal of the project, Developed Learning and Skills, Teamwork, Teacher and Tutor Roles, Evaluation of Student Performance, and Project Effectiveness as a Teaching-Learning Methodology. The proceedings of its construction are analyzed, and the validity and internal consistency analysis are described. Findings indicate good indicators of validity, good fidelity and an interpretable factorial structure.Keywords: entrepreneurship project, higher education, psychopedagogical practices, teacher and tutor roles
Procedia PDF Downloads 3859419 The Effectiveness of Concept Mapping as a Tool for Developing Critical Thinking in Undergraduate Medical Education: A BEME Systematic Review: BEME Guide No. 81
Authors: Marta Fonseca, Pedro Marvão, Beatriz Oliveira, Bruno Heleno, Pedro Carreiro-Martins, Nuno Neuparth, António Rendas
Abstract:
Background: Concept maps (CMs) visually represent hierarchical connections among related ideas. They foster logical organization and clarify idea relationships, potentially aiding medical students in critical thinking (to think clearly and rationally about what to do or what to believe). However, there are inconsistent claims about the use of CMs in undergraduate medical education. Our three research questions are: 1) What studies have been published on concept mapping in undergraduate medical education? 2) What was the impact of CMs on students’ critical thinking? 3) How and why have these interventions had an educational impact? Methods: Eight databases were systematically searched (plus a manual and an additional search were conducted). After eliminating duplicate entries, titles, and abstracts, and full-texts were independently screened by two authors. Data extraction and quality assessment of the studies were independently performed by two authors. Qualitative and quantitative data were integrated using mixed-methods. The results were reported using the structured approach to the reporting in healthcare education of evidence synthesis statement and BEME guidance. Results: Thirty-nine studies were included from 26 journals (19 quantitative, 8 qualitative and 12 mixed-methods studies). CMs were considered as a tool to promote critical thinking, both in the perception of students and tutors, as well as in assessing students’ knowledge and/or skills. In addition to their role as facilitators of knowledge integration and critical thinking, CMs were considered both teaching and learning methods. Conclusions: CMs are teaching and learning tools which seem to help medical students develop critical thinking. This is due to the flexibility of the tool as a facilitator of knowledge integration, as a learning and teaching method. The wide range of contexts, purposes, and variations in how CMs and instruments to assess critical thinking are used increase our confidence that the positive effects are consistent.Keywords: concept map, medical education, undergraduate, critical thinking, meaningful learning
Procedia PDF Downloads 1309418 Linking Pre-Class Engagement with Academic Achievement: The Role of Quests in a Flipped Chemistry Course
Authors: Anthony J. Rojas
Abstract:
In flipped classroom environments, students are tasked with engaging in pre-class learning to maximize the effectiveness of in-class time. This study investigates the use of ‘Quests’, brief formative assessments administered at the start of class, to evaluate student understanding of assigned pre-class materials in an undergraduate chemistry course. Students completed Quests via Microsoft Forms, based on content from instructional videos and worksheets, and these assessments were mandatory, with no opportunity for make-up. This paper examines the correlation between Quest performance and overall course success, finding that students who performed well on the Quests consistently achieved higher final grades in the course. The findings suggest that Quests are effective in both reinforcing student engagement with pre-class content and predicting their broader academic performance. The implications of these results for flipped classroom strategies and student learning outcomes will be discussed.Keywords: chemistry, flipped classroom, attendance, assessments
Procedia PDF Downloads 319417 Machine Installation and Maintenance Management
Authors: Mohammed Benmostefa
Abstract:
In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company.Keywords: maintenance, vibration, efficiency, production, machinery
Procedia PDF Downloads 939416 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments
Authors: Lana Burmistrova
Abstract:
Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.Keywords: attention, blindness, memory, music learning, strategy
Procedia PDF Downloads 1899415 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study
Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah
Abstract:
This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language
Procedia PDF Downloads 40